Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4979-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-4979-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Array processing in cryoseismology: a comparison to network-based approaches at an Antarctic ice stream
Thomas Samuel Hudson
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Oxford, 3 South Parks Rd, Oxford, OX1 3AN, UK
Alex M. Brisbourne
British Antarctic Survey, NERC, UKRI, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
Sofia-Katerina Kufner
Geophysical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
J.-Michael Kendall
Department of Earth Sciences, University of Oxford, 3 South Parks Rd, Oxford, OX1 3AN, UK
Andy M. Smith
British Antarctic Survey, NERC, UKRI, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
Related authors
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Short summary
How ice sheets flowed in the past is written into the structure and texture of the ice sheet itself. Measuring this structure and properties of the ice can help us understand the recent behaviour of the ice sheets. We use a relatively new technique, not previously attempted in Antarctica, to measure the seismic vibrations of a fibre optic cable down a borehole. We demonstrate the potential of this technique to unravel past ice flow and see hints of these complex signals from the ice flow itself.
Ole Zeising, Álvaro Arenas-Pingarrón, Alex M. Brisbourne, and Carlos Martín
EGUsphere, https://doi.org/10.5194/egusphere-2024-2519, https://doi.org/10.5194/egusphere-2024-2519, 2024
Short summary
Short summary
Ice crystal orientation influence how glacier ice deforms. Radar polarimetry is commonly used to study the bulk ice crystal orientation, but the often used coherence method only provides information of the shallow ice in fast-flowing areas. This study shows that reducing the bandwidth of high-bandwidth radar data significantly enhances the depth limit of the coherence method. This improvement helps us to better understand ice dynamics in fast-flowing ice streams.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Jim S. Whiteley, Arnaud Watlet, J. Michael Kendall, and Jonathan E. Chambers
Nat. Hazards Earth Syst. Sci., 21, 3863–3871, https://doi.org/10.5194/nhess-21-3863-2021, https://doi.org/10.5194/nhess-21-3863-2021, 2021
Short summary
Short summary
This work summarises the contribution of geophysical imaging methods to establishing and operating local landslide early warning systems, demonstrated through a conceptual framework. We identify developments in geophysical monitoring equipment, the spatiotemporal resolutions of these approaches and methods to translate geophysical to geotechnical information as the primary benefits that geophysics brings to slope-scale early warning.
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Short summary
How ice sheets flowed in the past is written into the structure and texture of the ice sheet itself. Measuring this structure and properties of the ice can help us understand the recent behaviour of the ice sheets. We use a relatively new technique, not previously attempted in Antarctica, to measure the seismic vibrations of a fibre optic cable down a borehole. We demonstrate the potential of this technique to unravel past ice flow and see hints of these complex signals from the ice flow itself.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Tamsin Badcoe, Ophelia Ann George, Lucy Donkin, Shirley Pegna, and John Michael Kendall
Geosci. Commun., 3, 303–327, https://doi.org/10.5194/gc-3-303-2020, https://doi.org/10.5194/gc-3-303-2020, 2020
Short summary
Short summary
We explore how earthquakes affect everyday life through a multidisciplinary approach that incorporates historical, artistic and scientific perspectives. The effects of distant earthquakes are investigated using data collected on a seismometer located in the Wills Memorial Building tower in Bristol. We also explore historical accounts of earthquakes and their impact on society, and, finally, we use the data collected by the seismometer to communicate artistically the Earth's tectonic movements.
Catherine Reid, John Begg, Vasiliki Mouslopoulou, Onno Oncken, Andrew Nicol, and Sofia-Katerina Kufner
Earth Surf. Dynam., 8, 351–366, https://doi.org/10.5194/esurf-8-351-2020, https://doi.org/10.5194/esurf-8-351-2020, 2020
Alex Brisbourne, Bernd Kulessa, Thomas Hudson, Lianne Harrison, Paul Holland, Adrian Luckman, Suzanne Bevan, David Ashmore, Bryn Hubbard, Emma Pearce, James White, Adam Booth, Keith Nicholls, and Andrew Smith
Earth Syst. Sci. Data, 12, 887–896, https://doi.org/10.5194/essd-12-887-2020, https://doi.org/10.5194/essd-12-887-2020, 2020
Short summary
Short summary
Melting of the Larsen C Ice Shelf in Antarctica may lead to its collapse. To help estimate its lifespan we need to understand how the ocean can circulate beneath. This requires knowledge of the geometry of the sub-shelf cavity. New and existing measurements of seabed depth are integrated to produce a map of the ocean cavity beneath the ice shelf. The observed deep seabed may provide a pathway for circulation of warm ocean water but at the same time reduce rapid tidal melt at a critical location.
Dominic A. Hodgson, Tom A. Jordan, Jan De Rydt, Peter T. Fretwell, Samuel A. Seddon, David Becker, Kelly A. Hogan, Andrew M. Smith, and David G. Vaughan
The Cryosphere, 13, 545–556, https://doi.org/10.5194/tc-13-545-2019, https://doi.org/10.5194/tc-13-545-2019, 2019
Short summary
Short summary
The Brunt Ice Shelf in Antarctica is home to Halley VIa, the latest in a series of six British research stations that have occupied the ice shelf since 1956. A recent rapid growth of rifts in the Brunt Ice Shelf signals the onset of its largest calving event since records began. Here we consider whether this calving event will lead to a new steady state for the ice shelf or an unpinning from the bed, which could predispose it to accelerated flow or collapse.
Dominic A. Hodgson, Kelly Hogan, James M. Smith, James A. Smith, Claus-Dieter Hillenbrand, Alastair G. C. Graham, Peter Fretwell, Claire Allen, Vicky Peck, Jan-Erik Arndt, Boris Dorschel, Christian Hübscher, Andrew M. Smith, and Robert Larter
The Cryosphere, 12, 2383–2399, https://doi.org/10.5194/tc-12-2383-2018, https://doi.org/10.5194/tc-12-2383-2018, 2018
Short summary
Short summary
We studied the Coats Land ice margin, Antarctica, providing a multi-disciplinary geophysical assessment of the ice sheet configuration through its last advance and retreat; a description of the physical constraints on the stability of the past and present ice and future margin based on its submarine geomorphology and ice-sheet geometry; and evidence that once detached from the bed, the ice shelves in this region were predisposed to rapid retreat back to coastal grounding lines.
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018, https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary
Short summary
This paper investigates the dynamics of ice stream beds using repeat geophysical surveys of the bed of Pine Island Glacier, West Antarctica; 60 km of the bed was surveyed, comprising the most extensive repeat ground-based geophysical surveys of an Antarctic ice stream; 90 % of the surveyed bed shows no significant change despite the glacier increasing in speed by up to 40 % over the last decade. This result suggests that ice stream beds are potentially more stable than previously suggested.
Edward C. King, Hamish D. Pritchard, and Andrew M. Smith
Earth Syst. Sci. Data, 8, 151–158, https://doi.org/10.5194/essd-8-151-2016, https://doi.org/10.5194/essd-8-151-2016, 2016
Short summary
Short summary
Large, fast-moving glaciers create long, linear mounds of sediments covering large areas. Understanding how these features form has been hampered by a lack of data from the bed of modern-day ice sheets. We give a detailed view of the landscape beneath an Antarctic glacier called Rutford Ice Stream. We towed a radar system back and forth across the glacier to measure the ice thickness every few metres. This is the first place such a highly detailed view of the sub-ice landscape has been created.
P. R. Holland, A. Brisbourne, H. F. J. Corr, D. McGrath, K. Purdon, J. Paden, H. A. Fricker, F. S. Paolo, and A. H. Fleming
The Cryosphere, 9, 1005–1024, https://doi.org/10.5194/tc-9-1005-2015, https://doi.org/10.5194/tc-9-1005-2015, 2015
Short summary
Short summary
Antarctic Peninsula ice shelves have collapsed in recent decades. The surface of Larsen C Ice Shelf is lowering, but the cause of this has not been understood. This study uses eight radar surveys to show that the lowering is caused by both ice loss and a loss of air from the ice shelf's snowpack. At least two different processes are causing the lowering. The stability of Larsen C may be at risk from an ungrounding of Bawden Ice Rise or ice-front retreat past a 'compressive arch' in strain rates.
A. M. Brisbourne, A. M. Smith, E. C. King, K. W. Nicholls, P. R. Holland, and K. Makinson
The Cryosphere, 8, 1–13, https://doi.org/10.5194/tc-8-1-2014, https://doi.org/10.5194/tc-8-1-2014, 2014
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Instrumentation
A cold laboratory hyperspectral imaging system to map grain size and ice layer distributions in firn cores
Brief communication: RADIX (Rapid Access Drilling and Ice eXtraction) dust logger test in the EastGRIP hole
Progress of the RADIX (Rapid Access Drilling and Ice eXtraction) fast-access drilling system
High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control
Autonomous ice sheet surface mass balance measurements from cosmic rays
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Jakob Schwander, Thomas Franziskus Stocker, Remo Walther, Samuel Marending, Tobias Erhardt, Chantal Zeppenfeld, and Jürg Jost
EGUsphere, https://doi.org/10.5194/egusphere-2024-372, https://doi.org/10.5194/egusphere-2024-372, 2024
Short summary
Short summary
The RADIX optical dust logger is part of the exploratory 20-mm drilling system of the University of Bern. The logger is inserted into the borehole after drilling. The temperature, inclination and compass sensors were successfully tested, but not the dust sensor, because no RADIX hole reached down to the required bubble-free ice. In June 2023, we tested the logger with an adapter for the large East GRIP deep borehole. An excellent dust record was obtained for the Late Glacial/Holocene.
Jakob Schwander, Thomas F. Stocker, Remo Walther, and Samuel Marending
The Cryosphere, 17, 1151–1164, https://doi.org/10.5194/tc-17-1151-2023, https://doi.org/10.5194/tc-17-1151-2023, 2023
Short summary
Short summary
RADIX (Rapid Access Drilling and Ice eXtraction) is a fast-access ice-drilling system for prospecting future deep-drilling sites on glaciers and polar ice sheets. It consists of a 40 mm rapid firn drill, a 20 mm deep drill and a logger. The maximum depth range of RADIX is 3100 m by design. The nominal drilling speed is on the order of 40 m h-1. The 15 mm diameter logger provides data on the hole inclination and direction and measures temperature and dust in the ice surrounding the borehole.
Thomas R. Chudley, Poul Christoffersen, Samuel H. Doyle, Antonio Abellan, and Neal Snooke
The Cryosphere, 13, 955–968, https://doi.org/10.5194/tc-13-955-2019, https://doi.org/10.5194/tc-13-955-2019, 2019
Short summary
Short summary
Unmanned Aerial Vehicles (UAVs) are increasingly common tools in the geosciences, but their use requires good ground control in order to make accurate georeferenced models. This is difficult in applications such as glaciology, where access to study sites can be hazardous. We show that a new technique utilising on-board GPS post-processing can match and even improve on ground-control-based methods, and, as a result, can produce accurate glacier velocity fields even on an inland ice sheet.
Ian M. Howat, Santiago de la Peña, Darin Desilets, and Gary Womack
The Cryosphere, 12, 2099–2108, https://doi.org/10.5194/tc-12-2099-2018, https://doi.org/10.5194/tc-12-2099-2018, 2018
Short summary
Short summary
In this paper we present the first application of cosmic ray neutron sensing for continuously measuring in situ accumulation on an ice sheet. We validate these results with manual snow coring and snow stake measurements, showing that the cosmic ray observations are of similar if not better accuracy. We also present our observations of variability in accumulation over 24 months at Summit Camp, Greenland. We conclude that cosmic ray sensing has a high potential for measuring surface mass balance.
Cited articles
Aster, R. C. and Winberry, J. P.: Glacial seismology, Rep. Prog. Phys., 80, 1–39, https://doi.org/10.1088/1361-6633/aa8473, 2017. a
Bowers, D. and Selby, N. D.: Forensic seismology and the comprehensive nuclear-test-ban treaty, Annu. Rev. Earth Planet. Sci., 37, 209–236, https://doi.org/10.1146/annurev.earth.36.031207.124143, 2009. a, b
Brune, J. N.: Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. Geophys. Res., 75, 4997–5009, 1970. a
Cooley, J., Winberry, P., Koutnik, M., and Conway, H.: Tidal and spatial variability of flow speed and seismicity near the grounding zone of Beardmore Glacier, Antarctica, Ann. Glaciol., 60, 37–44, https://doi.org/10.1017/aog.2019.14, 2019. a
Deichmann, N.: Theoretical basis for the observed break in ML/MW scaling between small and large earthquakes, B. Seismol. Soc. Am., 107, 505–520, https://doi.org/10.1785/0120160318, 2017. a
Ekström, G.: Global detection and location of seismic sources by using surface waves, B. Seismol. Soc. Am., 96, 1201–1212, https://doi.org/10.1785/0120050175, 2006. a
Ekström, G., Nettles, M., and Abers, G. A.: Glacial Earthquakes, Science, 302, 622–624, https://doi.org/10.1126/science.1088057, 2003. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Gal, M., Reading, A. M., Ellingsen, S. P., Koper, K. D., Gibbons, S. J., and Näsholm, S. P.: Improved implementation of the fk and Capon methods for array analysis of seismic noise, Geophys. J. Int., 198, 1045–1054, https://doi.org/10.1093/gji/ggu183, 2014. a, b
Gibbons, S. J. and Ringdal, F.: The detection of low magnitude seismic events using array-based waveform correlation, Geophys. J. Int., 165, 149–166, https://doi.org/10.1111/j.1365-246X.2006.02865.x, 2006. a
Gimbert, F., Nanni, U., Roux, P., Helmstetter, A., Garambois, S., Lecointre, A., Walpersdorf, A., Jourdain, B., Langlais, M., Laarman, O., Lindner, F., Sergeant, A., Vincent, C., and Walter, F.: A multi-physics experiment with a temporary dense seismic array on the argentière Glacier, French Alps: The RESOLVE project, Seismol. Res. Lett., 92, 1185–1201, https://doi.org/10.1785/0220200280, 2021. a
Gräff, D. and Walter, F.: Changing friction at the base of an Alpine glacier, Sci. Rep., 11, 1–10, https://doi.org/10.1038/s41598-021-90176-9, 2021. a, b
Gräff, D., Köpfli, M., Lipovsky, B. P., Selvadurai, P. A., Farinotti, D., and Walter, F.: Fine Structure of Microseismic Glacial Stick-Slip, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2021GL096043, 2021. a
Gutenberg, B. and Richter, C. F.: Magnitude and energy of earthquakes, Science, 83, 183–185, 1936. a
Gutenberg, B. and Richter, C. F.: Frequency of earthquakes in California, B. Seismol. Soc. Am., 34, 185–188, https://doi.org/10.1038/156371a0, 1944. a
Hammer, C., Ohrnberger, M., and Schlindwein, V.: Pattern of cryospheric seismic events observed at Ekström Ice Shelf, Antarctica, Geophys. Res. Lett., 42, 3936–3943, https://doi.org/10.1002/2015GL064029, 2015. a
Hanks, T. C. and Kanamori, H.: A moment magnitude scale, J. Geophys. Res., 84, 2348, https://doi.org/10.1029/JB084iB05p02348, 1979. a
Helmstetter, A.: Repeating Low Frequency Icequakes in the Mont-Blanc Massif Triggered by Snowfalls, J. Geophys. Res.-Earth Surf., 127, 1–26, https://doi.org/10.1029/2022JF006837, 2022. a
Hudson, T.: TomSHudson/SeisSrcMoment: First formal release (Version 1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.4010325, 2020. a
Hudson, T.: TomSHudson/SeisSeeker: SeisSeeker Initial Release (v0.0.1-beta), Zenodo [code], https://doi.org/10.5281/zenodo.7795938, 2023a. a
Hudson, T.: Icequake catalogues and velocity model for the publication: Array processing in cryoseismology (2.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.8120941, 2023b. a
Hudson, T. S., Smith, J., Brisbourne, A. M., and White, R. S.: Automated detection of basal icequakes and discrimination from surface crevassing, Ann. Glaciol., 60, 167–181, https://doi.org/10.1017/aog.2019.18, 2019. a, b, c
Hudson, T. S., Brisbourne, A. M., Walter, F., Gräff, D., White, R. S., and Smith, A. M.: Icequake Source Mechanisms for Studying Glacial Sliding, J. Geophys. Res.-Earth Surf., 125, 1–21, https://doi.org/10.1029/2020JF005627, 2020. a
Hudson, T. S., Baird, A. F., Kendall, J. M., Kufner, S. K., Brisbourne, A. M., Smith, A. M., Butcher, A., Chalari, A., and Clarke, A.: Distributed Acoustic Sensing (DAS) for Natural Microseismicity Studies: A Case Study From Antarctica, J. Geophys. Res.-Sol. Ea., 126, 1–19, https://doi.org/10.1029/2020jb021493, 2021. a, b
Hudson, T. S., Kendall, J.-M., Pritchard, M. E., Blundy, J. D., and Gottsmann, J. H.: From slab to surface: Earthquake evidence for fluid migration at Uturuncu volcano, Bolivia, Earth Planet. Sc. Lett., 577, 117268, https://doi.org/10.1016/j.epsl.2021.117268, 2022. a, b
Hudson, T. S., Kufner, S. K., Brisbourne, A. M., Kendall, J. M., Smith, A. M., Alley, R. B., Arthern, R. J., and Murray, T.: Highly variable friction and slip observed at Antarctic ice stream bed, Nat. Geosci., 16, 612–618, https://doi.org/10.1038/s41561-023-01204-4, 2023. a, b, c, d
Jerkins, A. E., Köhler, A., and Oye, V.: On the potential of offshore sensors and array processing for improving seismic event detection and locations in the North Sea, Geophys. J. Int., 233, 1191–1212, https://doi.org/10.1093/gji/ggac513, 2023. a
Kendall, J. M. and Brisbourne, A.: BEAMISH 2019-20, Rutford Ice Stream, West Antarctica, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/6L_2019, 2019. a
Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., and Fichtner, A.: Distributed Acoustic Sensing in Volcano-Glacial Environments – Mount Meager, British Columbia, J. Geophys. Res.-Sol. Ea., 126, 1–17, https://doi.org/10.1029/2021JB022358, 2021. a
Köhler, A., Nuth, C., Schweitzer, J., Weidle, C., and Gibbons, S. J.: Dynamic glacier activity revealed through passive regional seismic monitoring on Spitsbergen , Svalbard, Polar Res., 35, 1–19, 2015. a
Köhler, A., Nuth, C., Kohler, J., Berthier, E., Weidle, C., and Schweitzer, J.: A 15 year record of frontal glacier ablation rates estimated from seismic data, Geophys. Res. Lett., 43, 12155–12164, https://doi.org/10.1002/2016GL070589, 2016. a
Köhler, A., Pętlicki, M., Lefeuvre, P.-M., Buscaino, G., Nuth, C., and Weidle, C.: Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements, The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, 2019. a
Köhler, A., Myklebust, E. B., and Mæland, S.: Enhancing seismic calving event identification in Svalbard through empirical matched field processing and machine learning, Geophys. J. Int., 230, 1305–1317, https://doi.org/10.1093/gji/ggac117, 2022. a
Köpfli, M., Gräff, D., Lipovsky, B. P., Selvadurai, P. A., Farinotti, D., and Walter, F.: Hydraulic Conditions for Stick‐Slip Tremor Beneath an Alpine Glacier, Geophys. Res. Lett., 49, 1–11, https://doi.org/10.1029/2022gl100286, 2022. a
Kufner, S., Brisbourne, A. M., Smith, A. M., Hudson, T. S., Murray, T., Schlegel, R., Kendall, J. M., Anandakrishnan, S., and Lee, I.: Not all Icequakes are Created Equal: Basal Icequakes Suggest Diverse Bed Deformation Mechanisms at Rutford Ice Stream, West Antarctica, J. Geophys. Res.-Earth Surf., 126, 1–23, https://doi.org/10.1029/2020JF006001, 2021. a, b, c, d, e, f, g, h
Lellouch, A., Lindsey, N. J., Ellsworth, W. L., and Biondi, B. L.: Comparison between distributed acoustic sensing and geophones: Downhole microseismic monitoring of the FORGE geothermal experiment, Seismol. Res. Lett., 91, 3256–3268, https://doi.org/10.1785/0220200149, 2020. a
Lindner, F., Laske, G., Walter, F., and Doran, A. K.: Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland, Ann. Glaciol., 60, 96–111, https://doi.org/10.1017/aog.2018.25, 2019. a, b
Lindner, F., Walter, F., Laske, G., and Gimbert, F.: Glaciohydraulic seismic tremors on an Alpine glacier, The Cryosphere, 14, 287–308, https://doi.org/10.5194/tc-14-287-2020, 2020. a
Lipovsky, B. P., Meyer, C. R., Zoet, L. K., McCarthy, C., Hansen, D. D., Rempel, A. W., and Gimbert, F.: Glacier sliding, seismicity and sediment entrainment, Ann. Glaciol., 60, 182–192, https://doi.org/10.1017/aog.2019.24, 2019. a
Löer, K., Riahi, N., and Saenger, E. H.: Three-component ambient noise beamforming in the Parkfield area, Geophys. J. Int., 213, 1478–1491, https://doi.org/10.1093/GJI/GGY058, 2018. a
Lomax, A. and Virieux, J.: Probabilistic earthquake location in 3D and layered models, Advances in Seismic Event Location, vol. 18 of the series Modern Approaches in Geophysics, 101–134, 2000. a
McBrearty, I. W., Zoet, L. K., and Anandakrishnan, S.: Basal seismicity of the Northeast Greenland Ice Stream, J. Glaciol., 66, 430–446, https://doi.org/10.1017/jog.2020.17, 2020. a
Nanni, U., Roux, P., Gimbert, F., and Lecointre, A.: Dynamic Imaging of Glacier Structures at High-Resolution Using Source Localization With a Dense Seismic Array, Geophys. Res. Lett., 49, 1–9, https://doi.org/10.1029/2021GL095996, 2022. a
Näsholm, S. P., Iranpour, K., Wuestefeld, A., Dando, B. D., Baird, A. F., and Oye, V.: Array Signal Processing on Distributed Acoustic Sensing Data: Directivity Effects in Slowness Space, J. Geophys. Res.-Sol. Ea., 127, 1–24, https://doi.org/10.1029/2021JB023587, 2022. a
Podolskiy, E. A. and Walter, F.: Cryoseismology, Rev. Geophys., 54, 1–51, https://doi.org/10.1002/2016RG000526, 2016. a
Podolskiy, E. A., Genco, R., Sugiyama, S., Walter, F., Funk, M., Minowa, Masahiro, S. T., and Ripepe, M.: Seismic and infrasound monitoring of Bowdoin Glacier, Greenland, Low Temperature Science, 75, 15–36, https://doi.org/10.14943/lowtemsci.75.15, 2017. a
Pratt, M. J., Winberry, J. P., Wiens, D. A., Anandakrishnan, S., and Alley, R. B.: Seismic and geodetic evidence for grounding-line control of Whillans Ice Stream stick-slip events, J. Geophys. Res.-Earth Surf., 119, 333–348, https://doi.org/10.1002/2013JF002842, 2014. a
Roeoesli, C., Helmstetter, A., Walter, F., and Kissling, E.: Meltwater influences on deep stick-slip icequakes near the base of the Greenland Ice Sheet, J. Geophys. Res.-Earth Surf., 121, 223–240, https://doi.org/10.1002/2015JF003601, 2016. a
Rost, S. and Thomas, C.: Array seismology: Methods and applications, Rev. Geophys., 40, 2-1–2-27, https://doi.org/10.1029/2000RG000100, 2002. a, b, c, d
Schimmel, M. and Paulssen, H.: Noise reduction and detection of weak, coherent signals through phase-weighted stacks, Geophys. J. Int., 130, 497–505, https://doi.org/10.1111/j.1365-246X.1997.tb05664.x, 1997. a
Schweitzer, J., Fyen, J., Mykkeltveit, S., and Kværna, T.: Seismic Arrays, in: New Manual of Seismological Observatory Practice (NMSOP), edited by Bormann, P., chap. 9, 1–52, Deutsches GeoForschungsZentrum GFZ, Potsdam, https://doi.org/10.1007/978-3-642-41714-6_191764, 2009. a
Sergeant, A., Chmiel, M., Lindner, F., Walter, F., Roux, P., Chaput, J., Gimbert, F., and Mordret, A.: On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring, The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020, 2020. a
Serripierri, A., Moreau, L., Boue, P., Weiss, J., and Roux, P.: Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard, The Cryosphere, 16, 2527–2543, https://doi.org/10.5194/tc-16-2527-2022, 2022. a
Smith, A. M.: Microearthquakes and subglacial conditions, Geophys. Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL028207, 2006. a
Smith, A. M. and Murray, T.: Bedform topography and basal conditions beneath a fast-flowing West Antarctic ice stream, Quaternary Sci. Rev., 28, 584–596, https://doi.org/10.1016/j.quascirev.2008.05.010, 2009. a, b
Smith, A. M., Anker, P. G., Nicholls, K. W., Makinson, K., Murray, T., Rios-Costas, S., Brisbourne, A. M., Hodgson, D. A., Schlegel, R., and Anandakrishnan, S.: Ice stream subglacial access for ice-sheet history and fast ice flow: The BEAMISH Project on Rutford Ice Stream, West Antarctica and initial results on basal conditions, Ann. Glaciol., 1–9, https://doi.org/10.1017/aog.2020.82, 2020. a, b, c, d
Thomas, C., Kendall, J. M., and Weber, M.: The lowermost mantle beneath northern Asia – I. Multi-azimuth studies of a D′′ heterogeneity, Geophys. J. Int., 151, 279–295, https://doi.org/10.1046/j.1365-246X.2002.01759.x, 2002. a
Tsai, V. C. and Ekström, G.: Analysis of glacial earthquakes, J. Geophys. Res., 112, F03S22, https://doi.org/10.1029/2006JF000596, 2007. a
Umlauft, J., Lindner, F., Roux, P., Mikesell, T. D., Haney, M. M., Korn, M., and Walter, F. T.: Stick-Slip Tremor Beneath an Alpine Glacier, Geophys. Res. Lett., 48, 1–10, https://doi.org/10.1029/2020GL090528, 2021. a
van den Ende, M. P. A. and Ampuero, J.-P.: Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays, Solid Earth, 12, 915–934, https://doi.org/10.5194/se-12-915-2021, 2021. a
Wang, W. and Vidale, J. E.: An initial map of fine-scale heterogeneity in the Earth's inner core, Nat. Geosci., 15, 240–244, https://doi.org/10.1038/s41561-022-00903-8, 2022. a
Winder, T., Bacon, C., Smith, J. D., Hudson, T. S., Drew, J., and White, R. S.: QuakeMigrate v1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.4442749, 2021. a
Wolf, J., Frost, D. A., Long, M. D., Garnero, E., Aderoju, A. O., Creasy, N., and Bozdağ, E.: Observations of Mantle Seismic Anisotropy Using Array Techniques: Shear‐Wave Splitting of Beamformed SmKS Phases, J. Geophys. Res.-Sol. Ea., 128, https://doi.org/10.1029/2022JB025556, 2023. a
Zhou, W., Butcher, A., Brisbourne, A. M., Kufner, S. K., Kendall, J. M., and Stork, A. L.: Seismic Noise Interferometry and Distributed Acoustic Sensing (DAS): Inverting for the Firn Layer S-Velocity Structure on Rutford Ice Stream, Antarctica, J. Geophys. Res.-Earth Surf., 127, 1–17, https://doi.org/10.1029/2022JF006917, 2022. a, b, c
Zoet, L. K., Anandakrishnan, S., Alley, R. B., Nyblade, A. A., and Wiens, D. A.: Motion of an Antarctic glacier by repeated tidally modulated earthquakes, Nat. Geosci., 5, 623–626, https://doi.org/10.1038/ngeo1555, 2012. a
Zoet, L. K., Carpenter, B., Scuderi, M., Alley, R. B., Anandakrishnan, S., Marone, C., and Jackson, M.: The effects of entrained debris on the basal sliding stability of a glacier, J. Geophys. Res.-Earth Surf., 118, 656–666, https://doi.org/10.1002/jgrf.20052, 2013. a
Short summary
Earthquakes (or icequakes) at glaciers can shed light on fundamental glacier processes. These include glacier slip, crevassing, and imaging ice structure. To date, most studies use networks of seismometers, primarily sensitive to icequakes within the spatial extent of the network. However, arrays of seismometers allow us to detect icequakes at far greater distances. Here, we investigate the potential of such array-processing methods for studying icequakes at glaciers.
Earthquakes (or icequakes) at glaciers can shed light on fundamental glacier processes. These...