Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-617-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-617-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Arctic sea ice mass balance in a new coupled ice–ocean model using a brittle rheology framework
Guillaume Boutin
CORRESPONDING AUTHOR
Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen, Norway
Einar Ólason
Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen, Norway
Pierre Rampal
CNRS, Institut de Géophysique de l'Environnement, Grenoble 38058, France
Heather Regan
Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen, Norway
Camille Lique
Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest 29280, France
Claude Talandier
Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest 29280, France
Laurent Brodeau
CNRS, Institut de Géophysique de l'Environnement, Grenoble 38058, France
Robert Ricker
NORCE Norwegian Research Centre, Tromsø, Norway
Related authors
Aikaterini Tavri, Chris Horvat, Brodie Pearson, Guillaume Boutin, Anne Hansen, and Ara Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-3438, https://doi.org/10.5194/egusphere-2025-3438, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In the Arctic, thin sea ice lets ocean waves travel into ice-covered areas. When waves, wind, and currents interact, they create Langmuir turbulence—strong mixing near the surface that helps move heat, gases, and nutrients between the ocean and air. Scientists understand this process in open water, but not well in polar regions. This study uses a new wave–ice model to find out where and how Langmuir turbulence affects ocean mixing in the Arctic.
Nicolas Guillaume Alexandre Mokus, Véronique Dansereau, Guillaume Boutin, Jean-Pierre Auclair, and Alexandre Tlili
EGUsphere, https://doi.org/10.5194/egusphere-2025-1831, https://doi.org/10.5194/egusphere-2025-1831, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Arctic sea ice recedes and it is more exposed to waves. Waves can then fracture continuous pack ice into floes, which are more mobile and easier to melt. The fracture process itself is not well understood, because of harsh field conditions. We propose a novel sea ice fracture criterion incorporated into a numerical model that simulates wave propagation. This criterion can be compared to existing ones. We relate our results to laboratory experiments, and find qualitative agreement.
Einar Ólason, Guillaume Boutin, Timothy Williams, Anton Korosov, Heather Regan, Jonathan Rheinlænder, Pierre Rampal, Daniela Flocco, Abdoulaye Samaké, Richard Davy, Timothy Spain, and Sean Chua
EGUsphere, https://doi.org/10.5194/egusphere-2024-3521, https://doi.org/10.5194/egusphere-2024-3521, 2025
Short summary
Short summary
This paper introduces a new version of the neXtSIM sea-ice model. NeXtSIM is unique among sea-ice models in how it represents sea-ice dynamics, focusing on features such as cracks and ridges and how these impact interactions between the atmosphere and ocean where sea ice is present. The new version introduces some physical parameterisations and model options detailed and explained in the paper. Following the paper's publication, the neXtSIM code will be released publicly for the first time.
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024, https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Short summary
This paper focuses on predicting Arctic-wide sea-ice thickness using surrogate modeling with deep learning. The model has a predictive power of 12 h up to 6 months. For this forecast horizon, persistence and daily climatology are systematically outperformed, a result of learned thermodynamics and advection. Consequently, surrogate modeling with deep learning proves to be effective at capturing the complex behavior of sea ice.
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023, https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
Short summary
Multiyear ice (MYI), sea ice that survives the summer, is more resistant to changes than younger ice in the Arctic, so it is a good indicator of sea ice resilience. We use a model with a new way of tracking MYI to assess the contribution of different processes affecting MYI. We find two important years for MYI decline: 2007, when dynamics are important, and 2012, when melt is important. These affect MYI volume and area in different ways, which is important for the interpretation of observations.
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457, https://doi.org/10.5194/tc-15-431-2021, https://doi.org/10.5194/tc-15-431-2021, 2021
Short summary
Short summary
In this study, we investigate the interactions of surface ocean waves with sea ice. We focus on the evolution of sea ice after it has been fragmented by the waves. Fragmented sea ice is expected to experience less resistance to deformation. We reproduce this evolution using a new coupling framework between a wave model and the recently developed sea ice model neXtSIM. We find that waves can significantly increase the mobility of compact sea ice over wide areas in the wake of storm events.
Noemie Planat, Carolina Olivia Dufour, Camille Lique, Jan Klaus Rieck, Claude Talandier, and L. Bruno Tremblay
EGUsphere, https://doi.org/10.5194/egusphere-2025-3527, https://doi.org/10.5194/egusphere-2025-3527, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
We detect and track mesoscale eddies in the Canadian Basin of the Arctic Ocean and describe their spatio-temporal characteristics in a high resolution pan-Arctic model. Results show eddies of typical size 12 km, lasting 10 days and travelling 11 km, with roughly an equal number of cyclones and anticyclones detected. Seasonal, decadal and interannual changes of the number of eddies detected show strong correlations with the ice cover, and with the mean circulation of the basin.
Aikaterini Tavri, Chris Horvat, Brodie Pearson, Guillaume Boutin, Anne Hansen, and Ara Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-3438, https://doi.org/10.5194/egusphere-2025-3438, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In the Arctic, thin sea ice lets ocean waves travel into ice-covered areas. When waves, wind, and currents interact, they create Langmuir turbulence—strong mixing near the surface that helps move heat, gases, and nutrients between the ocean and air. Scientists understand this process in open water, but not well in polar regions. This study uses a new wave–ice model to find out where and how Langmuir turbulence affects ocean mixing in the Arctic.
Anne Braakmann-Folgmann, Jack C. Landy, Geoffrey Dawson, and Robert Ricker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2789, https://doi.org/10.5194/egusphere-2025-2789, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
To calculate sea ice thickness from altimetry, returns from ice and leads need to be differentiated. During summer, melt ponds complicate this task, as they resemble leads. In this study, we improve a previously suggested neural network classifier by expanding the training dataset fivefold, tuning the network architecture and introducing an additional class for thinned floes. We show that this increases the accuracy from 77 ± 5 % to 84 ± 2 % and that more leads are found.
Nicolas Guillaume Alexandre Mokus, Véronique Dansereau, Guillaume Boutin, Jean-Pierre Auclair, and Alexandre Tlili
EGUsphere, https://doi.org/10.5194/egusphere-2025-1831, https://doi.org/10.5194/egusphere-2025-1831, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Arctic sea ice recedes and it is more exposed to waves. Waves can then fracture continuous pack ice into floes, which are more mobile and easier to melt. The fracture process itself is not well understood, because of harsh field conditions. We propose a novel sea ice fracture criterion incorporated into a numerical model that simulates wave propagation. This criterion can be compared to existing ones. We relate our results to laboratory experiments, and find qualitative agreement.
Jennifer Veitch, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Mauro Cirano, Emanuela Clementi, Fraser Davidson, Ghada el Serafy, Guilherme Franz, Patrick Hogan, Sudheer Joseph, Svitlana Liubartseva, Yasumasa Miyazawa, Heather Regan, and Katerina Spanoudaki
State Planet, 5-opsr, 6, https://doi.org/10.5194/sp-5-opsr-6-2025, https://doi.org/10.5194/sp-5-opsr-6-2025, 2025
Short summary
Short summary
Ocean forecast systems provide information about a future state of the ocean. This information is provided in the form of decision support tools, or downstream applications, that can be accessed by various stakeholders to support livelihoods, coastal resilience and the good governance of the marine environment. This paper provides an overview of the various downstream applications of ocean forecast systems that are utilized around the world.
Laurent Bertino, Patrick Heimbach, Ed Blockley, and Einar Ólason
State Planet, 5-opsr, 14, https://doi.org/10.5194/sp-5-opsr-14-2025, https://doi.org/10.5194/sp-5-opsr-14-2025, 2025
Short summary
Short summary
Forecasts of sea ice are in high demand in the polar regions, and they are also quickly improving and becoming more easily accessible to non-experts. We provide here a brief status of the short-term forecasting services – typically 10 d ahead – and an outlook of their upcoming developments.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego A. Narvaez, Heather Regan, Claudia G. Simionato, Gregory C. Smith, Joanna Staneva, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, Jennifer Veitch, and Jorge Zavala Hidalgo
State Planet, 5-opsr, 5, https://doi.org/10.5194/sp-5-opsr-5-2025, https://doi.org/10.5194/sp-5-opsr-5-2025, 2025
Short summary
Short summary
Operational ocean forecasting systems (OOFSs) are crucial for human activities, environmental monitoring, and policymaking. An assessment across eight key regions highlights strengths and gaps, particularly in coastal and biogeochemical forecasting. AI offers improvements, but collaboration, knowledge sharing, and initiatives like the OceanPrediction Decade Collaborative Centre (DCC) are key to enhancing accuracy, accessibility, and global forecasting capabilities.
Mukund Gupta, Heather Regan, Younghyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
The Cryosphere, 19, 1241–1257, https://doi.org/10.5194/tc-19-1241-2025, https://doi.org/10.5194/tc-19-1241-2025, 2025
Short summary
Short summary
The sea ice cover is composed of floes, whose shapes set the material properties of the pack. Here, we use a satellite product (ICESat-2) to investigate these floe shapes within the Weddell Sea in Antarctica. We find that floes tend to become smaller during the melt season, while their thickness distribution exhibits different behavior between the western and southern regions of the pack. These metrics will help calibrate models and improve our understanding of sea ice physics across scales.
Amélie Simon, Pierre Tandeo, Florian Sévellec, and Camille Lique
EGUsphere, https://doi.org/10.5194/egusphere-2025-704, https://doi.org/10.5194/egusphere-2025-704, 2025
Short summary
Short summary
This paper presents a new way to describe the Arctic sea-ice changes based on the shape of the observed seasonal cycles and using machine learning techniques. We show that the East Siberian and Laptev seas have lost their typical permanent sea-ice seasonal cycle while the Kara and Chukchi seas are experiencing a new typical seasonal cycle, corresponding to a partial winter-freezing.
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025, https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
Short summary
We have developed a new method to improve the accuracy of sea ice models, which predict how ice moves and deforms due to wind and ocean currents. Traditional models use parameters that are often poorly defined. The new approach uses machine learning to fine-tune these parameters by comparing simulated ice drift with satellite data. The method identifies optimal settings for the model by analysing patterns in ice deformation. This results in more accurate simulations of sea ice drift forecasting.
Einar Ólason, Guillaume Boutin, Timothy Williams, Anton Korosov, Heather Regan, Jonathan Rheinlænder, Pierre Rampal, Daniela Flocco, Abdoulaye Samaké, Richard Davy, Timothy Spain, and Sean Chua
EGUsphere, https://doi.org/10.5194/egusphere-2024-3521, https://doi.org/10.5194/egusphere-2024-3521, 2025
Short summary
Short summary
This paper introduces a new version of the neXtSIM sea-ice model. NeXtSIM is unique among sea-ice models in how it represents sea-ice dynamics, focusing on features such as cracks and ridges and how these impact interactions between the atmosphere and ocean where sea ice is present. The new version introduces some physical parameterisations and model options detailed and explained in the paper. Following the paper's publication, the neXtSIM code will be released publicly for the first time.
Robert Ricker, Thomas Lavergne, Stefan Hendricks, Stephan Paul, Emily Down, Mari Anne Killie, and Marion Bocquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-359, https://doi.org/10.5194/egusphere-2025-359, 2025
Short summary
Short summary
We developed a new method to map Arctic sea ice thickness daily using satellite measurements. We address a problem similar to motion blur in photography. Traditional methods collect satellite data over one month to get a full picture of Arctic sea ice thickness. But like in photos of moving objects, long exposure leads to motion blur, making it difficult to identify certain features in the sea ice maps. Our method corrects for this motion blur, providing a sharper view of the evolving sea ice.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024, https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Short summary
Elongated open-water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are all mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Simon Driscoll, Alberto Carrassi, Julien Brajard, Laurent Bertino, Einar Ólason, Marc Bocquet, and Amos Lawless
EGUsphere, https://doi.org/10.5194/egusphere-2024-2476, https://doi.org/10.5194/egusphere-2024-2476, 2024
Short summary
Short summary
The formation and evolution of sea ice melt ponds (ponds of melted water) are complex, insufficiently understood and represented in models with considerable uncertainty. These uncertain representations are not traditionally included in climate models potentially causing the known underestimation of sea ice loss in climate models. Our work creates the first observationally based machine learning model of melt ponds that is also a ready and viable candidate to be included in climate models.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Lars Kaleschke, Xiangshan Tian-Kunze, Stefan Hendricks, and Robert Ricker
Earth Syst. Sci. Data, 16, 3149–3170, https://doi.org/10.5194/essd-16-3149-2024, https://doi.org/10.5194/essd-16-3149-2024, 2024
Short summary
Short summary
We describe a sea ice thickness dataset based on SMOS satellite measurements, initially designed for the Arctic but adapted for Antarctica. We validated it using limited Antarctic measurements. Our findings show promising results, with a small difference in thickness estimation and a strong correlation with validation data within the valid thickness range. However, improvements and synergies with other sensors are needed, especially for sea ice thicker than 1 m.
Yumeng Chen, Polly Smith, Alberto Carrassi, Ivo Pasmans, Laurent Bertino, Marc Bocquet, Tobias Sebastian Finn, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 18, 2381–2406, https://doi.org/10.5194/tc-18-2381-2024, https://doi.org/10.5194/tc-18-2381-2024, 2024
Short summary
Short summary
We explore multivariate state and parameter estimation using a data assimilation approach through idealised simulations in a dynamics-only sea-ice model based on novel rheology. We identify various potential issues that can arise in complex operational sea-ice models when model parameters are estimated. Even though further investigation will be needed for such complex sea-ice models, we show possibilities of improving the observed and the unobserved model state forecast and parameter accuracy.
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024, https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Short summary
This paper focuses on predicting Arctic-wide sea-ice thickness using surrogate modeling with deep learning. The model has a predictive power of 12 h up to 6 months. For this forecast horizon, persistence and daily climatology are systematically outperformed, a result of learned thermodynamics and advection. Consequently, surrogate modeling with deep learning proves to be effective at capturing the complex behavior of sea ice.
Anton Korosov, Pierre Rampal, Yue Ying, Einar Ólason, and Timothy Williams
The Cryosphere, 17, 4223–4240, https://doi.org/10.5194/tc-17-4223-2023, https://doi.org/10.5194/tc-17-4223-2023, 2023
Short summary
Short summary
It is possible to compute sea ice motion from satellite observations and detect areas where ice converges (moves together), forms ice ridges or diverges (moves apart) and opens leads. However, it is difficult to predict the exact motion of sea ice and position of ice ridges or leads using numerical models. We propose a new method to initialise a numerical model from satellite observations to improve the accuracy of the forecasted position of leads and ridges for safer navigation.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023, https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
Short summary
Multiyear ice (MYI), sea ice that survives the summer, is more resistant to changes than younger ice in the Arctic, so it is a good indicator of sea ice resilience. We use a model with a new way of tracking MYI to assess the contribution of different processes affecting MYI. We find two important years for MYI decline: 2007, when dynamics are important, and 2012, when melt is important. These affect MYI volume and area in different ways, which is important for the interpretation of observations.
Sukun Cheng, Yumeng Chen, Ali Aydoğdu, Laurent Bertino, Alberto Carrassi, Pierre Rampal, and Christopher K. R. T. Jones
The Cryosphere, 17, 1735–1754, https://doi.org/10.5194/tc-17-1735-2023, https://doi.org/10.5194/tc-17-1735-2023, 2023
Short summary
Short summary
This work studies a novel application of combining a Lagrangian sea ice model, neXtSIM, and data assimilation. It uses a deterministic ensemble Kalman filter to incorporate satellite-observed ice concentration and thickness in simulations. The neXtSIM Lagrangian nature is handled using a remapping strategy on a common homogeneous mesh. The ensemble is formed by perturbing air–ocean boundary conditions and ice cohesion. Thanks to data assimilation, winter Arctic sea ice forecasting is enhanced.
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Short summary
Information on sea ice surface topography is important for studies of sea ice as well as for ship navigation through ice. The ICESat-2 satellite senses the sea ice surface with six laser beams. To examine the accuracy of these measurements, we carried out a temporally coincident helicopter flight along the same ground track as the satellite and measured the sea ice surface topography with a laser scanner. This showed that ICESat-2 can see even bumps of only few meters in the sea ice cover.
Francesca Doglioni, Robert Ricker, Benjamin Rabe, Alexander Barth, Charles Troupin, and Torsten Kanzow
Earth Syst. Sci. Data, 15, 225–263, https://doi.org/10.5194/essd-15-225-2023, https://doi.org/10.5194/essd-15-225-2023, 2023
Short summary
Short summary
This paper presents a new satellite-derived gridded dataset, including 10 years of sea surface height and geostrophic velocity at monthly resolution, over the Arctic ice-covered and ice-free regions, up to 88° N. We assess the dataset by comparison to independent satellite and mooring data. Results correlate well with independent satellite data at monthly timescales, and the geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km.
Stephanie Leroux, Jean-Michel Brankart, Aurélie Albert, Laurent Brodeau, Jean-Marc Molines, Quentin Jamet, Julien Le Sommer, Thierry Penduff, and Pierre Brasseur
Ocean Sci., 18, 1619–1644, https://doi.org/10.5194/os-18-1619-2022, https://doi.org/10.5194/os-18-1619-2022, 2022
Short summary
Short summary
The goal of the study is to evaluate the predictability of the ocean circulation
at a kilometric scale, in order to anticipate the requirements of the future operational forecasting systems. For that purpose, ensemble experiments have been performed with a regional model for the Western Mediterranean (at 1/60° horizontal resolution). From these ensemble experiments, we show that it is possible to compute targeted predictability scores, which depend on initial and model uncertainties.
Jinfei Wang, Chao Min, Robert Ricker, Qian Shi, Bo Han, Stefan Hendricks, Renhao Wu, and Qinghua Yang
The Cryosphere, 16, 4473–4490, https://doi.org/10.5194/tc-16-4473-2022, https://doi.org/10.5194/tc-16-4473-2022, 2022
Short summary
Short summary
The differences between Envisat and ICESat sea ice thickness (SIT) reveal significant temporal and spatial variations. Our findings suggest that both overestimation of Envisat sea ice freeboard, potentially caused by radar backscatter originating from inside the snow layer, and the AMSR-E snow depth biases and sea ice density uncertainties can possibly account for the differences between Envisat and ICESat SIT.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Klaus Dethloff, Wieslaw Maslowski, Stefan Hendricks, Younjoo J. Lee, Helge F. Goessling, Thomas Krumpen, Christian Haas, Dörthe Handorf, Robert Ricker, Vladimir Bessonov, John J. Cassano, Jaclyn Clement Kinney, Robert Osinski, Markus Rex, Annette Rinke, Julia Sokolova, and Anja Sommerfeld
The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022, https://doi.org/10.5194/tc-16-981-2022, 2022
Short summary
Short summary
Sea ice thickness anomalies during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) winter in January, February and March 2020 were simulated with the coupled Regional Arctic climate System Model (RASM) and compared with CryoSat-2/SMOS satellite data. Hindcast and ensemble simulations indicate that the sea ice anomalies are driven by nonlinear interactions between ice growth processes and wind-driven sea-ice transports, with dynamics playing a dominant role.
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022, https://doi.org/10.5194/tc-16-259-2022, 2022
Short summary
Short summary
Sea-ice thickness retrieval from satellite altimeters relies on assumed sea-ice density values because density cannot be measured from space. We derived bulk densities for different ice types using airborne laser, radar, and electromagnetic induction sounding measurements. Compared to previous studies, we found high bulk density values due to ice deformation and younger ice cover. Using sea-ice freeboard, we derived a sea-ice bulk density parameterisation that can be applied to satellite data.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Timothy Williams, Anton Korosov, Pierre Rampal, and Einar Ólason
The Cryosphere, 15, 3207–3227, https://doi.org/10.5194/tc-15-3207-2021, https://doi.org/10.5194/tc-15-3207-2021, 2021
Short summary
Short summary
neXtSIM (neXt-generation Sea Ice Model) includes a novel and extremely realistic way of modelling sea ice dynamics – i.e. how the sea ice moves and deforms in response to the drag from winds and ocean currents. It has been developed over the last few years for a variety of applications, but this paper represents its first demonstration in a forecast context. We present results for the time period from November 2018 to June 2020 and show that it agrees well with satellite observations.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Francesca Doglioni, Robert Ricker, Benjamin Rabe, and Torsten Kanzow
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-170, https://doi.org/10.5194/essd-2021-170, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper presents a new satellite-derived gridded dataset of sea surface height and geostrophic velocity, over the Arctic ice-covered and ice-free regions up to 88° N. The dataset includes velocities north of 82° N, which were not available before. We assess the dataset by comparison to one independent satellite dataset and to independent mooring data. Results show that the geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km.
Einar Ólason, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021, https://doi.org/10.5194/tc-15-1053-2021, 2021
Short summary
Short summary
We analyse the fractal properties observed in the pattern of the long, narrow openings that form in Arctic sea ice known as leads. We use statistical tools to explore the fractal properties of the lead fraction observed in satellite data and show that our sea-ice model neXtSIM displays the same behaviour. Building on this result we then show that the pattern of heat loss from ocean to atmosphere in the model displays similar fractal properties, stemming from the fractal properties of the leads.
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457, https://doi.org/10.5194/tc-15-431-2021, https://doi.org/10.5194/tc-15-431-2021, 2021
Short summary
Short summary
In this study, we investigate the interactions of surface ocean waves with sea ice. We focus on the evolution of sea ice after it has been fragmented by the waves. Fragmented sea ice is expected to experience less resistance to deformation. We reproduce this evolution using a new coupling framework between a wave model and the recently developed sea ice model neXtSIM. We find that waves can significantly increase the mobility of compact sea ice over wide areas in the wake of storm events.
Chao Min, Qinghua Yang, Longjiang Mu, Frank Kauker, and Robert Ricker
The Cryosphere, 15, 169–181, https://doi.org/10.5194/tc-15-169-2021, https://doi.org/10.5194/tc-15-169-2021, 2021
Short summary
Short summary
An ensemble of four estimates of the sea-ice volume (SIV) variations in Baffin Bay from 2011 to 2016 is generated from the locally merged satellite observations, three modeled sea ice thickness sources (CMST, NAOSIM, and PIOMAS) and NSIDC ice drift data (V4). Results show that the net increase of the ensemble mean SIV occurs from October to April with the largest SIV increase in December, and the reduction occurs from May to September with the largest SIV decline in July.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Cited articles
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Sommer,
J. L., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C.,
Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M.,
McClean, J., and Cuevas, B. D.: Impact of partial steps and momentum
advection schemes in a global ocean circulation model at eddy-permitting
resolution, Oceanogr. Meteorol., 56, 543–567,
https://doi.org/10.1007/s10236-006-0082-1, 2006. a
Bitz, C. M., Holland, M. M., Hunke, E. C., and Moritz, R. E.: Maintenance of
the Sea-Ice Edge, J. Climate, 18, 2903–2921,
https://doi.org/10.1175/JCLI3428.1, 2005. a
Blockley, E., Vancoppenolle, M., Hunke, E., Bitz, C., Feltham, D., Lemieux,
J.-F., Losch, M., Maisonnave, E., Notz, D., Rampal, P., Tietsche, S.,
Tremblay, B., Turner, A., Massonnet, F., Olason, E., Roberts, A., Aksenov,
Y., Fichefet, T., Garric, G., Iovino, D., Madec, G., Rousset, C., y Melia,
D. S., and Schroeder, D.: The Future of Sea Ice Modeling: Where Do We Go from
Here?, B. Am. Meteorol. Soc., 101, E1304–E1311,
https://doi.org/10.1175/BAMS-D-20-0073.1, 2020. a
Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G.,
Lee, Y. J., Lemieux, J.-F., Lique, C., Losch, M., Maslowski, W., Myers,
P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B.,
and Wang, Q.: Sea Ice Rheology Experiment (SIREx): 1. Scaling and Statistical
Properties of Sea-Ice Deformation Fields, J. Geophys. Res.-Oceans, 127, e2021JC017667, https://doi.org/10.1029/2021JC017667,
2022. a, b
Bouillon, S. and Rampal, P.: Presentation of the dynamical core of neXtSIM, a
new sea ice model, Ocean Model., 91, 23–37,
https://doi.org/10.1016/j.ocemod.2015.04.005, 2015. a, b
Boutin, G., Regan, H., Ólason, E., Brodeau, L., Talandier, C., Lique, C., and Rampal, P.: Data accompanying the article “Arctic sea ice mass balance in a new coupled ice-ocean model using a brittle rheology framework” (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7277523, 2022. a
Brodeau, L., Barnier, B., Gulev, S. K., and Woods, C.: Climatologically
Significant Effects of Some Approximations in the Bulk
Parameterizations of Turbulent Air–Sea Fluxes, J.
Phys. Oceanogr., 47, 5–28, https://doi.org/10.1175/JPO-D-16-0169.1,
2017. a
Carmack, E. C., Yamamoto-Kawai, M., Haine, T. W. N., Bacon, S., Bluhm, B. A.,
Lique, C., Melling, H., Polyakov, I. V., Straneo, F., Timmermans, M.-L., and
Williams, W. J.: Freshwater and its role in the Arctic Marine System:
Sources, disposition, storage, export, and physical and biogeochemical
consequences in the Arctic and global oceans, J. Geophys.
Res.-Biogeo., 121, 675–717,
https://doi.org/10.1002/2015JG003140, 2016. a
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017. a
Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling, The Cryosphere, 10, 1339–1359, https://doi.org/10.5194/tc-10-1339-2016, 2016. a
Davy, R. and Outten, S.: The Arctic Surface Climate in CMIP6: Status and
Developments since CMIP5, J. Climate, 33, 8047–8068,
https://doi.org/10.1175/JCLI-D-19-0990.1, 2020. a
Flocco, D., Feltham, D. L., and Turner, A. K.: Incorporation of a physically
based melt pond scheme into the sea ice component of a climate model, J. Geophys. Res.-Oceans, 115, C08012,
https://doi.org/10.1029/2009JC005568, 2010. a
Girard, L., Weiss, J., Molines, J. M., Barnier, B., and Bouillon, S.:
Evaluation of high-resolution sea ice models on the basis of statistical and
scaling properties of Arctic sea ice drift and deformation, J.
Geophys. Res.-Oceans, 114, C08015m https://doi.org/10.1029/2008JC005182, 2009. a
Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., and Legat, V.:
A new modeling framework for sea-ice mechanics based on elasto-brittle
rheology, Ann. Glaciol., 52, 123–132,
https://doi.org/10.3189/172756411795931499, 2011. a
Girard-Ardhuin, F. and Ezraty, R.: Enhanced Arctic Sea Ice Drift Estimation
Merging Radiometer and Scatterometer Data, IEEE T. Geosci.
Remote, 50, 2639–2648, https://doi.org/10.1109/TGRS.2012.2184124, 2012. a
Goessling, H. F., Tietsche, S., Day, J. J., Hawkins, E., and Jung, T.:
Predictability of the Arctic sea ice edge, Geophys. Res. Lett., 43,
1642–1650, https://doi.org/10.1002/2015GL067232, 2016. a, b, c
Haine, T. W., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels,
B., Spreen, G., de Steur, L., Stewart, K. D., and Woodgate, R.: Arctic
freshwater export: Status, mechanisms, and prospects, Global Planet.
Change, 125, 13–35, https://doi.org/10.1016/j.gloplacha.2014.11.013,
2015. a
Hendricks, S., Paul, S., and Rinne, E.: ESA Sea Ice Climate Change
Initiative (Sea_Ice_cci): Northern hemisphere sea ice thickness from
the Envisat satellite on a monthly grid (L3C), v2.0, Centre for Environmental Data Analysis (CEDA Archive) [data set],
https://doi.org/10.5285/F4C34F4F0F1D4D0DA06D771F6972F180, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hibler III, W. D.: A Dynamic Thermodynamic Sea Ice Model, J.
Phys. Oceanogr., 9, 815–846,
https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2, 1979. a
Hunke, E., Lipscomb, W., Jones, P., Turner, A., Jeffery, N., and Elliott, S.:
CICE, The Los Alamos Sea Ice Model, Tech. rep., Los Alamos National
Laboratory (LANL), Los Alamos, NM (United States), Computer software, Version 00, 12 May 2017, https://www.osti.gov//servlets/purl/1364126 (last access: 31 January 2023), 2017. a
Hunke, E., Allard, R., Blain, P., Blockley, E., Feltham, D., Fichefet, T.,
Garric, G., Grumbine, R., Lemieux, J.-F., Rasmussen, T., Ribergaard, M.,
Roberts, A., Schweiger, A., Tietsche, S., Tremblay, B., Vancoppenolle, M.,
and Zhang, J.: Should Sea-Ice Modeling Tools Designed for Climate
Research Be Used for Short-Term Forecasting?, Current Climate
Change Reports, 6, 121–136, https://doi.org/10.1007/s40641-020-00162-y, 2020. a
Hutter, N., Bouchat, A., Dupont, F., Dukhovskoy, D., Koldunov, N., Lee, Y. J.,
Lemieux, J.-F., Lique, C., Losch, M., Maslowski, W., Myers, P. G., Ólason,
E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea
Ice Rheology Experiment (SIREx): 2. Evaluating Linear Kinematic
Features in High-Resolution Sea Ice Simulations, J.
Geophys. Res.-Oceans, 127, e2021JC017666,
https://doi.org/10.1029/2021JC017666, 2022. a, b, c, d
COMM Expert Team on Sea Ice: Sea-Ice Nomenclature: snapshot of the WMO Sea Ice Nomenclature WMO No. 259, volume 1 – Terminology and Codes; Volume II – Illustrated Glossary and III – International System of Sea-Ice Symbols), Geneva, Switzerland, WMO-JCOMM, WMO-No. 259 (I-III), 121 pp., https://doi.org/https://doi.org/10.25607/OBP-1515, 2014. a
Kauker, F., Gerdes, R., Karcher, M., Köberle, C., and Lieser, J. L.:
Variability of Arctic and North Atlantic sea ice: A combined analysis of
model results and observations from 1978 to 2001, J. Geophys.
Res.-Oceans, 108, 3182, https://doi.org/10.1029/2002JC001573, 2003. a
Keen, A., Blockley, E., Bailey, D. A., Boldingh Debernard, J., Bushuk, M., Delhaye, S., Docquier, D., Feltham, D., Massonnet, F., O'Farrell, S., Ponsoni, L., Rodriguez, J. M., Schroeder, D., Swart, N., Toyoda, T., Tsujino, H., Vancoppenolle, M., and Wyser, K.: An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models, The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, 2021. a, b, c
Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: losses
and coupled variability (1958–2018), Environ. Res. Lett., 13,
105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018. a
Kwok, R., Spreen, G., and Pang, S.: Arctic sea ice circulation and drift speed:
Decadal trends and ocean currents, J. Geophys. Res.-Oceans,
118, 2408–2425, https://doi.org/10.1002/jgrc.20191, 2013. a
Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., and Breivik, L.-A.: Sea
ice motion from low-resolution satellite sensors: An alternative method and
its validation in the Arctic, J. Geophys. Res.-Oceans, 115, C10032,
https://doi.org/10.1029/2009JC005958, 2010. a, b
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019. a, b, c
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen,
R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S.,
Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates
of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40,
732–737, https://doi.org/10.1002/grl.50193, 2013. a
Lei, R., Cheng, B., Heil, P., Vihma, T., Wang, J., Ji, Q., and Zhang, Z.:
Seasonal and Interannual Variations of Sea Ice Mass Balance
From the Central Arctic to the Greenland Sea, J.
Geophys. Res.-Oceans, 123, 2422–2439, https://doi.org/10.1002/2017JC013548, 2018. a
Lemieux, J.-F., Tremblay, L. B., Dupont, F., Plante, M., Smith, G. C., and
Dumont, D.: A basal stress parameterization for modeling landfast ice,
J. Geophys. Res.-Oceans, 120, 3157–3173,
https://doi.org/10.1002/2014JC010678, 2015. a, b
Lewis, B. J. and Hutchings, J. K.: Leads and Associated Sea Ice Drift in the
Beaufort Sea in Winter, J. Geophys. Res.-Oceans, 124,
3411–3427, https://doi.org/10.1029/2018JC014898, 2019. a
Liu, Y., Key, J. R., Wang, X., and Tschudi, M.: Multidecadal Arctic sea ice thickness and volume derived from ice age, The Cryosphere, 14, 1325–1345, https://doi.org/10.5194/tc-14-1325-2020, 2020. a, b, c
Lüpkes, C., Vihma, T., Birnbaum, G., and Wacker, U.: Influence of leads in sea
ice on the temperature of the atmospheric boundary layer during polar night,
Geophys. Res. Lett., 35, L03805, https://doi.org/10.1029/2007GL032461,
2008. a
Madec, G.: NEMO ocean engine, Note du Pôle de modélisation, Institut
Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619, 2008. a
Marcq, S. and Weiss, J.: Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere, The Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-6-143-2012, 2012. a
Mehlmann, C., Danilov, S., Losch, M., Lemieux, J. F., Hutter, N., Richter, T.,
Blain, P., Hunke, E. C., and Korn, P.: Simulating Linear Kinematic
Features in Viscous-Plastic Sea Ice Models on Quadrilateral and
Triangular Grids With Different Variable Staggering, J.
Adv. Model. Earth Sy., 13, e2021MS002523,
https://doi.org/10.1029/2021MS002523, 2021. a
Meredith, M., Sommerkorn, M., Cassota, S., Derksen, C., Ekaykin, A., Hollowed,
A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C.,
Ottersen, G., Pritchard, H., Schuur, E. A. G., Boyd, P., Hobbs, W., and
Hodgson-Johnston, I.: Polar Regions, IPCC, WMO, UNEP, 1–173,
https://www.ipcc.ch/srocc/home/ (last access: 31 January 2023), 2019. a
Moore, G. W. K., Howell, S. E. L., Brady, M., Xu, X., and McNeil, K.: Anomalous
collapses of Nares Strait ice arches leads to enhanced export of Arctic
sea ice, Nat. Commun., 12, 1, https://doi.org/10.1038/s41467-020-20314-w,
2021. a
Ólason, E., Rampal, P., and Dansereau, V.: On the statistical properties of sea-ice lead fraction and heat fluxes in the Arctic, The Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021, 2021. a, b, c
Ólason, E., Boutin, G., Korosov, A., Rampal, P., Williams, T., Kimmritz, M.,
Dansereau, V., and Samaké, A.: A New Brittle Rheology and Numerical
Framework for Large-Scale Sea-Ice Models, J. Adv.
Model. Earth Sy., 14, e2021MS002685, https://doi.org/10.1029/2021MS002685,
2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Petty, A. A., Holland, M. M., Bailey, D. A., and Kurtz, N. T.: Warm Arctic,
Increased Winter Sea Ice Growth?, Geophys. Res. Lett., 45,
12922–12930, https://doi.org/10.1029/2018GL079223, 2018. a
Plante, M. and Tremblay, L. B.: A generalized stress correction scheme for the Maxwell elasto-brittle rheology: impact on the fracture angles and deformations, The Cryosphere, 15, 5623–5638, https://doi.org/10.5194/tc-15-5623-2021, 2021. a
Rampal, P., Weiss, J., and Marsan, D.: Positive trend in the mean speed and
deformation rate of Arctic sea ice, 1979–2007, J. Geophys.
Res.-Oceans, 114, C05013, https://doi.org/10.1029/2008JC005066, 2009. a, b
Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM: a new Lagrangian sea ice model, The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016, 2016. a, b, c, d
Reiser, F., Willmes, S., and Heinemann, G.: A New Algorithm for Daily Sea Ice
Lead Identification in the Arctic and Antarctic Winter from Thermal-Infrared
Satellite Imagery, Remote Sensing, 12, 1957, https://doi.org/10.3390/rs12121957, 2020. a
Rheinlænder, J. W., Davy, R., Ólason, E., Rampal, P., Spensberger, C.,
Williams, T. D., Korosov, A., and Spengler, T.: Driving Mechanisms of an
Extreme Winter Sea Ice Breakup Event in the Beaufort Sea, Geophys.
Res. Lett., 49, e2022GL099024,
https://doi.org/10.1029/2022GL099024, 2022. a
Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data, The Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017, 2017. a, b, c
Ricker, R., Girard-Ardhuin, F., Krumpen, T., and Lique, C.: Satellite-derived sea ice export and its impact on Arctic ice mass balance, The Cryosphere, 12, 3017–3032, https://doi.org/10.5194/tc-12-3017-2018, 2018. a
Ringeisen, D., Tremblay, L. B., and Losch, M.: Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies, The Cryosphere, 15, 2873–2888, https://doi.org/10.5194/tc-15-2873-2021, 2021. a
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, 2015. a, b
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
Uncertainty in modeled Arctic sea ice volume, J. Geophys.
Res.-Oceans, 116, C00D06, https://doi.org/10.1029/2011JC007084, 2011. a
Semtner, A. J.: A Model for the Thermodynamic Growth of Sea Ice in Numerical
Investigations of Climate, J. Phys. Oceanogr., 6, 379–389,
https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2, 1976. a
Smedsrud, L. H., Halvorsen, M. H., Stroeve, J. C., Zhang, R., and Kloster, K.: Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years, The Cryosphere, 11, 65–79, https://doi.org/10.5194/tc-11-65-2017, 2017. a, b, c
Spall, M. A.: Dynamics and Thermodynamics of the Mean Transpolar Drift
and Ice Thickness in the Arctic Ocean, J. Climate, 32,
8449–8463, https://doi.org/10.1175/JCLI-D-19-0252.1, 2019. a, b
Spreen, G., Kern, S., Stammer, D., and Hansen, E.: Fram Strait sea ice volume
export estimated between 2003 and 2008 from satellite data, Geophys.
Res. Lett., 36, L19502, https://doi.org/10.1029/2009GL039591, 2009. a, b, c, d
Steele, M., Zhang, J., Rothrock, D., and Stern, H.: The force balance of sea
ice in a numerical model of the Arctic Ocean, J. Geophys.
Res.-Oceans, 102, 21061–21079,
https://doi.org/10.1029/97JC01454, 1997. a
Steiner, N. S., Lee, W. G., and Christian, J. R.: Enhanced gas fluxes in
small sea ice leads and cracks: Effects on CO 2 exchange and ocean
acidification, J. Geophys. Res.-Oceans, 118, 1195–1205,
https://doi.org/10.1002/jgrc.20100, 2013. a
Stern, H. L. and Lindsay, R. W.: Spatial scaling of Arctic sea ice
deformation, J. Geophys. Res.-Oceans, 114, C10017,
https://doi.org/10.1029/2009JC005380, 2009. a
Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, 2014. a, b
Strong, C. and Rigor, I. G.: Arctic marginal ice zone trending wider in summer
and narrower in winter, Geophys. Res. Lett., 40, 4864–4868,
https://doi.org/10.1002/grl.50928, 2013. a
Talandier, C. and Lique, C.: CREG025.L75-NEMO_r3.6.0: Source code as
input files required to perform a CREG025.L75 experiment that relies on
the NEMO release 3.6, Zenodo [code], https://doi.org/10.5281/zenodo.5802028, 2021. a
Turner, A. K., Hunke, E. C., and Bitz, C. M.: Two modes of sea-ice gravity
drainage: A parameterization for large-scale modeling, J. Geophys.
Res.-Oceans, 118, 2279–2294, https://doi.org/10.1002/jgrc.20171,
2013. a
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Maqueda, M. A. M.: Simulating the mass balance and salinity of Arctic and
Antarctic sea ice. 1. Model description and validation, Ocean Model.,
27, 33–53, 2009. a
Vinje, T., Nordlund, N., and Kvambekk, Å.: Monitoring ice thickness in Fram
Strait, J. Geophys. Res.-Oceans, 103, 10437–10449,
https://doi.org/10.1029/97JC03360, 1998. a
von Albedyll, L., Hendricks, S., Grodofzig, R., Krumpen, T., Arndt, S., Belter,
H. J., Birnbaum, G., Cheng, B., Hoppmann, M., Hutchings, J., Itkin, P., Lei,
R., Nicolaus, M., Ricker, R., Rohde, J., Suhrhoff, M., Timofeeva, A.,
Watkins, D., Webster, M., and Haas, C.: Thermodynamic and dynamic
contributions to seasonal Arctic sea ice thickness distributions from
airborne observations, Elementa, 10, 00074,
https://doi.org/10.1525/elementa.2021.00074, 2022. a, b, c, d, e, f
Walsh, J. E., Fetterer, F., Scott Stewart, J., and Chapman, W. L.: A database
for depicting Arctic sea ice variations back to 1850, Geograph. Rev.,
107, 89–107, https://doi.org/10.1111/j.1931-0846.2016.12195.x, 2017. a
Wang, Q., Danilov, S., Jung, T., Kaleschke, L., and Wernecke, A.: Sea ice leads
in the Arctic Ocean: Model assessment, interannual variability and trends,
Geophys. Res. Lett., 43, 7019–7027,
https://doi.org/10.1002/2016GL068696, 2016. a, b
Watts, M., Maslowski, W., Lee, Y. J., Kinney, J. C., and Osinski, R.: A Spatial
Evaluation of Arctic Sea Ice and Regional Limitations in CMIP6 Historical
Simulations, J. Climate, 34, 6399–6420,
https://doi.org/10.1175/JCLI-D-20-0491.1, 2021. a, b
Wilchinsky, A. V., Heorton, H. D. B. S., Feltham, D. L., and Holland, P. R.:
Study of the Impact of Ice Formation in Leads upon the Sea Ice Pack Mass
Balance Using a New Frazil and Grease Ice Parameterization, J.
Phys. Oceanogr., 45, 2025–2047, https://doi.org/10.1175/JPO-D-14-0184.1, 2015. a
Williams, T., Korosov, A., Rampal, P., and Ólason, E.: Presentation and evaluation of the Arctic sea ice forecasting system neXtSIM-F, The Cryosphere, 15, 3207–3227, https://doi.org/10.5194/tc-15-3207-2021, 2021. a
Winton, M.: A Reformulated Three-Layer Sea Ice Model, J. Atmos.
Ocean. Tech., 17, 525–531,
https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2, 2000. a
Zampieri, L., Kauker, F., Fröhle, J., Sumata, H., Hunke, E. C., and Goessling,
H. F.: Impact of Sea-Ice Model Complexity on the Performance of an
Unstructured-Mesh Sea-Ice/Ocean Model under Different
Atmospheric Forcings, J. Adv. Model. Earth Sy., 13,
e2020MS002438, https://doi.org/10.1029/2020MS002438, 2021. a
Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness and
Enthalpy Distribution Model in Generalized Curvilinear Coordinates, Mon.
Weather Rev., 131, 845–861,
https://doi.org/10.1175/1520-0493(2003)131<0845:mgsiwa>2.0.co;2, 2003. a, b
Zhang, Y., Cheng, X., Liu, J., and Hui, F.: The potential of sea ice leads as a predictor for summer Arctic sea ice extent, The Cryosphere, 12, 3747–3757, https://doi.org/10.5194/tc-12-3747-2018, 2018. a
Short summary
Sea ice cover in the Arctic is full of cracks, which we call leads. We suspect that these leads play a role for atmosphere–ocean interactions in polar regions, but their importance remains challenging to estimate. We use a new ocean–sea ice model with an original way of representing sea ice dynamics to estimate their impact on winter sea ice production. This model successfully represents sea ice evolution from 2000 to 2018, and we find that about 30 % of ice production takes place in leads.
Sea ice cover in the Arctic is full of cracks, which we call leads. We suspect that these leads...