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Abstract. Snow avalanches represent a natural hazard to in-
frastructure and backcountry recreationists. Risk assessment
of avalanche hazard is difficult due to the sparse nature of
available observations informing on snowpack mechanical
and geophysical properties and overall stability. The spa-
tial variability of these properties also adds complexity to
decision-making and route finding in avalanche terrain for
mountain users. Snow cover models can simulate snow me-
chanical properties with good accuracy at fairly good spa-
tial resolution (around 100 m). However, monitoring small-
scale variability at the slope scale (5-50 m) remains critical,
since slope stability and the possible size of an avalanche
are governed by that scale. To better understand and esti-
mate the spatial variability at the slope scale, this work ex-
plores links between snow mechanical properties and micro-
topographic indicators. Six spatial snow surveys were con-
ducted in two study areas across Canada. Snow mechani-
cal properties, such as snow density, elastic modulus and
shear strength, were estimated from high-resolution snow
penetrometer (SMP) profiles at multiple locations over sev-
eral studied slopes, in Rogers Pass, British Columbia, and
Mt. Albert, Québec. Point snow stability metrics, such as
the skier crack length, critical propagation crack length and
a skier stability index, were derived using the snow me-
chanical properties from SMP measurements. Microtopo-
graphic indicators, such as the topographic position index
(TPI), vegetation height and proximity, wind-exposed slope
index, and potential radiation index, were derived from un-
occupied aerial vehicle (UAV) surveys with sub-metre res-

olution. We computed the variogram and the fractal dimen-
sion of the snow mechanical properties and stability metrics
and compared them. The comparison showed some similar-
ities in the correlation distances and fractal dimensions be-
tween the slab thickness and the slab snow density and also
between the weak layer strength and the stability metrics. We
then spatially modelled snow mechanical properties, includ-
ing point snow stability, using spatial generalized additive
models (GAMs) with microtopographic indicators as covari-
ates. The use of covariates in GAMs suggested that microto-
pographic indicators can be used to adequately estimate the
variation in the snow mechanical properties but not the sta-
bility metrics. We observed a difference in the spatial pattern
between the slab and the weak layer that should be consid-
ered in snow mechanical modelling.

1 Introduction

Snow avalanches represent a natural hazard to infrastruc-
ture and backcountry recreationists in mountainous areas all
over the world (Stethem et al., 2003; Techel et al., 2016).
Snow avalanches can be divided into different types: wet,
dry, non-cohesive or slab avalanches. However, dry-snow
slab avalanches are the most difficult to predict and are re-
sponsible for the most fatalities (Techel et al., 2016). They
require a shear crack, usually initiated by a person or new
snowfall in a weak porous layer underneath a cohesive snow
slab. Then, the crack must reach a critical size in order to
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self-propagate across the slope for a slab avalanche to occur.
Practitioners and forecasters estimate the probability and size
of an avalanche from point-scale information on weak lay-
ers and slab properties across different scales. However, the
sparse nature of available observations on snowpack proper-
ties makes the forecasting of slab avalanches difficult (Hageli
and McClung, 2004). The snow spatial variability at differ-
ent scales also adds complexity to this challenging task by
adding uncertainty to whether the properties measured in the
field are representative of the slab and weak layer system
(Schweizer et al., 2008a).

The spatial variability of snow properties is well docu-
mented in climate studies (e.g. Harper and Bradford, 2003),
glacier dynamics (e.g. Pulwicki et al., 2018), snow hydrology
(e.g. Deems et al., 2006), mountain meteorology (e.g. Mott
et al., 2011), permafrost (e.g. Wirz et al., 2011) and snow
(e.g. Schweizer et al., 2008a). Numerous studies have inves-
tigated the spatial distribution of snow depth and its water
equivalent to support hydrological models (e.g. Deems et al.,
2006; Griinewald et al., 2010; Schirmer et al., 2011; Win-
stral et al., 2002). Some researchers went further to estimate
and analyze the spatial pattern of snow depth (Deems et al.,
2006; Mott et al., 2011; Schirmer and Lehning, 2011; Tru-
jillo et al., 2007). They analyzed the scaling properties and
the fractal dimension of the snow depth, which can be esti-
mated with the slope of a log—log variogram or with the pe-
riodogram of the spatial signal. The idea behind the scaling
properties and fractal dimension is that many scales can de-
fine a spatial pattern instead of one scale like the correlation
length in a variogram. Fractal dimension also characterizes
the roughness or smoothness of a spatial pattern across multi-
ple scales. These researchers compared the fractal dimension
of snow depth with the fractal dimension of topographic in-
dicators and vegetation. However, no studies have explored
the fractal dimension of snow mechanical properties. Most
studies have relied on lidar or manual snow probe surveys to
estimate snow depth. However, snow depth is not a sufficient
indicator of the conditions required for snow avalanches to
occur.

There are more effective indicators, such as snow stabil-
ity tests, to estimate the conditions for snow avalanches.
These tests are widely used in the avalanche industry to
assess snow stability and, ultimately, snow avalanche haz-
ard. These tests provide a qualitative evaluation of the me-
chanical interaction between the cohesive slab and the weak
layer. Some studies have investigated the variability of sev-
eral snow stability tests on an avalanche-prone slope (Kron-
holm and Schweizer, 2003; Birkeland, 2001; Campbell and
Jamieson, 2007). They demonstrated a variation in the test
results and spatial patterns with variograms and correlation
distances of around 5-20 m. However, these snow stability
tests do not provide information on the snow mechanical
properties of the slab and the weak layer. Additionally, these
tests are time-consuming, leading to limited spatial sam-
pling density and extent for statistical analysis, around 30 m
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measurements covering 20 m. To address this limitation, the
high-resolution snow micro-penetrometer (SMP) was used to
characterize the mechanical and structural properties of the
snow, including slab and weak layer thickness, density, elas-
tic modulus, and microstructural strength of the weak layer
(Proksch et al., 2015; Lowe and van Herwijnen, 2012; John-
son and Schneebeli, 1999). Several studies have character-
ized stability based on snow mechanical properties of the
slab and the weak layer (Fohn, 1987; Gaume and Reuter,
2017; Reuter et al., 2015b; Monti et al., 2016; Schweizer and
Reuter, 2015; Reuter and Schweizer, 2018; Rosendahl and
Weillgraeber, 2020). Gaume and Reuter (2017) proposed a
stability index that accounts for both failure initiation and
propagation propensity, using an analytical method applica-
ble to SMP profiles.

The SMP was used in snow spatial studies because it can
rapidly and accurately measure the mechanical properties
of the snow relevant to snow stability on a slope prone to
avalanche (Bellaire and Schweizer, 2011; Feick et al., 2007;
Kronholm and Schweizer, 2003; Landry et al., 2004; Lutz
et al., 2007; Lutz and Birkeland, 2011). These studies re-
ported spatial patterns of weak layer properties with corre-
lation distances ranging from 0.5 to 20 m. However, the sam-
pling density of the survey was between 20 to 50 SMP mea-
surements depending on the studies, and the spatial extent
covered 20 to 50 m. Reuter et al. (2016) used stability metrics
based on SMP-derived snow mechanical properties to show
spatial patterns of snow stability with a higher sampling den-
sity and extent compared to the other studies. The correlation
distance obtained from this study was still in the same range
as the others with some exceptions between 40 and 60 m.
The differences in spatial patterns of snow instability among
surveys were attributed to various meteorological processes
interacting with the terrain and snow cover (e.g. Schweizer
et al., 2008a; Reuter et al., 2016).

Based on these findings, several studies have simulated ar-
tificial spatial patterns of the weak layer in mechanical mod-
els to understand the effect of the spatial variability of the
weak layer on the slope stability, given the likelihood of an
avalanche (Gaume et al., 2014, 2013; Kronholm and Birke-
land, 2005; Fyffe and Zaiser, 2004). Gaume et al. (2015) used
the same method to estimate the propensity for tensile fail-
ure in the slab and the relationship with the size of avalanche
release. These studies typically assumed that the spatial pat-
terns of the weak layer ranged from 0.5 to 10 m, with the
other parameters being constant for simplicity. Kronholm
(2004) and Bellaire and Schweizer (2011) demonstrated that
the spatial patterns of the weak layer and the slab could have
different correlation distances for the same survey, in some
cases resulting in a smoother slab variation than the weak
layer or the opposite. However, the spatial extent of the snow
sampling was relatively small, only twice that of the mea-
sured correlation length, and could affect the estimation of
the correlation length (e.g. Dale and Fortin, 2014; Skgien and
Bloschl, 2006). This matter should be further explored with
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a spatial sampling extent greater than 20m in order to im-
prove the implementation of snow variability in mechanical
models.

Spatial patterns of snow properties can be explained and
estimated by statistical models with exploratory spatial vari-
ables. In the past, environmental variables were mapped us-
ing a linear regression model and kriging with external drift.
Several studies have used kriging to map point snow sta-
bility, such as snow stability test results, SMP-derived me-
chanical properties, and stability metrics (Birkeland, 2001;
Mullen and Birkeland, 2008; Reuter et al., 2015a; Schweizer
and Kronholm, 2007). These studies have demonstrated that
point snow stability can be spatially estimated using topo-
graphic indicators, such as aspect, elevation and slope an-
gle, on the regional scale. These indicators capture the com-
plex interactions between meteorological processes and ter-
rain features, such as snow deposition by wind and the influ-
ence of solar radiation on the snow surface between differ-
ent slopes (Reuter et al., 2016). However, despite the use of
statistical models incorporating topographic indicators, spa-
tially autocorrelated residuals persisted. This residual spatial
variability could be attributed to other spatial phenomena at
a smaller scale.

In studies focused on the slope scale, researchers success-
fully explained and estimated the spatial variability of snow
depth, even in cases where slope angle, aspect and eleva-
tion remained relatively constant (e.g. Deems et al., 20006;
Griinewald et al., 2010; Pulwicki et al., 2018; Revuelto et al.,
2020; Meloche et al., 2022; Trujillo et al., 2007; Winstral
et al., 2002). They used in their studies microtopographic in-
dicators, such as the shape of the slope (topographic position
index, TPI), vegetation index, and microclimate indexes such
as wind exposure (Winstral index) or the potential of solar
radiation. Guy and Birkeland (2013) related terrain parame-
ters to potential trigger zones, but the relationships were not
unique, and their study was limited to the presence of depth
hoar layers. However, the presence of depth hoar crystals
is insufficient to characterize snow stability, which requires
more information on snow mechanical properties for the slab
and the weak layer. These mechanical properties can be accu-
rately measured with the SMP (Reuter et al., 2019). Reuter
et al. (2016) have linked snow stability from SMP-derived
snow mechanical properties with microtopography indica-
tors at the basin scale. While previous spatial studies have
explored linear relations between point snow stability and to-
pographic indicators, Reuter et al. (2016) suggested that the
relation between point snow stability and topographic indi-
cators could be non-linear.

The snow mechanical variability can also affect the over-
all slope stability with the so-called knockdown effect
(Fyffe and Zaiser, 2004; Gaume et al., 2014; Kronholm and
Schweizer, 2003; Schweizer et al., 2008a). This effect de-
notes that variations in weak layer strength can cause the
slope to fail before the load reaches the corresponding aver-
age strength, and this effect is more prominent with a longer
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correlation length. Additionally, spatial variation in snow can
influence the size of the avalanche release (Gaume et al.,
2015). Small-scale variation can promote slab tensile failure
and smaller avalanches.

It is necessary to spatially explain and estimate the me-
chanical properties of snow and snow stability with microto-
pography indicators at the slope scale. This study is based on
the limitations and suggestions of Reuter et al. (2016), who
modelled the spatial patterns of two stability metrics at the
basin scale with terrain-based indicators such as slope an-
gle, aspect and elevation. This work aims to estimate spatial
variation at a smaller scale using microtopographic indica-
tors through non-linear regression. As such, the first objective
of this paper is to compare the scaling effect of the snow me-
chanical properties and the stability metrics for slopes prone
to avalanches with different characteristics. The second ob-
jective is to spatially estimate snow spatial variability us-
ing microtopography indicators. An additional objective is to
compare our dataset with two empirical power law fits from
the literature (BaZant et al., 2003; McClung, 2009), which es-
timate the shear strength of the weak layer and slab density
from the slab thickness.

2 Data and methods
2.1 Study sites

In order to spatially estimate the spatial variability of snow
using microtopography indicators, we selected four study
sites based on their specific microtopography and microcli-
mate context. The first study site is located on Mount Al-
bert in Gaspésie National Park, Québec, Canada (Fig. 1a).
The winter climate of the region is characterized by extreme
changes caused by (1) low-pressure continental systems that
bring heavy snowfall of up to 100cm in 48 h followed by
Arctic cold air masses with strong northwesterly winds and
(2) warm and wet air masses coming from the south, creat-
ing rain-on-snow events (Meloche et al., 2018). The study
site is named Aréte de Roc (AR) and is located in a sub-
alpine/tundra area heavily affected by wind and snow trans-
port compared to the other sites. This site has a high ground
roughness with large boulders and small trees (1 m high).
The slope angle is uniform (33°) with a convex roll at the
top and a concavity at the bottom (Fig. 1). Two other surveys
in Mt. Albert at Epaule du Mur (EP), where the snow slabs
are thicker and denser, were added for our additional objec-
tive, namely to verify the parametrization of snow mechan-
ical properties based on slab thickness (Bazant et al., 2003;
McClung, 2009). However, these two surveys were not used
in the variogram analysis and spatial modelling due to their
insufficient spatial density and extent compared to the other
surveys. They were added to the study to increase the data
range for our additional objective.
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Two study sites are in Glacier National Park, located in
Rogers Pass, British Columbia, Canada (Fig. 1). Our study
sites are on Mount Fidelity, which receives heavy snow pre-
cipitation (Higeli and McClung, 2003) and has a snow cover
of around 2-3 m and sometimes up to 4 m. The Mount Fi-
delity area is classified as a transitional snow and avalanche
climate influenced by warm and wet air masses from the Pa-
cific that bring heavy snowfall and cold air masses from the
north, leading to the development of persistent weak layers
(Hégeli and McClung, 2003). This study area annually ex-
periences several persistent weak layers consisting of buried
surface hoars or facets, relevant for stability assessment. The
first study site at Mount Fidelity is located just above the
tree line at 2020 ma.s.l. on a shoulder named Round Hill
(RH). This site is an alpine area with low soil roughness
(Fig. 1). The slope angle is relatively low (near 25°), with
long and smooth convex rolls around 20-30 m. The last study
site, Jim Bay Corner (JBC), is located below the tree line at
1830ma.s.l. It is an open forested area with relatively low
ground roughness with small shrubs. The site has 10 m tall
trees which create some shaded areas, and the slope angle is
relatively constant (near 20°) with small convex rolls around
5-10m (Fig. 1).

2.2 Data collection and sampling strategies

For the spatial analysis, this study presents four snow spatial
surveys collected during the winter of 2021-2022 (Fig. 1):
25 February 2022 at the Aréte de Roc site (AR22-PP),
27 January 2022 at the Round Hill site (RH22-PP), 19 Jan-
uvary 2022 at Jim Bay Corner (JBC22-SH) and 24 Jan-
uary 2022 at Jim Bay Corner (JBC22-PP). Two more surveys
were added for the comparison of different parametrizations
of snow mechanical properties: 24 January 2019 at Epaule
du Mur (EP19-FC) and 29 February 2020 at Epaule du Mur
(EP20-DF). Snow mechanical properties were measured us-
ing the high-resolution SMP. To compare the spatial patterns
of snow mechanical properties and snow stability, each SMP
measurement was made following a sampling scheme, ac-
cording to the concept of the scale triplet, which is the sup-
port, spacing, and extent described by Bloschl and Sivapalan
(1995). The support is the diameter of the SMP tip, which
is 5 mm, guaranteeing a proper estimation of the microstruc-
tural properties of the snow. A minimum spacing of 2m and
a study site extent covering around 60 to 100 m were chosen
to allow the spacing to be at least half of the expected corre-
lation length and the extent to be 2 to 5 times the expected
correlation length. The expected correlation length has been
reported to be around 5-20 m from several studies (Bellaire
and Schweizer, 2011; Lutz et al., 2007; Reuter et al., 2016;
Schweizer and Reuter, 2015). This method ensures a reliable
estimate of the spatial pattern, defined by both spatial vari-
ance and autocorrelation distance (Skgien and Bloschl, 2006;
Dale and Fortin, 2014). Our sampling scheme also needs to
be adequate for the second objective, which is the spatial es-
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timation of snow mechanical properties and stability metrics
using microtopographic indicators. Therefore, the sampling
scheme was adjusted for each specific study site to obtain a
representative distribution of microtopographic indicator val-
ues while respecting the scale triplets mentioned above. The
sampling was conducted by randomly traversing the study
site while adhering to the minimum spacing and also by char-
acterizing the down and cross-slope for an isotropic sam-
pling. The sampling was stopped when the study site was
almost covered with 60 to 80 SMP measurements. The re-
sulting sampling is shown in Fig. 1. Random sampling con-
tributes to the obtainment of a robust estimation of the cor-
relation length with limited SMP measurements (Kronholm
and Birkeland, 2007; Skgien and Bloschl, 2006).

To ensure an accurate interpretation of the SMP signal, the
weak layer needed to be identified and characterized from
a snow profile. Full characterization of the snow stratigra-
phy was not needed for our analysis, so a shorter version
of snow profile was used to optimize the time in the field.
Two or three snow profiles were conducted per snow spa-
tial survey, spaced at least 20 m apart and positioned next to
SMP measurements (Fig. 1). In each test snow profile, we
first performed two compression tests to identify the weak
layer (Canadian Avalanche Association, 2016). The weak
layer was attributed to the uppermost compression test results
consistent in both compression tests. Then, we visually char-
acterized the types and sizes of the snow grains of the weak
layer. Finally, a propagation saw test was performed to mea-
sure the critical crack length of the weak layer (Gauthier and
Jamieson, 2008). Layers situated above the weak layer were
considered part of the slab. This assessment allowed us to
accurately identify the weak layer in the nearest SMP profile
and subsequently in the remaining SMP profiles. Each snow
measurement, SMP or snow profile, was georeferenced us-
ing a GNSS receiver with centimetre accuracy. Furthermore,
for each study site, aerial imagery was captured by a quad-
rotor UAV with an RGB sensor to characterize the topogra-
phy in both the summer and the winter on the same day as
the spatial snow survey. Ground/surface models were gen-
erated using a structure from motion (sfm) photogrammetry
algorithm (Westoby et al., 2012) with ground and snow con-
trol points, ensuring georeferenced models with centimetre
accuracy (< 2cminx and y and < Scm in z).

2.3 Snow mechanical properties and stability metrics

This section describes the workflow used to process every
SMP profile, extracting several snow mechanical properties
needed for stability assessment. Three stability metrics were
derived from these snow mechanical properties. Figure 2
presents the summary of this workflow.
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Figure 1. Map of the study area of (a) Mount Albert, Québec, Canada, with the study site (b) Aréte de Roc with the 25 February 2022
survey in blue (AR). (¢) Mount Fidelity study area, British Columbia, Canada, with the following sites: (d) Round Hill (RH) with the
27 January 2022 survey in green and (e) Jim Bay Corner (JBC) with the 19 January 2022 survey in red and the 24 January 2022 survey
in black. The aerial photography is from the UAV flight of each study site, the snow spatial sampling is represented by the circles for the
locations of the SMP measurements, and the squares are the snow profile locations.

2.3.1 SMP signal processing and snow properties

Each SMP signal was visually interpreted to identify distinct
layers. First, the weak layer was identified on the SMP sig-
nal next to the snow profile, based on the failure depth in
the corresponding compression test. Then homogeneous lay-
ers above the weak layer were classified into slab layers (Sy,
S2, ..., S;). This procedure was repeated for the remaining
SMP signal. To obtain the macroscopic mechanical proper-
ties for each snow layer, the SMP signal was analyzed using
a Poisson shot noise model with a moving window of 2.5 mm
(Lowe and van Herwijnen, 2012). This analysis was used to
recover microstructural parameters, including the peak force
F the deflection at rupture 8, and the element length L (Lowe
and van Herwijnen, 2012). Then, each structural and macro-
scopic snow mechanical property necessary for estimating
the stability metrics could be retrieved: the slab thickness D,
the weak layer thickness Dy, the slab density p, the weak
layer density py;, the elastic modulus of the slab E and the
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shear strength of the weak layer ,. Specifically, the slab
thickness D and the weak layer thickness Dy, are directly ex-
tracted from the SMP profile. Slab density o and weak layer
density py are derived using the F' and L parameters based
on the method proposed by Proksch et al. (2015):

p=295.8+65.1In(F) —43.2In(F)L +47.1L, (1)

where p is in kilograms per cubic metre, L in millimetres
and F in N. The coefficients were obtained by Calonne et al.
(2020). The slab density p was determined as the mean value
of all sub-slab layers above the weak layer, while py is the
mean value of the signal inside the weak layer. The effective
macroscale elastic modulus of the slab (E) was derived with
the new formulation recently adapted by Reuter et al. (2019),
originally developed by Johnson and Schneebeli (1999):

E—880F8 2 2)
L3 LT

The SMP cannot specifically measure the shear strength of
the weak layer due to the mixed-mode loading on the weak
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layer caused by the slope angle in the field. Reuter et al.
(2015a) previously assumed that the shear strength of the
weak layer 7, is approximately equal to the microstructural
strength of the element defined by Urtr}llicro =F/L%. We re-
tained the same assumptions, but we used the macroscale
strength o " to estimate 7,,. The formulation is similar but
scaled with the number of active contacts % over the 2.5 mm
processing moving window of the SMP, following the for-

mulation of Johnson and Schneebeli (1999):

F §
h
O‘rtnacro = ﬁ : z 3)

2.3.2 Stability metrics

The skier propagation index (SPI) proposed by Gaume and
Reuter (2017) was used to describe the skier stability. The
SPI is defined as the ratio of two lengths: the skier crack
length [y and the critical crack length a.. The skier crack
length represents the length of the crack in the weak layer
induced by the weight of a skier on top of a slab. The crit-
ical crack length is the length of the crack required for the
onset of crack propagation. The skier crack length is com-
puted by solving the following equation: T+ At = 7, where
T = pgDsiny is the shear stress due to the slab weight with
g as the gravitational acceleration. The stress due to the skier
At was originally defined by Fohn (1987) and refined by
Monti et al. (2016):

Ar— 2R cosasin®a sin(a + V) ’ (4)
7 De

where R is the skier load set to 780N, and v is the snow
surface slope angle derived from UAV imagery. The angle o
is defined as the angle between the point at the snow surface
under the skier load to the point of maximum induced shear
stress at the weak layer. Additionally, De is the new multi-
layered slab thickness proposed by Monti et al. (2016), con-
sidering that slabs are often made up of multiple layers with
different properties, influencing stress redistribution (Haber-
mann et al., 2008). The computation of D, follows Eqgs. (2),
(3) and (4) in Monti et al. (2016), based on each layer elas-
tic modulus E that composed the slab. In order to determine
lsk, the roots of the equation are found where 7 + At =1),.
The roots define two angles, o1 and oy, describing the area
of stress from the surface beneath the skier to the weak layer.
From these two angles, the skier crack length is calculated
(Isx) with the following equation (Gaume and Reuter, 2017):

1 1
- } . 5)

tanog tanoy

lskzDe[

It is important to note that D. was used exclusively in
Egs. (4)—(5), and the slab thickness D was used in the a, for-
mulation (explained below) and in both spatial analysis and
estimation.

The Cryosphere, 18, 1359-1380, 2024

The critical crack length is computed using the formula-
tion from Gaume et al. (2017):

—Tt+4+Jt+20(t,— 7
aC:A[ @ )}’

o
where 0 = pgDcos ¥, and A is a characteristic length of the
system defined by

E'DD
A= =22 (7
Gy

where E' = E/(1 — vz), v is Poisson’s ratio set to 0.3, Dy
is the weak layer thickness and Gy, is the shear modulus
of the weak layer. However, Richter et al. (2019) proposed
to change the formulation of A by excluding Dy, due to its
sensitivity in snow cover modelling (SNOWPACK), which
is also challenging to visually interpret in an SMP profile.
Instead, they proposed a parametrization based on the weak
layer density and optical grain size, replacing the ratio g—:i
by Fyw1 (Eq. 8) into the characteristic length A = \/E’'D Fy.
They normalized the optical grain size with a critical grain
size (1.25 mm) from Schweizer et al. (2008b). The critical
grain size of 1.25 mm was determined with a statistical anal-
ysis comparing weak layer properties from profiles classified
as stable or unstable. We adapted this approach by replacing
the optical grain size with the SMP parameter L. Following
Pielmeier and Marshall (2009), we used Lo = 1.09 mm. Con-
sequently, we obtained the following formulation for Fy:

(6)

-2.1
Fug = 4.7 x 10—9<M : ﬂ) [mPa~!], (8)
Pice Lo

where py, is the weak layer density, and Ly, is the element
length L of the SMP signal analysis averaged over the thick-
ness of the weak layer. The values are slightly different from
those reported by Richter et al. (2019). Additionally, critical
crack lengths were obtained in the field with the propaga-
tion saw test (PST) conducted next to the snow profile for
each snow sampling survey. We compare the critical crack
length a. from the SMP with the critical crack length from
the PST tests to assess the precision of our approach. How-
ever, we do not intend to accurately predict the stability met-
rics but to model their spatial variation. Finally, the skier
propagation index (SPI) is defined as the ratio of the criti-
cal crack length (a.) and the skier crack length (/s) (Gaume
and Reuter, 2017):

spr= 2 )
lsk

A snowpack loaded by a skier is considered stable for SPI

> 1 and unstable for SPI < 1.

2.4 Analysis of spatial pattern

The first objective of this paper is to compare the scaling ef-
fect on snow mechanical properties and stability metrics for
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Figure 2. Schematic representation of the workflow used to process the SMP signal to obtain the snow mechanical properties and the stability
metrics. The variables and the dashed square in red are the snow mechanical properties and the three stability metrics that are analyzed and
spatially estimated in this work. The parameters of the weak layer are denoted by the subscript Xy,;.

slopes prone to avalanches with different characteristics. We
choose three mechanical properties: the slab thickness D,
the slab density p and the shear strength of the weak layer
7, as well as the three stability metrics described above,
which are the skier crack length /g, the critical crack length
a. and the skier propagation index SPI. The spatial patterns
of each snow mechanical property and stability metric were
compared between the snow spatial surveys as an exploratory
analysis. The omnidirectional experimental variogram y was
computed following the equation for a variable y (Chiles and
Delfiner, 1999):

N
_ . w12
y(h) = 2N;[<y,+h> vil?, (10)

where N is the number of observations, and 4 is the dis-
tance between observations. The experimental variogram is
defined by three parameters: the nugget or the non-spatial
variance, the sill (which is the spatial variance), and the range
or correlation length (which is the distance where the vari-
ance levels out). While the sill is difficult to compare across
properties due to differing units, the correlation length is
comparable as it shares the same unit. The correlation length
provides insight into the scale of spatial variation. Four
types of covariance models (Gaussian, exponential, spheri-
cal, Matérn) were fitted to the experimental variogram using
iterative reweighted least squares estimation with the func-
tion fit.variogram from the gsrzat package (Pebesma, 2004) in
RStudio (R Core Team, 2013). Furthermore, the fractal di-
mension, which expresses the roughness or complexity of a
surface (2D-3D) in a non-integer dimension (Gao and Xia,
1996), was estimated from the variogram. We estimated the
slope ¢ of the transformed log—log variogram and then ob-
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tained the fractal dimension (Gao and Xia, 1996):

dfractal =3- (%) .

2.5 Spatial modelling

(1)

2.5.1 Covariate processing

The second objective of this study is to explore the link
between microtopographic indicators and snow mechanical
properties and stability metrics in order to estimate snow
spatial variability. The scale of these microtopographic in-
dicators is defined by the size of the moving window used to
derive them. Different sizes of moving windows were used to
allow for a multiscale approach describing the spatial process
(e.g. Revuelto et al., 2020; Meloche et al., 2022; Veitinger
et al., 2014). The choice of different window sizes used in
this study is based on the literature and is developed further
below. Microtopography indicators are used as exploratory
spatial variables and are referred to as covariates in the spa-
tial model. These covariates were derived from a digital ter-
rain and surface model (DTM/DSM) generated through pho-
togrammetry using the UAV imagery. The classification be-
tween the ground and the vegetation was performed manu-
ally through visual inspection, given the small extent of the
study site. Additionally, canopy models were generated for
each snow study site by differentiating the DSM from the
DTM. Snow depth maps were generated using a snow sur-
face model (DSMgpow) and compared to the DTM model to
retrieve the snow depth for each spatial snow survey.

All covariates were raster data with an original spatial res-
olution below 0.1 m and were upscaled to a spatial resolution
of 0.5m. The final resolution of the spatial model was the
same as the covariates. The choice of covariates was based on
multiple studies that focus on spatial variation in snow depth
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and is described below. Three groups of covariates, terrain
shape, vegetation and microclimate, are presented in Table 1.
Two indicators were chosen to describe the terrain shape,
the topographic position index (TPI) and the vector rugged-
ness measure (VRM). The TPI is a slope descriptor indicat-
ing ridges, valleys or slopes at a given scale, referencing the
position in elevation relative to neighbouring cells (Weiss,
2001). The TPI was measured between a minimum radius
and a maximum radius with weighted distance from the max-
imum radius (Table 1). The VRM indicates the ruggedness
of the terrain independently of slope angle and aspect. The
ruggedness was derived as the sum of elevation differences
with neighbouring cells but then decoupled with slope angle
and aspect, which means that a flat and a steep slope could
be homogeneous with low ruggedness (Sappington et al.,
2007). These two indicators were used to explain and esti-
mate snow depth (e.g. Revuelto et al., 2020; Meloche et al.,
2022; Veitinger et al., 2014). The sizes of the different mov-
ing windows were chosen based on the values used in these
studies to have a multiscale approach (Table 1). We used the
slope angle and convexity of the terrain as exploratory vari-
ables. Vegetation also has an impact on the spatial variation
of snow depth (Deems et al., 2006); we choose to use the
canopy height for the influence of shrubs (around 0.3 and
0.5 m) and small trees (around 1 or 2 m) because snow cover
can be up to 3 or 4m in some areas of JBC and RH. Only
trees above 5 m were masked from the study sites. We used
the radial proximity to vegetation greater than 2 m to repre-
sent proximity to trees. Some authors also found that solar
radiation (e.g. Lutz and Birkeland, 2011) and wind expo-
sure (e.g. Winstral et al., 2002) were important in spatially
estimating snow properties. We selected the potentially in-
coming solar radiation as covariates: the algorithm simulated
over a DSM (including trees), the trajectory of the sun in
the sky based on the time of the year and the latitude of the
study site. The covariate represents direct insolation (shade
and sunshine areas), calculated over a month prior to the sur-
vey. The Winstral index or upwind maximum slope parame-
ter S, represents the shelter or exposure areas provided by the
terrain upwind of each pixel (Winstral et al., 2002). The up-
wind terrain was defined with the maximum search distance
and the prevalent wind direction based on the mean wind di-
rection from the nearest weather station of the study sites
over the winter. The snow depth values from the DSMgpow
were taken as covariates. The last covariates used were the
spatial coordinates (easting and northing). The fitting of a
smooth function to spatial coordinates, explained in the fol-
lowing section, takes the residual spatial autocorrelation into
account (Nussbaum et al., 2017). The processing of the co-
variates involved the use of the geoprocessing library SAGA
(Conrad et al., 2015), QGIS 3.14 and a Python implemen-
tation of the Winstral index S, according to Winstral et al.
(2002).
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2.5.2 General additive model

General additive models (GAMs) can represent non-linear
relationships between the covariates and the response vari-
able. GAMs have been used in the past for spatial estimation
of environmental variables (Nussbaum et al., 2017). They
produce good results while remaining easy to interpret com-
pared to more complex tree classification methods and ma-
chine learning algorithms (Nussbaum et al., 2017). A GAM
can be described as a generalized linear model with a linear
prediction involving a sum of a smooth function s of covari-
ate x (Wood, 2017):

SIKY)]= X6 + s1(x1;) + s2(x2:)
+53(x31) +...5j(xi), (12)

where f is a link function to a family distribution, Y; is a re-
sponse variable from some exponential family distribution K
and X; is a row of the model matrix for any strictly paramet-
ric component with vector parameter 6. Each smooth func-
tion or spline s; can be expressed through a basis expansion
b with a weight parameter 8 and k defining the order of the
basis expansion.

k
sj(x) =Y Bibr(x;) (13)
k=1

Each smooth function represents a combination of linear
terms fitted to a covariate x ;. The order of the smooth func-
tion determines the non-linear degree or the wigliness of the
fitted GAM. We kept a low order (k = 3) to avoid overfit-
ting and non-realistic variation. While stepwise procedures
are commonly used, they lack stability compared to newer
methods such as shrinkage and boosting procedures (Hester-
berg et al., 2008). We used the double-penalty approach as
a shrinkage method proposed by Marra and Wood (2011),
which adds a smoothing parameter for each covariate spline
function. This method is implemented in the mgcv package
in R. We applied this method for six response variables Y:
the three snow mechanical properties (slab thickness D, slab
density psiap and the shear strength of the weak layer 7))
and the three stability metrics (skier crack length [y, critical
crack length a. and skier propagation index). The estimation
of these response variables used GAMs with the 13 covari-
ates listed in Table 1.

The performance of our models was evaluated with the
root mean square error (RMSE) and the mean absolute error
(MAE) using a 10-fold cross-validation approach. This in-
volves randomly splitting the sample into 10 subsets, fitting
the model to the 9 subsets, comparing it to the remaining
subset and repeating this procedure 10 times. The percentage
of deviance explained (sum of squared errors) was computed
to demonstrate the amount of total variance accounted for
by the model. This metric is more suited to non-linear mod-
els compared to R2, which is still shown in the results for
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Table 1. Covariates used for the spatial models with the source (DTM/DSM) and additional parameters.

Covariates Abbr Additional parameters Processing library
Topographic position index ~ TPI515 radius min/max = 5/15m SAGA ta-morphometry
Topographic position index  TPI2550  radius min/max = 25/50 m SAGA ta-morphometry
Vector ruggedness measure ~ VRMS moving window =5m SAGA ta-morphometry
Vector ruggedness measure ~ VRM15 moving window = 15m SAGA ta-morphometry
Vector ruggedness measure ~ VRM25 moving window =25m SAGA ta-morphometry
Terrain slope angle Slope n/a QGIS

Convexity Convex scale =25 SAGA ta-morphometry
Canopy height Cano DSM/DTM QGIS

Distance to canopy Dist-cano  Radial proximity to trees > 2m SAGA grid tools
Incoming solar radiation Rad Potential solar radiation summed up 30d before sampling  SAGA ta-lighting
Winstral index Sx Search distance = 100 m Python Winstral et al. (2002)
Snow depth H DSMgnow — DTM QGIS

Easting and northing Xy n/a Python implementation

n/a: not applicable.

comparison. Once our model was fitted (and cross-validated)
and the covariates were selected, the response variable was
estimated for every location at each study site on a 0.5 m res-
olution grid. A smaller resolution will not be in line with the
assumption of homogeneous snowpack for the computation
of the skier crack /g and the critical crack length a.. All sta-
tistical computations were performed in R (R Core Team,
2013).

3 Results
3.1 Summary of spatial snow surveys

The first spatial snow survey was conducted at the AR site.
A weak layer of precipitation particles with an observed
grain size of 0.5-1 mm was investigated on 25 February 2022
(AR22-PP), with 45 SMP measurements and a spatial extent
of 71 m. The average slab thickness was 0.28 m and the mean
slab density was relatively high: 252 kg m~3 (Table 2).

At the RH site (RH22-PP), a weak layer of precipitation
particles with an observed grain size of 0.5 to 1 mm was
found beneath a relatively soft snow slab. The mean slab
thickness was 0.19 m, and the mean density was 171kgm™3.
This survey, conducted on 27 January 2022, included 64
SMP measurements and covered a spatial extent of 116 m.
The slab consisted of one homogeneous layer of storm snow,
and both the slab and the weak layer originated from the
same meteorological event.

We conducted two spatial snow surveys at the JBC site in
two different areas of the site. The first survey at this site took
place on 19 January 2022 (JBC22-SH) when there was a per-
sistent weak layer of buried surface hoar of 1-2 mm. The slab
was composed of multiple layers with a mean slab thickness
of 0.39 m and a mean density of 188kgm™3 above the sur-
face hoar crystals. This survey consisted of 53 SMP measure-
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ments, covering a spatial extent of 102 m. The second survey
(JBC22-PP) was characterized by a weak layer of precipita-
tion particles buried under a fresh snow slab of 0.21 m thick-
ness and an average slab density of 166kgm™2, deposited
by the same meteorological event as RH22-PP. This survey
included 55 SMP measurements, and the spatial extent was
74 m (Table 2).

The last two surveys presented in Table 2 were added to
the study to increase the data range in Fig. 3. The snow spa-
tial survey EP20-DF had a mean slab thickness of 0.32m
and slab density of 241kgm™3, similar to AR22-PP. The
snow spatial survey EP19-FC recorded the highest mean slab
thickness of 0.85m and the highest mean slab density of
333kgm™3. Although the number of SMP measurements
and spatial extent were not sufficient for spatial analysis,
these surveys provided valuable data points characterized by
larger slab thickness D, contributing to a fair assessment of
the two empirical power law fits (Bazant et al., 2003; Mc-
Clung, 2009).

Figure 3 shows slab density p and weak layer shear
strength 7, in relation to slab thickness D. These relations are
often established, as snow density and snow strength should
increase as the slab load increases. We fitted two power laws
to our SMP-derived dataset and compared them with two
other empirical power laws commonly used in the litera-
ture (Bazant et al., 2003; McClung, 2009). Figure 3 indicates
a poor fit for both parameters (p and 7,). The power law
from McClung (2009) was better suited for the two surveys
characterized with relatively low density (p < 250kgm™3),
which were conducted at Mount Fidelity (Fig. 3a). The sur-
veys with higher density (p > 250kgm~>) were on Mount
Albert, which is a heavily wind-exposed area that could ex-
plain these highly dense slabs. Figure 3b shows some surveys
aligned with the two power laws, especially the surveys from
Mount Fidelity (circles). However, the Mount Albert surveys
exhibited more variability compared to the Mount Fidelity
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Table 2. Summary for the snow measurements of all spatial surveys. The results of the compression test (CT) results and the propagation
saw test (PST) are shown according to the standards of the Canadian Avalanche Association (2016).

Surveys Date Mean D and p Weak layer NbSMP Extent CT PST (m)
AR22-PP 25Feb 2022  0.28 m and 252 kg m™3 PP0.5-1mm 45 71m CTMI11 (RP) down 0.25m  0.9/1.5 END
CTH23 (RP) down 0.54m  1.42/1.5 END
CTH22 (RP) down 0.35m  1.22/1.5 END
RH22-PP 27Jan 2022  0.19m and 171 kg m™3 PP0.5-1mm 64 116m CTMI9 (RP)down 0.22m  0.8/1.5 END
CTM19 (RP) down 0.22m  0.28/1.5 SF
CTH22 (RP) down 0.24m  1.38/1.5 END
JBC22-SH 19Jan2022 0.39m and 188 kg m™? SHI1-2mm 53 102m CTH21 (RP)down 0.39m  1.28/1.5 END
CTM12 (RP) down 0.5 m 1.46/1.5 END
JBC22-PP  24Jan2022 0.21 m and 166 kg m~3  PP0.5-1 mm 55 74m CTM13 (RP) down 0.25m  1.24/1.5 END
CTM16 (RP) down 0.24m  1.41/1.5 END
EP20-DF 29 Feb 2020  0.32m and 241kg m~3 DFO0.5-1 mm 38 45m CTH23 (RP) down 0.38m  —
CTH24 (RP)down 0.45m  —
EP19-FC 24 Jan 2019  0.85m and 333 kg m~3  FClmm 22 48m CTH20 (SP) down 0.82m  —

CTM22 (RP) down 0.88m  —

surveys. In general, our dataset fitted poorly with the power
laws from the literature, and a lot of variability remained in
each survey. The intra-survey variability and implications for
snow mechanical modelling are discussed in Sect. 4.1.

3.2 Comparison of spatial patterns

For all spatial snow surveys, the empirical variogram showed
smaller correlation lengths for the slab thickness compared
to other properties, ranging from 5 to 10 m (Fig. 4). The var-
iograms for the slab density exhibited a correlation length
in the same range as for the slab thickness, particularly for
JBC22-PP and RH22-PP, with 5 and 8 m, respectively. These
two spatial snow surveys had the same weak layer and slab
meteorological deposition event characterized by a new snow
instability. The correlation length for the slab thickness and
slab density at AR22-PP was 10 m, with the same type of new
snow instability. The variogram of the slab density at JBC22-
SH was the only survey that had a longer correlation length
of 34m. Variograms of the slab density from JBC22-SH,
JBC22-PP and AR22-PP appeared to exhibit fractal char-
acteristics. These variograms showed a distinct plateau of
variance around 10-20m, followed by an increase in vari-
ance around 30—40 m, indicating a multiscale pattern around
these two distances (10 and 40 m). Variograms of the weak
layer shear strength indicated a longer correlation length
around 20 m compared to the ones of slab properties, which
were around 10 m. In the JBC22-PP and RH22-PP surveys,
which shared the same meteorological deposition event, the
variance stabilized at 20m without any further increase in
variance. The other surveys (JBC22-SH and AR22-PP) had
longer correlation lengths and showed fractal characteristics
with no stabilization in variance as the sampling distance in-
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creased. The primarily used variogram models were spheri-
cal and exponential, characterized by a rapid increase in vari-
ance for short distances. These models tend to be less smooth
than Gaussian models, which have a smaller variance for
short distances. Gaussian models were fitted for slab thick-
ness at JBC22-SH and slab density at JBC22-PP. In general,
the correlation lengths tended to be shorter for the thickness
and density of the slab compared to the shear strength of the
weak layer in each snow spatial survey.

At first glance, all the correlation lengths of the stability
metrics were longer than those of the slab properties. Surveys
at the Jim Bay Corner (JBC22-SH and JBC22-PP) showed
correlation lengths around 20 m (Fig. 5). The other two sur-
veys (AR22-PP and RH22-PP) exhibited an empirical vari-
ogram that did not show a clear plateau of variance to deter-
mine a correlation length. These surveys either had a longer
correlation length than the spatial extent of the sampling or
showed a fractal behaviour over multiple scales. The correla-
tion lengths of the stability metrics ranged from 10 to 20 m,
which is longer compared to the slab properties (Fig. 5). The
most frequently used variogram model was spherical, but
Gaussian models were also applied for the skier crack length
(JBC22-PP, RH22-PP, AR22-PP) and skier index (JBC22-
SH, JBC22-PP). Gaussian models were more frequently fit-
ted to stability metrics than to snow properties, suggesting
smoother spatial patterns for the stability metrics. The var-
iogram of the stability metrics exhibited more similarities
with the variogram of the weak layer shear strength than with
the slab properties.

The fractal dimensions for the snow properties indicated a
difference in surface complexity between the slab properties,
the weak layer properties and the stability metrics (Fig. 6).
The slab properties had higher fractal dimensions, around
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Figure 3. SMP-derived (a) slab density pg,, and (b) weak layer shear strength 7, in relation to the slab thickness D for each SMP mea-
surement of all spatial surveys. The full circles represent the SMP values from Mount Fidelity, British Columbia, and the crosses are from
the surveys from Mount Albert, Québec. A power law in blue was fitted to the SMP-derived values of all surveys, with R? =0.5 for p and
R2 = 0.4 for 7. The orange power law in (a) represents p compared to D, with an initial density of 100 kg m~3 from McClung (2009). The
red power law is the power law in (b) for 7, from BaZant et al. (2003), who used the Mohr—Coulomb relation with an initial cohesion of

300 Pa (Gaume et al., 2014).

2.85, indicating a higher surface complexity compared to the
weak layer and the stability metrics, which had a similar frac-
tal dimension around 2.7. Despite the stability metrics being
computed from both slab mechanical properties and weak
layer properties, their fractal dimension values were closer
to those of the weak layer than to those of the slab. These re-
sults suggest that the spatial patterns of the stability metrics
were more similar to those of the weak layer than to those of
the slab properties.

3.3 Spatial modelling

The spatial models created by the GAMs explained the vari-
ance of the response variable but not entirely. The R? and the
percentage of deviance explained before ranged from 0.17 to
0.84 and from 22 % to 84 % (Tables 3—4). On average for all
models, the R? was approximately 0.5, and the percentage of
deviance was 55 %. The average R was 0.47 for snow prop-
erties and 0.55 for stability metrics, and the average percent-
age of deviance explained previously was the same at 55 %.
The performance of the models was assessed with a 10-fold
cross-validated RMSE and MAE. The cross-validated RMSE
and MAE for the slab thickness D were mostly 1-2 cm, ex-
cept for 12cm at AR22-PP, and around 4 to 27kgm™> for
the slab density. The RMSE and MAE for the shear strength
ranged from 30 to 128 Pa, except for 752 Pa for AR22-PP,
but this snow spatial survey was also the one which had the
highest variance (500 to 3500 Pa).

The spatial surfaces estimated by the GAMs in JBC22-SH
for the snow mechanical properties are presented in Fig. 7.
The estimated surfaces for the slab thickness and density ex-
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hibited a similar variation with comparable maximum and
minimum areas. However, the estimated surface for the shear
strength of the weak layer differed slightly from the slab
properties. This finding reinforces the above results, indicat-
ing that the spatial pattern of the weak layer differed from the
slab properties in our dataset. Estimation errors for the criti-
cal crack length ranged from 0.11 to 0.60 m, except for 1.2 m
for AR22-PP. The RMSE and MAE for the skier propagation
index ranged from 0.27 to 4, showing significant variability
and relatively high values for an index. The estimation er-
rors for the stability metrics were notably high, demonstrat-
ing that the model estimations were not reliable compared
to the snow mechanical properties. However, Fig. 8 suggests
that some outliers might have contributed to overestimating
the RMSE, particularly with low values of /g and high SPI
values (SPI =~ 10). The spatial patterns of the stability metrics
revealed two major weak spots represented by two clusters of
low SPI values near 0, located on the north side (right) and
northwest (upper middle). These weak spots corresponded to
areas with lower shear strength values and slightly thicker
and higher-density slabs.

There are no clear covariates selected by the model for
every site, snow properties or stability metrics. However,
some covariates were selected more frequently by the spa-
tial models than others. The covariates most frequently used
by the models, for both snow properties and stability met-
rics, were multiscale TPI and VRM, but their usage varied
depending on the scale (Fig. 9). Spatial models for the shear
strength of the weak layer appeared to select mainly TPI2550
and VRMS, whereas for slab density, VRM15 and convex-
ity were chosen predominantly. Canopy height was selected
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Figure 4. Experimental variograms (circles) and fitted variogram models (line) for the snow mechanical properties. Note that the square
root of the variance gives the absolute variation. The vertical dashed line in each variogram is the range of the fitted variogram model to the

experimental variogram.

in the snow property models but rarely in the stability met-
ric models. The easting and northing coordinates (x, y) were
widely used in the models, indicating the presence of spa-
tially autocorrelated residuals. Surprisingly, snow depth was
not used as frequently as other covariates. Convexity was se-
lected numerous times, especially for the slab density, but
almost never for the slab thickness. Overall, these results in-
dicate that there are no universal covariates or specific co-
variates for snow properties or stability metrics that could
be extrapolated to other sites. The selection of covariates by
the spatial models was site-specific and also specific to dif-
ferent snow properties. The spatial models presented using
microtopography indicators were fairly reliable for estimat-
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ing absolute values of snow properties and not reliable for
the stability metrics but rather for capturing relative spatial
variability.

4 Discussion

4.1 Snow mechanical parametrization

Our study aligns with the well-known relationship between
slab thickness and slab density, attributed to snow settlement.

The comparison of spatial patterns between surveys indicated
that these two properties exhibited similar trends in their var-
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iogram, the fractal dimension and their covariates used for
spatial modelling. For further research, the empirical power
law fit p ~ 100+ 135D%4, suggested by McClung (2009),
provides a simple approach to obtain average values that
represent the interaction between these two properties for
mechanical simulation (e.g. Gaume and Reuter, 2017). The
power law fitted to our SMP-derived dataset appears to yield
better average values for denser slabs in wind-exposed areas.
However, it is important to note that these power laws fitted
poorly with our dataset, indicating that significant variability
remains. Nevertheless, these power laws could be used in a
snow mechanical model to generate a slab density variation
according to the spatial pattern of the slab thickness. Un-
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til now in snow mechanical modelling research, the spatial
variation in snow properties was limited to the weak layer.
Our study shows a distinction between the spatial variation
in the slab properties and the weak layer, already observed
by Kronholm (2004) and Bellaire and Schweizer (2011). We
propose accounting for both slab property variation and weak
layer variation since spatial patterns can differ between them.

Weak layer variations exhibited longer correlation lengths
(smoother spatial pattern) than slab variations, and the in-
crease in shear strength did not necessarily match the in-
crease in the slab thickness. In general, shear strength should
increase with slab thickness due to the slab load, but some
variation was still present in our dataset (Fig. 3). The inter-
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Table 3. Summary of the spatial models, model selections and performance metrics for the snow properties. The performance metrics are the
following: R2, the percentage of deviance (% dev), scale, the cross-validated root mean squared error (CV RMSE) and the cross-validated
mean absolute error (CV MAE). The symbols next to the covariates refer to the significance levels of the p value: > 0.1 “”, < 0.05 “*”,
< 0.01 “**” < 0.00] “***7,

Site Snow prop.  Covariates R?  %dev Scale CVRMSE CV MAE

JBC22-SH D TPI2550* + VRM25 + VRM5* + Hg*  0.35 429 957x107° 0.01 0.01
+ Convex. + Dist-cano* + Sy *

JBC22-SH  pg1ap Slope** + VRM15%** + Hg* 4+ Con-  0.57 64.1 12.22 7.91 4.78
vex*** 4+ Dist-cano®

JBC22-SH 1p (x+y)* + Slope* + TPIS15* + 0.50 66.2 3762.3 66.29 51.70
VRMI15*%* + VRMS5* + Convex* +
Cano.

JBC22-PP D VRMS + Cano* 0.17 22.2 0.0001 0.01 0.01

JBC22-PP  pglap Slope** + TPIS15%* 4 TPI2550*** +  0.64 69.6 15.13 6.32 5.00
VRM25%*% 4+ VRM15%* 4+ VRM5* +
Hgs + Sx

JBC22-PP 1 (x+y)*** + TPI2550*** 4+ VRM25** (.76 80.4 864.78 41.32 30.79
+ VRM15 + VRMS5*** + Dist-cano**
+ Sy *

RH22-PP D (x + y)*** 4 Slope* + TPIS15*** 4+  0.54 60 0.0002 0.03 0.02
TPI12550* + Cano** + Dist-cano** +
Sx**

RH22-PP Pslab (x+y)** 4+ Slope. + TPI515. + 0.32 38.2 64.99 11.39 8.51
VRMI15%* 4+ Convex*** + Cano*

RH22-PP Tp (x 4+ y)** + TPI2550%** + VRM25* (.42 48.3 10463 128.37 99.70
+ VRM5#** 4+ Rad* 4+ Cano**

AR22-PP D (x +y). + VRM15* 4+ VRMS + Cano. 0.28 36.2 0.006 0.12 0.10

AR22-PP Dslab (x + y)** + TPI2550. + Hs. + Con- 0.41 46.8 216.77 21.78 21.80
vex**

AR22-PP Tp (x + y)*** + Slope* 4+ TPI2550%** +  0.72 76.7  2.157 x 10° 752.70 578.88

VRMS5* 4+ Convex*** 4 Dist-cano*
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Table 4. Summary of the spatial models, model selection and performance metrics for the stability metrics. The performance metrics are the
following: R2, the percentage of deviance (% dev), scale, the cross-validated root mean squared error (CV RMSE) and the cross-validated
mean absolute error (CV MAE). The symbols next to the covariates refer to the significance levels of the p value: > 0.1 “.”, < 0.05 “*7”,
< 0.01 %7 < (0.00] “***,

Site Stab. metrics  Covariates R?  %dev Scale CVRMSE CVMAE

JBC22-SH Iy (x+y)* 4 Slope** + VRMI15%** +  0.58 64.8 0.06 0.48 0.22
VRMS5 + Convex.

JBC22-SH A Slope*** 4 TPIS15** 4+ TPI2550* +  0.60 65.9 0.06 0.20 0.14
VRMI15%#%  VRM**  F ¥

JBC22-SH SPI Slope** + VRMI15* 4+ VRMI5** + 0.35 40.3 6.66 2.5 1.89
Hg*

JBC22-PP I (x + y)*** 4+ TPI2550** 4+ VRM25** (.60 65.1 0.006 0.10 0.07
+ VRMS5**  § *

JBC22-PP A, (x +y)* + TPIS15%** + VRMS5*** 4 (.74 77.7 0.02 0.15 0.11
Hg. + Rad** + Sy *

JBC22-PP  SPI (x + y)** 4+ TPI5S15%**% + VRMS5*** (.84 87 0.20 0.36 0.27
+ Rad** + §y*

RH22-PP Ik (x + y)*** 4 TPI2550** 4+ VRM25** (.51 57.1  0.004 0.11 0.08
+ VRMI15* 4+ VRMS5* 4 Rad* +
Cano*

RH22-PP Ac VRM25%* 4+ VRMS5** 0.25 28.7 0.39 0.60 0.47

RH22-PP SPI (x 4+ y)*** 4+ VRM25*** 4 Rad. + 0.43 48.5 0.61 1.23 0.85
Convex**

AR22-PP Ik (x 4+ y)** + VRM25%* 0.22 27.5 3.2 2.97 1.85

AR22-PP Ac TPI2550*** + VRM15* + Convex* +  0.65 69.1 0.61 1.26 1.01
Cano. + Sy

AR22-PP SPI TPI2550%*** 4 Convex** 0.66 68.7 5.14 4.29 3.31

action between slab thickness and shear strength can be de-
scribed with a power law 7, ~ ¢+ 1370D'3 (Bazant et al.,
2003), reported according to the Mohr—Coulomb relation
with initial cohesion ¢ (300 Pa in Fig. 3) (Gaume et al., 2014).
This power law represented the average values of the sur-
vey from Mount Fidelity well, but our fitted power law could
also be used for thicker (denser) slabs in wind-exposed ar-
eas. However, the four power laws tested did not adequately
capture the variability in values for a specific spatial survey.
The constant parameter must be adjusted for each spatial sur-
vey to fit the values. Overall, these power laws should be
used with caution when estimating the average snow values
(strength and density) if only the slab thickness is available.

Gaume et al. (2013) proposed a method to generate a weak
layer with spatial heterogeneity. The method generates a ran-
dom field with a specified mean, variance and correlation
length for the cohesion of the weak layer, where the shear
strength of the weak layer is defined by a Mohr—Coulomb
relation. The friction term of the Mohr-Coulomb relation,
which incorporates the slab load, was added to the cohesion
to obtain the shear strength. Although their friction term was
constant due to a constant slab thickness, the method can eas-
ily be adapted to accommodate a variable friction term, re-
flecting a variation in slab thickness. This adaptation would

https://doi.org/10.5194/tc-18-1359-2024

enable the specification of two distinct random fields for the
properties of the slab and the weak layer while ensuring con-
sistency with the load of the slab. This method still requires
input values for mean, variance and correlation length. The
empirical power law can estimate mean values, but according
to our dataset, the variance is not well represented (Fig. 3).
Future work should explore the possibility of estimating the
variance and correlation length of snow properties using the
covariance of microtopography combined with distributed
snow cover modelling. Such approaches could contribute to
more realistic simulations in avalanche modelling, enhanc-
ing forecasting capabilities for both the probability of skier
triggering and the size of avalanche releases.

4.2 Spatial modelling

This study gathers a unique dataset characterizing the spatial
variation in snow mechanical properties and stability met-
rics at four different study sites. The comparison of vari-
ograms and fractal dimensions highlights differences in scale
between slab properties and, on the other hand, weak layer
properties and stability metrics (smoother patterns). Spatial
GAMs were used to estimate with fair accuracy the snow
mechanical properties using microtopography. However, the
spatial modelling of the stability metrics was poor and not re-
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Figure 7. Spatial estimation of the following snow mechanical properties: (a) slab thickness D, (b) slab density o and (c) shear strength 7
at the Jim Bay Corner on 19 January 2022 (surface hoar layer — 1 mm). The cross-validated root mean squared error (RMSE) and the mean
absolute error (MAE) are shown next to the map of each property. The grey shading on the background map represents a canopy shading

only for the visualization of trees.

liable. Additionally, a portion of spatial variances remained
unexplained by the models, potentially due to non-spatial
variances, such as instrument error or our processing data
strategy. This strategy included a visual interpretation of
the layer in the SMP resistance profile, as misclassification
or misidentification of the weak layer boundaries can im-
pact the result. Nevertheless, the modification of using the
parametrization Fy, proposed by Richter et al. (2019) instead
of the weak layer thickness for the computation of the criti-
cal crack length makes the method less dependent on weak
layer thickness, enhancing its robustness. While the cross-
validated RMSE of snow mechanical properties suggests suf-

The Cryosphere, 18, 1359-1380, 2024

ficient precision, the high RMSE of stability metrics indi-
cates that the spatial modelling of these metrics is not reli-
able (Table 3). Future work could use spatial estimations of
the snow mechanical properties to compute the stability met-
rics from the spatial field of snow properties.

The cross-validation procedure was performed by ran-
domly selecting 10 subsets. Future work should consider the
correlation length during the random selection of subsets
in cross-validation procedures to ensure complete indepen-
dence between subsets. This could improve the reliability of
RMSE and MAE estimations. However, our 10-fold cross-
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Figure 8. Spatial estimation of the following stability metrics: (a) skier crack length /g, (b) critical crack length a¢ and (c) skier propagation
index (SPI) at the Jim Bay Corner on 19 January 2022 (surface hoar layer — 1 mm). The cross-validated root mean squared error (RMSE)
and mean absolute error (MAE) are shown next to the map of each metric. The grey shading on the background map represents a canopy

shading only for the visualization of trees.

validation (repeated 10 times) still provides a reliable esti-
mation of the performance of our models.

4.3 Microtopographic covariates

This study aimed to use microtopographic covariates for spa-
tial estimations of snow spatial variability and stability. Our
spatial generalized additive modelling did not reveal a uni-
versal covariate that could spatially estimate both snow me-
chanical properties and stability metrics. The study of Reuter
et al. (2016), based on larger-scale terrain-based covariates,
did not find a consistent covariate in all surveys to estimate

https://doi.org/10.5194/tc-18-1359-2024

instability at the basin scale. They reported that the slope as-
pect was selected as a estimator by the model in all of their
surveys, but each survey used a different combination of co-
variates. In the present study, the selection of covariates was
specific to each survey with no clear trend or takeaway re-
garding the choice of covariates. Notably, snow depth was
not a reliable spatial estimator of snow mechanical proper-
ties and stability metrics, a finding consistent with the study
by Reuter et al. (2016). The limited selection of snow depth
as an estimator in our study might be attributed to the ho-
mogeneity in the dataset regarding snow depth or the weak
layer’s spatial variation being unrelated to the snow accumu-
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lation process. It is also noteworthy that, despite AR22-PP
being a wind-exposed site, the GAM did not select the Win-
stral index Sy as a predictor. This could be related to the re-
search distance in S, being too large (100 m), and adjusting
the scale of this indicator, similar to TPI and VRM, could
reveal Sy as a significant covariate, especially at the wind-
exposed site (AR22-PP).

Unfortunately, no link could be made between our only
persistent weak layer survey consisting of surface hoar crys-
tals (JBC22-SH) and the remaining non-persistent weak
layer surveys. A bigger dataset is needed to demonstrate clear
differences between persistent vs. non-persistent weak lay-
ers, as well as between alpine vs. forested areas. The covari-
ates TPI and VRM emerged as the most significant covari-
ates for estimating snow properties; this was also observed
by previous studies using spatial models (random forest) for
snow depth estimation (Meloche et al., 2022; Revuelto et al.,
2020). The optimal scale or window size for TPI and VRM
varied depending on the study site, snow properties and sta-
bility metrics. Future work with a more extensive dataset
should investigate whether the optimal scale is linked to the
specific scale of terrain features at each site, the scale of the
meteorological process affecting the slab and the weak layer,
or a combination of both factors.

The transferability of our results to different sites is not
feasible. The selection of covariates by the model was spe-
cific to each site, snow properties and stability metrics. As
demonstrated by Reuter et al. (2016), the interaction between
meteorological processes and terrain leads to distinct spatial
variations in snow properties across different surveys. These
micrometeorological processes vary between sites, and dif-
ferences emerge not only between slab deposition patterns,
but, crucially, between different types of weak layers. More
spatial snow surveys are needed to gather a robust dataset to
highlight trends in spatial patterns between different types of
weak layers, slab deposition, microtopographic contexts and
microclimatic contexts. To obtain a more robust dataset, fu-
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ture research should aim for an equivalent or higher sampling
density and extent presented in this study (60 and more SMP
profiles covering 80 m extent). Lowering the sampling den-
sity and extent could compromise the estimation of the exper-
imental variogram and the spatial modelling. An alternative
approach to sampling with fewer SMP measurements could
be to incorporate distributed 3D snow cover modelling tools
like ALPINE3D. This avenue was explored by Reuter et al.
(2016), but they acknowledged the need for improving per-
formance in distributed snow cover modelling. Implement-
ing 3D snow cover modelling has the potential to capture a
portion of these site-specific micrometeorological processes
without requiring an extensive spatial survey of SMP mea-
surements.

5 Conclusion

The study provides insights into the spatial variability of
snow mechanical properties and stability metrics. First, we
show that in our dataset, the slab properties exhibit spatial
patterns that were different from the weak layer spatial pat-
terns. In fact, the slab properties, both the slab thickness
and the density, had smaller correlation lengths in their vari-
ograms than the weak layer strength. The slab properties had
higher fractal dimensions than the weak layer strength, which
demonstrates a more “rough” spatial surface. Secondly, spa-
tial modelling using microtopography variables allows for
the estimation of snow mechanical properties with reason-
able accuracy, although the reliability of stability metric es-
timations was poor and not reliable. We also show the use-
fulness of using microtopography to estimate snow spatial
variability, but the selection of the indicators was specific to
each study site and the snow properties. The spatial mod-
els did not predominantly select a microtopographic indica-
tor, indicating that there is no possible extrapolation to other
sites or advice to backcountry recreationists. Future research
could explore the capability of multiscale microtopographic
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indicators, like the topographic position index (TPI) and vec-
tor ruggedness measure (VRM), to estimate spatial patterns
of snow mechanical properties with 3D snow cover mod-
elling. This may contribute to the development of predic-
tive methods for operational avalanche forecasting services,
potentially estimating avalanche release sizes through snow
cover modelling and mechanical models. Additional work is
needed to gather a robust dataset regarding the spatial pattern
of snow mechanical properties in order to elucidate trends
between different types of weak layers and terrain features.

Appendix A

The log—log variograms needed to calculate the fractal di-
mension in Fig. 6 are presented below (Fig. Al).
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Figure Al. Log-log variogram of snow mechanical properties and stability metrics for every snow spatial survey. The fractal dimension is
computed from the slope of the regression line. Gamma represents the variance of each variable. The unit is specified in each title.
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