Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4979-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-4979-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Array processing in cryoseismology: a comparison to network-based approaches at an Antarctic ice stream
Thomas Samuel Hudson
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Oxford, 3 South Parks Rd, Oxford, OX1 3AN, UK
Alex M. Brisbourne
British Antarctic Survey, NERC, UKRI, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
Sofia-Katerina Kufner
Geophysical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
J.-Michael Kendall
Department of Earth Sciences, University of Oxford, 3 South Parks Rd, Oxford, OX1 3AN, UK
Andy M. Smith
British Antarctic Survey, NERC, UKRI, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
Related authors
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Short summary
How ice sheets flowed in the past is written into the structure and texture of the ice sheet itself. Measuring this structure and properties of the ice can help us understand the recent behaviour of the ice sheets. We use a relatively new technique, not previously attempted in Antarctica, to measure the seismic vibrations of a fibre optic cable down a borehole. We demonstrate the potential of this technique to unravel past ice flow and see hints of these complex signals from the ice flow itself.
Ole Zeising, Álvaro Arenas-Pingarrón, Alex M. Brisbourne, and Carlos Martín
The Cryosphere, 19, 2355–2363, https://doi.org/10.5194/tc-19-2355-2025, https://doi.org/10.5194/tc-19-2355-2025, 2025
Short summary
Short summary
Ice crystal orientation influences how glacier ice deforms. Radar polarimetry is commonly used to study the bulk ice crystal orientation, but the often used coherence method only provides information of the shallow ice in fast-flowing areas. This study shows that reducing the bandwidth of high-bandwidth radar data significantly enhances the depth limit of the coherence method. This improvement helps us to better understand ice dynamics in fast-flowing ice streams.
Álvaro Arenas-Pingarrón, Alex M. Brisbourne, Carlos Martín, Hugh F. J. Corr, Carl Robinson, Tom A. Jordan, and Paul V. Brennan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1068, https://doi.org/10.5194/egusphere-2025-1068, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) imaging is essential for deep englacial observations. Each pixel is formed by averaging the radar echoes within an antenna beamwidth, but the echo diversity is lost after the average. We improve the SAR interpretation if three sub-images are formed with different sub-beamwidths: each is coloured in red, green, or blue, and they are overlapped, creating a coloured image. Interpreters will better identify the slopes of internal layers, crevasses, and layer roughness.
Kevin Hank, Robert J. Arthern, C. Rosie Williams, Alex M. Brisbourne, Andrew M. Smith, James A. Smith, Anna Wåhlin, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2025-764, https://doi.org/10.5194/egusphere-2025-764, 2025
Short summary
Short summary
The slipperiness beneath ice sheets is a key source of uncertainty in sea level rise projections. Using both observations and model output, we infer the most probable representation of basal slipperiness in ice sheet models, enabling more accurate projections. For Pine Island Glacier, our results provide support for a Coulomb-type sliding law and widespread low effective pressures, potentially increasing sliding velocities in prognostic simulations and, hence, sea level rise projections.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Jim S. Whiteley, Arnaud Watlet, J. Michael Kendall, and Jonathan E. Chambers
Nat. Hazards Earth Syst. Sci., 21, 3863–3871, https://doi.org/10.5194/nhess-21-3863-2021, https://doi.org/10.5194/nhess-21-3863-2021, 2021
Short summary
Short summary
This work summarises the contribution of geophysical imaging methods to establishing and operating local landslide early warning systems, demonstrated through a conceptual framework. We identify developments in geophysical monitoring equipment, the spatiotemporal resolutions of these approaches and methods to translate geophysical to geotechnical information as the primary benefits that geophysics brings to slope-scale early warning.
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Short summary
How ice sheets flowed in the past is written into the structure and texture of the ice sheet itself. Measuring this structure and properties of the ice can help us understand the recent behaviour of the ice sheets. We use a relatively new technique, not previously attempted in Antarctica, to measure the seismic vibrations of a fibre optic cable down a borehole. We demonstrate the potential of this technique to unravel past ice flow and see hints of these complex signals from the ice flow itself.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Tamsin Badcoe, Ophelia Ann George, Lucy Donkin, Shirley Pegna, and John Michael Kendall
Geosci. Commun., 3, 303–327, https://doi.org/10.5194/gc-3-303-2020, https://doi.org/10.5194/gc-3-303-2020, 2020
Short summary
Short summary
We explore how earthquakes affect everyday life through a multidisciplinary approach that incorporates historical, artistic and scientific perspectives. The effects of distant earthquakes are investigated using data collected on a seismometer located in the Wills Memorial Building tower in Bristol. We also explore historical accounts of earthquakes and their impact on society, and, finally, we use the data collected by the seismometer to communicate artistically the Earth's tectonic movements.
Cited articles
Aster, R. C. and Winberry, J. P.: Glacial seismology, Rep. Prog. Phys., 80, 1–39, https://doi.org/10.1088/1361-6633/aa8473, 2017. a
Bowers, D. and Selby, N. D.: Forensic seismology and the comprehensive nuclear-test-ban treaty, Annu. Rev. Earth Planet. Sci., 37, 209–236, https://doi.org/10.1146/annurev.earth.36.031207.124143, 2009. a, b
Brune, J. N.: Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. Geophys. Res., 75, 4997–5009, 1970. a
Cooley, J., Winberry, P., Koutnik, M., and Conway, H.: Tidal and spatial variability of flow speed and seismicity near the grounding zone of Beardmore Glacier, Antarctica, Ann. Glaciol., 60, 37–44, https://doi.org/10.1017/aog.2019.14, 2019. a
Deichmann, N.: Theoretical basis for the observed break in ML/MW scaling between small and large earthquakes, B. Seismol. Soc. Am., 107, 505–520, https://doi.org/10.1785/0120160318, 2017. a
Ekström, G.: Global detection and location of seismic sources by using surface waves, B. Seismol. Soc. Am., 96, 1201–1212, https://doi.org/10.1785/0120050175, 2006. a
Ekström, G., Nettles, M., and Abers, G. A.: Glacial Earthquakes, Science, 302, 622–624, https://doi.org/10.1126/science.1088057, 2003. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Gal, M., Reading, A. M., Ellingsen, S. P., Koper, K. D., Gibbons, S. J., and Näsholm, S. P.: Improved implementation of the fk and Capon methods for array analysis of seismic noise, Geophys. J. Int., 198, 1045–1054, https://doi.org/10.1093/gji/ggu183, 2014. a, b
Gibbons, S. J. and Ringdal, F.: The detection of low magnitude seismic events using array-based waveform correlation, Geophys. J. Int., 165, 149–166, https://doi.org/10.1111/j.1365-246X.2006.02865.x, 2006. a
Gimbert, F., Nanni, U., Roux, P., Helmstetter, A., Garambois, S., Lecointre, A., Walpersdorf, A., Jourdain, B., Langlais, M., Laarman, O., Lindner, F., Sergeant, A., Vincent, C., and Walter, F.: A multi-physics experiment with a temporary dense seismic array on the argentière Glacier, French Alps: The RESOLVE project, Seismol. Res. Lett., 92, 1185–1201, https://doi.org/10.1785/0220200280, 2021. a
Gräff, D. and Walter, F.: Changing friction at the base of an Alpine glacier, Sci. Rep., 11, 1–10, https://doi.org/10.1038/s41598-021-90176-9, 2021. a, b
Gräff, D., Köpfli, M., Lipovsky, B. P., Selvadurai, P. A., Farinotti, D., and Walter, F.: Fine Structure of Microseismic Glacial Stick-Slip, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2021GL096043, 2021. a
Gutenberg, B. and Richter, C. F.: Magnitude and energy of earthquakes, Science, 83, 183–185, 1936. a
Gutenberg, B. and Richter, C. F.: Frequency of earthquakes in California, B. Seismol. Soc. Am., 34, 185–188, https://doi.org/10.1038/156371a0, 1944. a
Hammer, C., Ohrnberger, M., and Schlindwein, V.: Pattern of cryospheric seismic events observed at Ekström Ice Shelf, Antarctica, Geophys. Res. Lett., 42, 3936–3943, https://doi.org/10.1002/2015GL064029, 2015. a
Hanks, T. C. and Kanamori, H.: A moment magnitude scale, J. Geophys. Res., 84, 2348, https://doi.org/10.1029/JB084iB05p02348, 1979. a
Helmstetter, A.: Repeating Low Frequency Icequakes in the Mont-Blanc Massif Triggered by Snowfalls, J. Geophys. Res.-Earth Surf., 127, 1–26, https://doi.org/10.1029/2022JF006837, 2022. a
Hudson, T.: TomSHudson/SeisSrcMoment: First formal release (Version 1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.4010325, 2020. a
Hudson, T.: TomSHudson/SeisSeeker: SeisSeeker Initial Release (v0.0.1-beta), Zenodo [code], https://doi.org/10.5281/zenodo.7795938, 2023a. a
Hudson, T.: Icequake catalogues and velocity model for the publication: Array processing in cryoseismology (2.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.8120941, 2023b. a
Hudson, T. S., Smith, J., Brisbourne, A. M., and White, R. S.: Automated detection of basal icequakes and discrimination from surface crevassing, Ann. Glaciol., 60, 167–181, https://doi.org/10.1017/aog.2019.18, 2019. a, b, c
Hudson, T. S., Brisbourne, A. M., Walter, F., Gräff, D., White, R. S., and Smith, A. M.: Icequake Source Mechanisms for Studying Glacial Sliding, J. Geophys. Res.-Earth Surf., 125, 1–21, https://doi.org/10.1029/2020JF005627, 2020. a
Hudson, T. S., Baird, A. F., Kendall, J. M., Kufner, S. K., Brisbourne, A. M., Smith, A. M., Butcher, A., Chalari, A., and Clarke, A.: Distributed Acoustic Sensing (DAS) for Natural Microseismicity Studies: A Case Study From Antarctica, J. Geophys. Res.-Sol. Ea., 126, 1–19, https://doi.org/10.1029/2020jb021493, 2021. a, b
Hudson, T. S., Kendall, J.-M., Pritchard, M. E., Blundy, J. D., and Gottsmann, J. H.: From slab to surface: Earthquake evidence for fluid migration at Uturuncu volcano, Bolivia, Earth Planet. Sc. Lett., 577, 117268, https://doi.org/10.1016/j.epsl.2021.117268, 2022. a, b
Hudson, T. S., Kufner, S. K., Brisbourne, A. M., Kendall, J. M., Smith, A. M., Alley, R. B., Arthern, R. J., and Murray, T.: Highly variable friction and slip observed at Antarctic ice stream bed, Nat. Geosci., 16, 612–618, https://doi.org/10.1038/s41561-023-01204-4, 2023. a, b, c, d
Jerkins, A. E., Köhler, A., and Oye, V.: On the potential of offshore sensors and array processing for improving seismic event detection and locations in the North Sea, Geophys. J. Int., 233, 1191–1212, https://doi.org/10.1093/gji/ggac513, 2023. a
Kendall, J. M. and Brisbourne, A.: BEAMISH 2019-20, Rutford Ice Stream, West Antarctica, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/6L_2019, 2019. a
Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., and Fichtner, A.: Distributed Acoustic Sensing in Volcano-Glacial Environments – Mount Meager, British Columbia, J. Geophys. Res.-Sol. Ea., 126, 1–17, https://doi.org/10.1029/2021JB022358, 2021. a
Köhler, A., Nuth, C., Schweitzer, J., Weidle, C., and Gibbons, S. J.: Dynamic glacier activity revealed through passive regional seismic monitoring on Spitsbergen , Svalbard, Polar Res., 35, 1–19, 2015. a
Köhler, A., Nuth, C., Kohler, J., Berthier, E., Weidle, C., and Schweitzer, J.: A 15 year record of frontal glacier ablation rates estimated from seismic data, Geophys. Res. Lett., 43, 12155–12164, https://doi.org/10.1002/2016GL070589, 2016. a
Köhler, A., Pętlicki, M., Lefeuvre, P.-M., Buscaino, G., Nuth, C., and Weidle, C.: Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements, The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, 2019. a
Köhler, A., Myklebust, E. B., and Mæland, S.: Enhancing seismic calving event identification in Svalbard through empirical matched field processing and machine learning, Geophys. J. Int., 230, 1305–1317, https://doi.org/10.1093/gji/ggac117, 2022. a
Köpfli, M., Gräff, D., Lipovsky, B. P., Selvadurai, P. A., Farinotti, D., and Walter, F.: Hydraulic Conditions for Stick‐Slip Tremor Beneath an Alpine Glacier, Geophys. Res. Lett., 49, 1–11, https://doi.org/10.1029/2022gl100286, 2022. a
Kufner, S., Brisbourne, A. M., Smith, A. M., Hudson, T. S., Murray, T., Schlegel, R., Kendall, J. M., Anandakrishnan, S., and Lee, I.: Not all Icequakes are Created Equal: Basal Icequakes Suggest Diverse Bed Deformation Mechanisms at Rutford Ice Stream, West Antarctica, J. Geophys. Res.-Earth Surf., 126, 1–23, https://doi.org/10.1029/2020JF006001, 2021. a, b, c, d, e, f, g, h
Lellouch, A., Lindsey, N. J., Ellsworth, W. L., and Biondi, B. L.: Comparison between distributed acoustic sensing and geophones: Downhole microseismic monitoring of the FORGE geothermal experiment, Seismol. Res. Lett., 91, 3256–3268, https://doi.org/10.1785/0220200149, 2020. a
Lindner, F., Laske, G., Walter, F., and Doran, A. K.: Crevasse-induced Rayleigh-wave azimuthal anisotropy on Glacier de la Plaine Morte, Switzerland, Ann. Glaciol., 60, 96–111, https://doi.org/10.1017/aog.2018.25, 2019. a, b
Lindner, F., Walter, F., Laske, G., and Gimbert, F.: Glaciohydraulic seismic tremors on an Alpine glacier, The Cryosphere, 14, 287–308, https://doi.org/10.5194/tc-14-287-2020, 2020. a
Lipovsky, B. P., Meyer, C. R., Zoet, L. K., McCarthy, C., Hansen, D. D., Rempel, A. W., and Gimbert, F.: Glacier sliding, seismicity and sediment entrainment, Ann. Glaciol., 60, 182–192, https://doi.org/10.1017/aog.2019.24, 2019. a
Löer, K., Riahi, N., and Saenger, E. H.: Three-component ambient noise beamforming in the Parkfield area, Geophys. J. Int., 213, 1478–1491, https://doi.org/10.1093/GJI/GGY058, 2018. a
Lomax, A. and Virieux, J.: Probabilistic earthquake location in 3D and layered models, Advances in Seismic Event Location, vol. 18 of the series Modern Approaches in Geophysics, 101–134, 2000. a
McBrearty, I. W., Zoet, L. K., and Anandakrishnan, S.: Basal seismicity of the Northeast Greenland Ice Stream, J. Glaciol., 66, 430–446, https://doi.org/10.1017/jog.2020.17, 2020. a
Nanni, U., Roux, P., Gimbert, F., and Lecointre, A.: Dynamic Imaging of Glacier Structures at High-Resolution Using Source Localization With a Dense Seismic Array, Geophys. Res. Lett., 49, 1–9, https://doi.org/10.1029/2021GL095996, 2022. a
Näsholm, S. P., Iranpour, K., Wuestefeld, A., Dando, B. D., Baird, A. F., and Oye, V.: Array Signal Processing on Distributed Acoustic Sensing Data: Directivity Effects in Slowness Space, J. Geophys. Res.-Sol. Ea., 127, 1–24, https://doi.org/10.1029/2021JB023587, 2022. a
Podolskiy, E. A. and Walter, F.: Cryoseismology, Rev. Geophys., 54, 1–51, https://doi.org/10.1002/2016RG000526, 2016. a
Podolskiy, E. A., Genco, R., Sugiyama, S., Walter, F., Funk, M., Minowa, Masahiro, S. T., and Ripepe, M.: Seismic and infrasound monitoring of Bowdoin Glacier, Greenland, Low Temperature Science, 75, 15–36, https://doi.org/10.14943/lowtemsci.75.15, 2017. a
Pratt, M. J., Winberry, J. P., Wiens, D. A., Anandakrishnan, S., and Alley, R. B.: Seismic and geodetic evidence for grounding-line control of Whillans Ice Stream stick-slip events, J. Geophys. Res.-Earth Surf., 119, 333–348, https://doi.org/10.1002/2013JF002842, 2014. a
Roeoesli, C., Helmstetter, A., Walter, F., and Kissling, E.: Meltwater influences on deep stick-slip icequakes near the base of the Greenland Ice Sheet, J. Geophys. Res.-Earth Surf., 121, 223–240, https://doi.org/10.1002/2015JF003601, 2016. a
Rost, S. and Thomas, C.: Array seismology: Methods and applications, Rev. Geophys., 40, 2-1–2-27, https://doi.org/10.1029/2000RG000100, 2002. a, b, c, d
Schimmel, M. and Paulssen, H.: Noise reduction and detection of weak, coherent signals through phase-weighted stacks, Geophys. J. Int., 130, 497–505, https://doi.org/10.1111/j.1365-246X.1997.tb05664.x, 1997. a
Schweitzer, J., Fyen, J., Mykkeltveit, S., and Kværna, T.: Seismic Arrays, in: New Manual of Seismological Observatory Practice (NMSOP), edited by Bormann, P., chap. 9, 1–52, Deutsches GeoForschungsZentrum GFZ, Potsdam, https://doi.org/10.1007/978-3-642-41714-6_191764, 2009. a
Sergeant, A., Chmiel, M., Lindner, F., Walter, F., Roux, P., Chaput, J., Gimbert, F., and Mordret, A.: On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring, The Cryosphere, 14, 1139–1171, https://doi.org/10.5194/tc-14-1139-2020, 2020. a
Serripierri, A., Moreau, L., Boue, P., Weiss, J., and Roux, P.: Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard, The Cryosphere, 16, 2527–2543, https://doi.org/10.5194/tc-16-2527-2022, 2022. a
Smith, A. M.: Microearthquakes and subglacial conditions, Geophys. Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL028207, 2006. a
Smith, A. M. and Murray, T.: Bedform topography and basal conditions beneath a fast-flowing West Antarctic ice stream, Quaternary Sci. Rev., 28, 584–596, https://doi.org/10.1016/j.quascirev.2008.05.010, 2009. a, b
Smith, A. M., Anker, P. G., Nicholls, K. W., Makinson, K., Murray, T., Rios-Costas, S., Brisbourne, A. M., Hodgson, D. A., Schlegel, R., and Anandakrishnan, S.: Ice stream subglacial access for ice-sheet history and fast ice flow: The BEAMISH Project on Rutford Ice Stream, West Antarctica and initial results on basal conditions, Ann. Glaciol., 1–9, https://doi.org/10.1017/aog.2020.82, 2020. a, b, c, d
Thomas, C., Kendall, J. M., and Weber, M.: The lowermost mantle beneath northern Asia – I. Multi-azimuth studies of a D′′ heterogeneity, Geophys. J. Int., 151, 279–295, https://doi.org/10.1046/j.1365-246X.2002.01759.x, 2002. a
Tsai, V. C. and Ekström, G.: Analysis of glacial earthquakes, J. Geophys. Res., 112, F03S22, https://doi.org/10.1029/2006JF000596, 2007. a
Umlauft, J., Lindner, F., Roux, P., Mikesell, T. D., Haney, M. M., Korn, M., and Walter, F. T.: Stick-Slip Tremor Beneath an Alpine Glacier, Geophys. Res. Lett., 48, 1–10, https://doi.org/10.1029/2020GL090528, 2021. a
van den Ende, M. P. A. and Ampuero, J.-P.: Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays, Solid Earth, 12, 915–934, https://doi.org/10.5194/se-12-915-2021, 2021. a
Wang, W. and Vidale, J. E.: An initial map of fine-scale heterogeneity in the Earth's inner core, Nat. Geosci., 15, 240–244, https://doi.org/10.1038/s41561-022-00903-8, 2022. a
Winder, T., Bacon, C., Smith, J. D., Hudson, T. S., Drew, J., and White, R. S.: QuakeMigrate v1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.4442749, 2021. a
Wolf, J., Frost, D. A., Long, M. D., Garnero, E., Aderoju, A. O., Creasy, N., and Bozdağ, E.: Observations of Mantle Seismic Anisotropy Using Array Techniques: Shear‐Wave Splitting of Beamformed SmKS Phases, J. Geophys. Res.-Sol. Ea., 128, https://doi.org/10.1029/2022JB025556, 2023. a
Zhou, W., Butcher, A., Brisbourne, A. M., Kufner, S. K., Kendall, J. M., and Stork, A. L.: Seismic Noise Interferometry and Distributed Acoustic Sensing (DAS): Inverting for the Firn Layer S-Velocity Structure on Rutford Ice Stream, Antarctica, J. Geophys. Res.-Earth Surf., 127, 1–17, https://doi.org/10.1029/2022JF006917, 2022. a, b, c
Zoet, L. K., Anandakrishnan, S., Alley, R. B., Nyblade, A. A., and Wiens, D. A.: Motion of an Antarctic glacier by repeated tidally modulated earthquakes, Nat. Geosci., 5, 623–626, https://doi.org/10.1038/ngeo1555, 2012. a
Zoet, L. K., Carpenter, B., Scuderi, M., Alley, R. B., Anandakrishnan, S., Marone, C., and Jackson, M.: The effects of entrained debris on the basal sliding stability of a glacier, J. Geophys. Res.-Earth Surf., 118, 656–666, https://doi.org/10.1002/jgrf.20052, 2013. a
Short summary
Earthquakes (or icequakes) at glaciers can shed light on fundamental glacier processes. These include glacier slip, crevassing, and imaging ice structure. To date, most studies use networks of seismometers, primarily sensitive to icequakes within the spatial extent of the network. However, arrays of seismometers allow us to detect icequakes at far greater distances. Here, we investigate the potential of such array-processing methods for studying icequakes at glaciers.
Earthquakes (or icequakes) at glaciers can shed light on fundamental glacier processes. These...