Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4873-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-4873-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys
Evgenii Salganik
CORRESPONDING AUTHOR
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Benjamin A. Lange
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Norwegian Geotechnical Institute, 0484 Oslo, Norway
Christian Katlein
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
Ilkka Matero
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
Svalbard Integrated Arctic Earth Observing System Knowledge Centre, Longyearbyen, 9171 Svalbard, Norway
Philipp Anhaus
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
Morven Muilwijk
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Knut V. Høyland
Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Mats A. Granskog
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Related authors
Evgenii Salganik, Odile Crabeck, Niels Fuchs, Nils Hutter, Philipp Anhaus, and Jack Christopher Landy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2398, https://doi.org/10.5194/egusphere-2024-2398, 2024
Short summary
Short summary
To measure Arctic ice thickness, we often check how much ice sticks out of the water. This method depends on knowing the ice's density, which drops significantly in summer. Our study, validated with sonar and laser data, shows that these seasonal changes in density can complicate melt measurements. We stress the importance of considering these density changes for more accurate ice thickness readings.
Christian Katlein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3358, https://doi.org/10.5194/egusphere-2024-3358, 2024
Short summary
Short summary
In this paper we perform laboratory tests and investigate the feasibility to use existing subsea intervention technology, such as manipulator arms to retrieve solid ice samples during under-ice dives of robotic vehicles. This investigation shows, that with minor modifications existing coring technology can be combined with existing subsea technology to provide novel sampling opportunities for submarine ice.
Lia Herrmannsdörfer, Raed Khalil Lubbad, and Knut Vilhelm Høyland
EGUsphere, https://doi.org/10.5194/egusphere-2024-3055, https://doi.org/10.5194/egusphere-2024-3055, 2024
Short summary
Short summary
Numerical simulations of iceberg drift and deterioration are a useful tool to bridge the gap of otherwise scarce iceberg observations in the Barents Sea. We forced iceberg simulations with different combinations of ocean, sea ice and atmosphere models to study their impact on the simulation results. We find that especially using different sea ice models Topaz and Barents-2.5 influences the iceberg drift, deterioration and occurrence in the domain.
Lia Herrmannsdörfer, Raed Khalil Lubbad, and Knut Vilhelm Høyland
EGUsphere, https://doi.org/10.5194/egusphere-2024-3053, https://doi.org/10.5194/egusphere-2024-3053, 2024
Short summary
Short summary
Disagreement between models describing the Arctic raises the question of suitability of those models for individual use-cases. We compared the ocean-sea ice models Topaz and Barents-2.5, and the atmospheric reanalyses ERA5 and CARRA in the Barents Sea. The results are later used to explain differences caused in iceberg simulations. We highlight spatial differences e.g. at the sea ice edge and coastlines, that are caused by different horizontal resolution and physical variable description.
Renée M. Fredensborg Hansen, Henriette Skourup, Eero Rinne, Arttu Jutila, Isobel R. Lawrence, Andrew Shepherd, Knut V. Høyland, Jilu Li, Fernando Rodriguez-Morales, Sebastian B. Simonsen, Jeremy Wilkinson, Gaelle Veyssiere, Donghui Yi, René Forsberg, and Taniâ G. D. Casal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2854, https://doi.org/10.5194/egusphere-2024-2854, 2024
Short summary
Short summary
In December 2022, an airborne campaign collected unprecedented coincident multi-frequency radar and lidar data over sea ice along a CryoSat-2 and ICESat-2 (CRYO2ICE) orbit in the Weddell Sea useful for evaluating microwave penetration. We found limited snow penetration at Ka- and Ku-bands, with significant contributions from the air-snow interface, contradicting traditional assumptions. These findings challenge current methods for comparing air- and spaceborne altimeter estimates of sea ice.
Evgenii Salganik, Odile Crabeck, Niels Fuchs, Nils Hutter, Philipp Anhaus, and Jack Christopher Landy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2398, https://doi.org/10.5194/egusphere-2024-2398, 2024
Short summary
Short summary
To measure Arctic ice thickness, we often check how much ice sticks out of the water. This method depends on knowing the ice's density, which drops significantly in summer. Our study, validated with sonar and laser data, shows that these seasonal changes in density can complicate melt measurements. We stress the importance of considering these density changes for more accurate ice thickness readings.
Hanne H. Christiansen, Ilkka S. O. Matero, Lisa Baddeley, Kim Holmén, Clara J. M. Hoppe, Maarten J. J. E. Loonen, Rune Storvold, Vito Vitale, Agata Zaborska, and Heikki Lihavainen
Earth Syst. Dynam., 15, 933–946, https://doi.org/10.5194/esd-15-933-2024, https://doi.org/10.5194/esd-15-933-2024, 2024
Short summary
Short summary
We provide an overview of the state and future of Earth system science in Svalbard as a synthesis of the recommendations made by the scientific community active in the archipelago. This work helped identify foci for developments of the observing system and a path forward to reach the full interdisciplinarity needed to operate at Earth system science scale. Better understanding of the processes in Svalbard will benefit both process-level understanding and Earth system models.
Madison M. Smith, Niels Fuchs, Evgenii Salganik, Donald K. Perovich, Ian Raphael, Mats A. Granskog, Kirstin Schulz, Matthew D. Shupe, and Melinda Webster
EGUsphere, https://doi.org/10.5194/egusphere-2024-1977, https://doi.org/10.5194/egusphere-2024-1977, 2024
Short summary
Short summary
The fate of freshwater from Arctic sea ice and snow melt impacts interactions of the atmosphere, sea ice, and ocean. We complete a comprehensive analysis of datasets from a Central Arctic field campaign in 2020 to understand the drivers of the sea ice freshwater budget and the fate of this water. Over half of the freshwater comes from surface melt, and a majority fraction is incorporated into the ocean. Results suggest that the representation of melt ponds is a key area for future development.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Marc de Vos, Panagiotis Kountouris, Lasse Rabenstein, John Shears, Mira Suhrhoff, and Christian Katlein
Hist. Geo Space. Sci., 14, 1–13, https://doi.org/10.5194/hgss-14-1-2023, https://doi.org/10.5194/hgss-14-1-2023, 2023
Short summary
Short summary
Poor visibility on the 3 d prior to the sinking of Sir Ernest Shackleton’s vessel, Endurance, during November 1915, hampered navigator Frank Worsley’s attempts to record its position. Thus, whilst the wreck was located in the Weddell Sea in March 2022, the drift path of Endurance during its final 3 d at the surface remained unknown. We used data from a modern meteorological model to reconstruct possible trajectories for this unknown portion of Endurance’s journey.
Theodoros Karpouzoglou, Morven Muilwijk, Julius Lauber, Apostolos Tsiouvalas, and Johanna Brehmer-Moltmann
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2022-14, https://doi.org/10.5194/gc-2022-14, 2022
Revised manuscript not accepted
Short summary
Short summary
"Bold statements”, are motivating, easily conceived, but often inaccurate. The study seeks the origin, purpose, and threats of such statements in climate science communication. Bold statement communication is enforced by the urgency of climate change and is useful in raising public awareness and accelerating law-making. However, we demonstrate through three well-known case studies of bold statement communication that such communication strategies encompass risks as misinterpretation lurks.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Tristan Petit, Børge Hamre, Håkon Sandven, Rüdiger Röttgers, Piotr Kowalczuk, Monika Zablocka, and Mats A. Granskog
Ocean Sci., 18, 455–468, https://doi.org/10.5194/os-18-455-2022, https://doi.org/10.5194/os-18-455-2022, 2022
Short summary
Short summary
We provide the first insights on bio-optical processes in Storfjorden (Svalbard). Information on factors controlling light propagation in the water column in this arctic fjord becomes crucial in times of rapid sea ice decline. We find a significant contribution of dissolved matter to light absorption and a subsurface absorption maximum linked to phytoplankton production. Dense bottom waters from sea ice formation carry elevated levels of dissolved and particulate matter.
Christophe Perron, Christian Katlein, Simon Lambert-Girard, Edouard Leymarie, Louis-Philippe Guinard, Pierre Marquet, and Marcel Babin
The Cryosphere, 15, 4483–4500, https://doi.org/10.5194/tc-15-4483-2021, https://doi.org/10.5194/tc-15-4483-2021, 2021
Short summary
Short summary
Characterizing the evolution of inherent optical properties (IOPs) of sea ice in situ is necessary to improve climate and arctic ecosystem models. Here we present the development of an optical probe, based on the spatially resolved diffuse reflectance method, to measure IOPs of a small volume of sea ice (dm3) in situ and non-destructively. For the first time, in situ vertically resolved profiles of the dominant IOP, the reduced scattering coefficient, were obtained for interior sea ice.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Christian Katlein, Lovro Valcic, Simon Lambert-Girard, and Mario Hoppmann
The Cryosphere, 15, 183–198, https://doi.org/10.5194/tc-15-183-2021, https://doi.org/10.5194/tc-15-183-2021, 2021
Short summary
Short summary
To improve autonomous investigations of sea ice optical properties, we designed a chain of multispectral light sensors, providing autonomous in-ice light measurements. Here we describe the system and the data acquired from a first prototype deployment. We show that sideward-looking planar irradiance sensors basically measure scalar irradiance and demonstrate the use of this sensor chain to derive light transmittance and inherent optical properties of sea ice.
Jutta E. Wollenburg, Morten Iversen, Christian Katlein, Thomas Krumpen, Marcel Nicolaus, Giulia Castellani, Ilka Peeken, and Hauke Flores
The Cryosphere, 14, 1795–1808, https://doi.org/10.5194/tc-14-1795-2020, https://doi.org/10.5194/tc-14-1795-2020, 2020
Short summary
Short summary
Based on an observed omnipresence of gypsum crystals, we concluded that their release from melting sea ice is a general feature in the Arctic Ocean. Individual gypsum crystals sank at more than 7000 m d−1, suggesting that they are an important ballast mineral. Previous observations found gypsum inside phytoplankton aggregates at 2000 m depth, supporting gypsum as an important driver for pelagic-benthic coupling in the ice-covered Arctic Ocean.
Marc Oggier, Hajo Eicken, Meibing Jin, and Knut Høyland
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-52, https://doi.org/10.5194/tc-2020-52, 2020
Publication in TC not foreseen
Caixin Wang, Robert M. Graham, Keguang Wang, Sebastian Gerland, and Mats A. Granskog
The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, https://doi.org/10.5194/tc-13-1661-2019, 2019
Short summary
Short summary
A warm bias and higher total precipitation and snowfall were found in ERA5 compared with ERA-Interim (ERA-I) over Arctic sea ice. The warm bias in ERA5 was larger in the cold season when 2 m air temperature was < −25 °C and smaller in the warm season than in ERA-I. Substantial anomalous Arctic rainfall in ERA-I was reduced in ERA5, particularly in summer and autumn. When using ERA5 and ERA-I to force a 1-D sea ice model, the effects on ice growth are very small (cm) during the freezing period.
Philipp Anhaus, Lars H. Smedsrud, Marius Årthun, and Fiammetta Straneo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-35, https://doi.org/10.5194/tc-2019-35, 2019
Revised manuscript not accepted
Short summary
Short summary
Atlantic Water flows towards the Arctic and under floating glaciers on Greenland. Observations in a rift on the 79 North Glacier show presence of such water with temperature of 1 °C at 600 m. We simulate how this warm water melts the floating ice. Melt rates are largest where the glacier starts floating, are smaller where the water rises, and increase linearly with rising ocean temperature. Our results improve the understanding of ocean processes driving melting of floating glaciers.
Anna Makarewicz, Piotr Kowalczuk, Sławomir Sagan, Mats A. Granskog, Alexey K. Pavlov, Agnieszka Zdun, Karolina Borzycka, and Monika Zabłocka
Ocean Sci., 14, 543–562, https://doi.org/10.5194/os-14-543-2018, https://doi.org/10.5194/os-14-543-2018, 2018
Daiki Nomura, Mats A. Granskog, Agneta Fransson, Melissa Chierici, Anna Silyakova, Kay I. Ohshima, Lana Cohen, Bruno Delille, Stephen R. Hudson, and Gerhard S. Dieckmann
Biogeosciences, 15, 3331–3343, https://doi.org/10.5194/bg-15-3331-2018, https://doi.org/10.5194/bg-15-3331-2018, 2018
Torbjørn Taskjelle, Stephen R. Hudson, Mats A. Granskog, and Børge Hamre
The Cryosphere, 11, 2137–2148, https://doi.org/10.5194/tc-11-2137-2017, https://doi.org/10.5194/tc-11-2137-2017, 2017
Christian Katlein, Stefan Hendricks, and Jeffrey Key
The Cryosphere, 11, 2111–2116, https://doi.org/10.5194/tc-11-2111-2017, https://doi.org/10.5194/tc-11-2111-2017, 2017
Short summary
Short summary
In the public debate, increasing sea ice extent in the Antarctic is often highlighted as counter-indicative of global warming. Here we show that the slight increases in Antarctic sea ice extent are not able to counter Arctic losses. Using bipolar satellite observations, we demonstrate that even in the Antarctic polar ocean solar shortwave energy absorption is increasing in accordance with strongly increasing shortwave energy absorption in the Arctic Ocean rather than compensating Arctic losses.
M. Fernández-Méndez, C. Katlein, B. Rabe, M. Nicolaus, I. Peeken, K. Bakker, H. Flores, and A. Boetius
Biogeosciences, 12, 3525–3549, https://doi.org/10.5194/bg-12-3525-2015, https://doi.org/10.5194/bg-12-3525-2015, 2015
Short summary
Short summary
Photosynthetic production in the central Arctic Ocean is controlled by light availability below the ice, nitrate and silicate concentrations in the upper ocean, and the role of sub-ice algae that contributed up to 60% to primary production in summer 2012 during the record sea-ice minimum. As sea ice decreases, an overall change in Arctic PP would be foremost related to a change in the role of the ice algal production and nutrient availability.
M. Nicolaus and C. Katlein
The Cryosphere, 7, 763–777, https://doi.org/10.5194/tc-7-763-2013, https://doi.org/10.5194/tc-7-763-2013, 2013
Related subject area
Discipline: Sea ice | Subject: Mass Balance Obs
Changes in the annual sea ice freeze–thaw cycle in the Arctic Ocean from 2001 to 2018
Long Lin, Ruibo Lei, Mario Hoppmann, Donald K. Perovich, and Hailun He
The Cryosphere, 16, 4779–4796, https://doi.org/10.5194/tc-16-4779-2022, https://doi.org/10.5194/tc-16-4779-2022, 2022
Short summary
Short summary
Ice mass balance observations indicated that average basal melt onset was comparable in the central Arctic Ocean and approximately 17 d earlier than surface melt in the Beaufort Gyre. The average onset of basal growth lagged behind the surface of the pan-Arctic Ocean for almost 3 months. In the Beaufort Gyre, both drifting-buoy observations and fixed-point observations exhibit a trend towards earlier basal melt onset, which can be ascribed to the earlier warming of the surface ocean.
Cited articles
Amundrud, T. L., Melling, H., and Ingram, G.: Geometrical constraints on the evolution of ridged sea ice, J. Geophys. Res.-Oceans, 109, 1–12, https://doi.org/10.1029/2003JC002251, 2004.
Amundrud, T. L., Melling, H., Ingram, R. G., and Allen, S. E.: The effect of structural porosity on the ablation of sea ice ridges, J. Geophys. Res., 111, C06004, https://doi.org/10.1029/2005JC002895, 2006.
Bowen, R. G. and Topham, D. R.: A study of the morphology of a discontinuous section of a first year arctic pressure ridge, Cold Reg. Sci. Technol., 24, 83–100, https://doi.org/10.1016/0165-232X(95)00002-S, 1996.
Cox, G. F. N. and Weeks, W. F.: Equations for determining the gas and brine volumes in sea-ice samples, J. Glaciol., 29, 306–316, https://doi.org/10.3189/S0022143000008364, 1983.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Ekeberg, O., Høyland, K., and Hansen, E.: Ice ridge keel geometry and shape derived from one year of upward looking sonar data in the Fram Strait, Cold Reg. Sci. Technol., 109, 78–86, https://doi.org/10.1016/j.coldregions.2014.10.003, 2015.
Fer, I., Baumann, T. M., Koenig, Z., Muilwijk, M., and Tippenhauer, S.: Upper-Ocean Turbulence Structure and Ocean-Ice Drag Coefficient Estimates Using an Ascending Microstructure Profiler During the MOSAiC Drift, J. Geophys. Res.-Oceans, 127, 1–23, https://doi.org/10.1029/2022JC018751, 2022.
Fernández-Méndez, M., Olsen, L. M., Kauko, H. M., Meyer, A., Rösel, A., Merkouriadi, I., Mundy, C. J., Ehn, J. K., Johansson, A. M., Wagner, P. M., Ervik, Å., Sorrell, B. K., Duarte, P., Wold, A., Hop, H., and Assmy, P.: Algal hot spots in a changing Arctic Ocean: sea-ice ridges and the snow-ice interface, Front. Mar. Sci., 5, https://doi.org/10.3389/fmars.2018.00075, 2018.
Fons, S., Kurtz, N., and Bagnardi, M.: A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting, The Cryosphere, 17, 2487–2508, https://doi.org/10.5194/tc-17-2487-2023, 2023.
Gradinger, R., Bluhm, B., and Iken, K.: Arctic sea-ice ridges – Safe heavens for sea-ice fauna during periods of extreme ice melt?, Deep-Sea Res. Pt. II, 57, 86–95, https://doi.org/10.1016/j.dsr2.2009.08.008, 2010.
Granskog, M. A., Fer, I., Rinke, A., and Steen, H.: Atmosphere-ice-ocean-ecosystem processes in a thinner Arctic sea ice regime: the Norwegian Young Sea ICE (N-ICE2015) Expedition, J. Geophys. Res.-Oceans, 123, 1586–1594, https://doi.org/10.1002/2017JC013328, 2018.
Granskog, M. A., Lange, B. A., Salganik, E., De La Torre, P. R., and Riemann-Campe, K.: Temperature and heating induced temperature difference measurements from the modular buoy 2020M26, deployed during MOSAiC 2019/20, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.938354, 2021.
Hansen, E., Ekeberg, O.-C., Gerland, S., Pavlova, O., Spreen, G., and Tschudi, M.: Variability in categories of Arctic sea ice in Fram Strait, J. Geophys. Res.-Oceans, 119, 7175–7189, https://doi.org/10.1002/2014JC010048, 2014.
Hopkins, M. A.: Four stages of pressure ridging, J. Geophys. Res.-Oceans, 103, 21883–21891, https://doi.org/10.1029/98JC01257, 1998.
Jackson, K., Wilkinson, J., Maksym, T., Meldrum, D., Beckers, J., Haas, C., and Mackenzie, D.: A novel and low-cost sea ice mass balance buoy, J. Atmos. Ocean. Technol., 30, 2676–2688, https://doi.org/10.1175/JTECH-D-13-00058.1, 2013.
Jutila, A., Hendricks, S., Birnbaum, G., von Albedyll, L., Ricker, R., Helm, V., Hutter, N., and Haas, C.: Geolocated sea-ice or snow surface elevation point cloud segments from helicopter-borne laser scanner during the MOSAiC expedition, version 1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950509, 2023.
Katlein, C., Schiller, M., Belter, H. J., Coppolaro, V., Wenslandt, D., and Nicolaus, M.: A New Remotely Operated Sensor Platform for Interdisciplinary Observations under Sea Ice, Front. Mar. Sci., 4, 1–12, https://doi.org/10.3389/fmars.2017.00281, 2017.
Katlein, C., Langelier, J., Ouellet, A., Lévesque-Desrosiers, F., Hisette, Q., Lange, B. A., Lambert-Girard, S., Babin, M., and Thibault, S.: The Three-Dimensional Light Field Within Sea Ice Ridges, Geophys. Res. Lett., 48, e2021GL093207, https://doi.org/10.1029/2021GL093207, 2021.
Katlein, C., Anhaus, P., Arndt, S., Krampe, D., Lange, B. A., Matero, I., Regnery, J., Rohde, J., Schiller, M., and Nicolaus, M.: Sea-ice draft during the MOSAiC expedition 2019/20, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945846, 2022.
Kovacs, A., Weeks, W. F., Ackley, S., and Hibler, W. D.: Structure of a Multi-Year Pressure Ridge, ARCTIC, 26, 22–31, https://doi.org/10.14430/arctic2893, 1973.
Krishfield, R. A.: Spatial and temporal variability of oceanic heat flux to the Arctic ice pack, J. Geophys. Res., 110, C07021, https://doi.org/10.1029/2004JC002293, 2005.
Krumpen, T., Gerdes, R., Haas, C., Hendricks, S., Herber, A., Selyuzhenok, V., Smedsrud, L., and Spreen, G.: Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes, The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, 2016.
Krumpen, T., von Albedyll, L., Goessling, H. F., Hendricks, S., Juhls, B., Spreen, G., Willmes, S., Belter, H. J., Dethloff, K., Haas, C., Kaleschke, L., Katlein, C., Tian-Kunze, X., Ricker, R., Rostosky, P., Rückert, J., Singha, S., and Sokolova, J.: MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years, The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, 2021.
Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell, S. E. L., Krumpen, T., Babb, D. G., Komarov, A. S., Heorton, H. D. B. S., Belter, H. J., and Aksenov, Y.: A year-round satellite sea-ice thickness record from CryoSat-2, Nature, 609, 517–522, https://doi.org/10.1038/s41586-022-05058-5, 2022.
Lange, B. A., Salganik, E., Macfarlane, A. R., Schneebeli, M., Høyland, K. V., Gardner, J., Müller, O., and Granskog, M. A.: Ridge ice oxygen and hydrogen isotope data MOSAiC Leg 4 (PS122/4), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.943746, 2022.
Lange, B. A., Salganik, E., Macfarlane, A., Schneebeli, M., Høyland, K., Gardner, J., Müller, O., Divine, D. V., Kohlbach, D., Katlein, C., and Granskog, M. A.: Snowmelt contribution to Arctic first-year ice ridge mass balance and rapid consolidation during summer melt, Elem. Sci. Anthr., 11, 00037, https://doi.org/10.1525/elementa.2022.00037, 2023.
Lei, R., Cheng, B., Hoppmann, M., Zhang, F., Zuo, G., Hutchings, J. K., Lin, L., Lan, M., Wang, H., Regnery, J., Krumpen, T., Haapala, J., Rabe, B., Perovich, D. K., and Nicolaus, M.: Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019–2020, Elem. Sci. Anthr., 10, 000089, https://doi.org/10.1525/elementa.2021.000089, 2022.
Lyon, W.: Ocean and sea-ice research in the Arctic Ocean via submarine, Trans. N. Y. Acad. Sci., 23, 662–674, https://doi.org/10.1111/j.2164-0947.1961.tb01400.x, 1961.
Macfarlane, A. R., Schneebeli, M., Dadic, R., Wagner, D. N., Arndt, S., Clemens-Sewall, D., Hämmerle, S., Hannula, H.-R., Jaggi, M., Kolabutin, N., Krampe, D., Lehning, M., Matero, I., Nicolaus, M., Oggier, M., Pirazzini, R., Polashenski, C., Raphael, I., Regnery, J., Shimanchuck, E., Smith, M. M., and Tavri, A.: Snowpit raw data collected during the MOSAiC expedition, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935934, 2021.
Macfarlane, A. R., Schneebeli, M., Dadic, R., Tavri, A., Immerz, A., Polashenski, C., Krampe, D., Clemens-Sewall, D., Wagner, D. N., Perovich, D. K., Henna-Reetta, H., Raphael, I., Matero, I., Regnery, J., Smith, M. M., Nicolaus, M., Jaggi, M., Oggier, M., Webster, M. A., Lehning, M., Kolabutin, N., Itkin, P., Naderpour, R., Pirazzini, R., Hämmerle, S., Arndt, S., and Fons, S.: A Database of Snow on Sea Ice in the Central Arctic Collected during the MOSAiC expedition, Sci. Data, 10, 398, https://doi.org/10.1038/s41597-023-02273-1, 2023.
Marchenko, A.: Thermo-Hydrodynamics of Sea Ice Rubble, Springer International Publishing, 203–223, https://doi.org/10.1007/978-3-030-80439-8_10, 2022.
Mårtensson, S., Meier, H. E. M., Pemberton, P., and Haapala, J.: Ridged sea ice characteristics in the Arctic from a coupled multicategory sea ice model, J. Geophys. Res.-Oceans, 117, C00D15, https://doi.org/10.1029/2010JC006936, 2012.
Melling, H. and Riedel, D. A.: Development of seasonal pack ice in the Beaufort Sea during the winter of 1991–1992: A view from below, J. Geophys. Res.-Oceans, 101, 11975–11991, https://doi.org/10.1029/96JC00284, 1996.
Metzger, A. T., Mahoney, A. R., and Roberts, A. F.: The Average Shape of Sea Ice Ridge Keels, Geophys. Res. Lett., 48, e2021GL095100, https://doi.org/10.1029/2021GL095100, 2021.
National Geophysical Data Center: ETOPO2v2 2-minute Global Relief Model, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5J1012Q, 2006.
Neckel, N., Fuchs, N., Birnbaum, G., Hutter, N., Jutila, A., Buth, L., von Albedyll, L., Ricker, R., and Haas, C.: Helicopter-borne RGB orthomosaics and photogrammetric Digital Elevation Models from the MOSAiC Expedition, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.949433, 2023.
Nixdorf, U., Dethloff, K., Rex, M., Shupe, M., Sommerfeld, A., Perovich, D., Nicolaus, M., Heuzé, C., Rabe, B., Loose, B., Damm, E., Gradinger, R., Fong, A., Maslowski, W., Rinke, A., Kwok, R., Hirsekorn, M., Spreen, G., Mohaupt, V., Wendisch, M., Frickenhaus, S., Mengedoht, D., Herber, A., Immerz, A., Regnery, J., Weiss-tuider, K., Gerchow, P., Haas, C., König, B., Ransby, D., Kanzow, T., Krumpen, T., Rack, F. R., Morgenstern, A., Saitzev, V., Sokolov, V., Makarov, A., Schwarze, S., and Wunderlich, T.: MOSAiC Extended Acknowledgement, Zenodo [data set], https://doi.org/10.5281/zenodo.5179739, 2021.
Oggier, M., Salganik, E., Whitmore, L., Fong, A. A., Hoppe, C. J. M., Rember, R., Høyland, K. V., Divine, D. V, Gradinger, R., Fons, S. W., Abrahamsson, K., Aguilar-Islas, A. M., Angelopoulos, M., Arndt, S., Balmonte, J. P., Bozzato, D., Bowman, J. S., Castellani, G., Chamberlain, E., Creamean, J., D'Angelo, A., Damm, E., Dumitrascu, A., Eggers, S. L., Gardner, J., Grosfeld, L., Haapala, J., Immerz, A., Kolabutin, N., Lange, B. A., Lei, R., Marsay, C. M., Maus, S., Müller, O., Olsen, L. M., Nuibom, A., Ren, J., Rinke, A., Sheikin, I., Shimanchuk, E., Snoeijs-Leijonmalm, P., Spahic, S., Stefels, J., Torres-Valdés, S., Torstensson, A., Ulfsbo, A., Verdugo, J., Vortkamp, M., Wang, L., Webster, M., Wischnewski, L., and Granskog, M. A.: First-year sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-FYI) during MOSAiC legs 1 to 4 in 2019/2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.956732, 2023.
Perovich, D., Smith, M., Light, B., and Webster, M.: Meltwater sources and sinks for multiyear Arctic sea ice in summer, The Cryosphere, 15, 4517–4525, https://doi.org/10.5194/tc-15-4517-2021, 2021.
Perovich, D. K., Grenfell, T. C., Richter-Menge, J. A., Light, B., Tucker, W. B., and Eicken, H.: Thin and thinner: Sea ice mass balance measurements during SHEBA, J. Geophys. Res.-Oceans, 108, 1–21, https://doi.org/10.1029/2001jc001079, 2003.
Perovich, D. K., Richter-Menge, J. A., Jones, K. F., Light, B., Elder, B. C., Polashenski, C., Laroche, D., Markus, T., and Lindsay, R.: Arctic sea-ice melt in 2008 and the role of solar heating, Ann. Glaciol., 52, 355–359, https://doi.org/10.3189/172756411795931714, 2011.
Peterson, A. K., Fer, I., McPhee, M. G., and Randelhoff, A.: Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice, J. Geophys. Res.-Oceans, 122, 1439–1456, https://doi.org/10.1002/2016JC012283, 2017.
Pustogvar, A. and Kulyakhtin, A.: Sea ice density measurements. Methods and uncertainties, Cold Reg. Sci. Technol., 131, 46–52, https://doi.org/10.1016/j.coldregions.2016.09.001, 2016.
Ricker, R., Fons, S., Jutila, A., Hutter, N., Duncan, K., Farrell, S. L., Kurtz, N. T., and Fredensborg Hansen, R. M.: Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC, The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, 2023.
Rigby, F. A. and Hanson, A.: Evolution of a large Arctic pressure ridge, AIDJEX Bull., 34, 43–71, 1976.
Rothrock, D. A.: Arctic Ocean sea ice volume: What explains its recent depletion?, J. Geophys. Res., 110, C01002, https://doi.org/10.1029/2004JC002282, 2005.
Salganik, E., Lange, B. A., Itkin, P., Divine, D., Katlein, C., Nicolaus, M., Hoppmann, M., Neckel, N., Ricker, R., Høyland, K. V., and Granskog, M. A.: Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition, Elem. Sci. Anthr., 11, 00008, https://doi.org/10.1525/elementa.2023.00008, 2023a.
Salganik, E., Lange, B. A., Sheikin, I., Høyland, K. V., and Granskog, M. A.: Drill-hole ridge ice and snow thickness and draft measurements of “Jaridge” during MOSAiC 2019/20, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953880, 2023b.
Salganik, E., Lange, B. A., Høyland, K. V., Gardner, J., Müller, O., Tavri, A., Mahmud, M., and Granskog, M. A.: Ridge ice density data MOSAiC Leg 4 (PS122/4), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953865, 2023c.
Salganik, E., Katlein, C., Lange, B. A., Matero, I., Lei, R., Fong, A. A., Fons, S. W., Divine, D., Oggier, M., Castellani, G., Bozzato, D., Chamberlain, E. J., Hoppe, C. J. M., Müller, O., Gardner, J., Rinke, A., Pereira, P. S., Ulfsbo, A., Marsay, C., Webster, M. A., Maus, S., Høyland, K. V., and Granskog, M. A.: Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance, Elem. Sci. Anthr., 11, 00035, https://doi.org/10.1525/elementa.2022.00035, 2023d.
Schmithüsen, H.: Continuous meteorological surface measurement during POLARSTERN cruise PS122/4, Alfred Wegener Institute, Helmholtz Cent. Polar Mar. Res. Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935224, 2021.
Schulz, K., Mohrholz, V., Fer, I., Janout, M. A., Hoppmann, M., Schaffer, J., Koenig, Z., Rabe, B., Heuzé, C., Regnery, J., Allerholt, J., Fang, Y.-C., He, H., Kanzow, T., Karam, S., Kuznetsov, I., Kong, B., Liu, H., Muilwijk, M., Schuffenhauer, I., Sukhikh, N., Sundfjord, A., and Tippenhauer, S.: Turbulent microstructure profile (MSS) measurements from the MOSAiC drift, Arctic Ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.939816, 2022.
Schulz, K., Koenig, Z., Muilwijk, M., Bauch, D., Hoppe, C. J. M., Droste, E., Hoppmann, M., Chamberlain, E. J., Laukert, G., Stanton, T., Zurita, A. Q., Fer, I., Heuzé, C., Karam, S., Mieruch-Schnuelle, S., Baumann, T., Vredenborg, M., Tippenhauer, S., and Granskog, M. A.: The Eurasian Arctic Ocean along the MOSAiC drift (2019–2020): An interdisciplinary perspective on properties and processes, EarthArXiv [preprint], https://doi.org/10.31223/X5TT2W, 2023a.
Schulz, K., Koenig, Z., and Muilwijk, M.: The Eurasian Arctic Ocean along the MOSAiC drift (2019–2020): Core hydrographic parameters, Arctic Data Center [data set], https://doi.org/10.18739/A21J9790B, 2023b.
Shestov, A., Høyland, K., and Ervik, Å.: Decay phase thermodynamics of ice ridges in the Arctic Ocean, Cold Reg. Sci. Technol., 152, 23–34, https://doi.org/10.1016/j.coldregions.2018.04.005, 2018.
Skyllingstad, E. D., Paulson, C. A., and Pegau, W. S.: Effects of keels on ice bottom turbulence exchange, J. Geophys. Res., 108, 3372, https://doi.org/10.1029/2002JC001488, 2003.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008.
Strub-Klein, L. and Sudom, D.: A comprehensive analysis of the morphology of first-year sea ice ridges, Cold Reg. Sci. Technol., 82, 94–109, https://doi.org/10.1016/j.coldregions.2012.05.014, 2012.
Sumata, H., de Steur, L., Divine, D. V., Granskog, M. A., and Gerland, S.: Regime shift in Arctic Ocean sea ice thickness, Nature, 615, 443–449, https://doi.org/10.1038/s41586-022-05686-x, 2023.
Timco, G. W. and Burden, R. P.: An analysis of the shapes of sea ice ridges, Cold Reg. Sci. Technol., 25, 65–77, https://doi.org/10.1016/S0165-232X(96)00017-1, 1997.
Tucker, W. B., Sodhi, D. S., and Govoni, J. W.: Structure of first-year pressure ridge sails in the Prudhoe region, in: The Alaskan Beaufort Sea, Elsevier, 115–135, https://doi.org/10.1016/B978-0-12-079030-2.50012-5, 1984.
Wadhams, P. and Doble, M. J.: Digital terrain mapping of the underside of sea ice from a small AUV, Geophys. Res. Lett., 35, L01501, https://doi.org/10.1029/2007GL031921, 2008.
Wadhams, P. and Toberg, N.: Changing characteristics of arctic pressure ridges, Polar Sci., 6, 71–77, https://doi.org/10.1016/j.polar.2012.03.002, 2012.
Wadhams, P., Wilkinson, J. P., and McPhail, S. D.: A new view of the underside of Arctic sea ice, Geophys. Res. Lett., 33, L04501, https://doi.org/10.1029/2005GL025131, 2006.
Webster, M. A., Holland, M., Wright, N. C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D. K., Raphael, I. A., Smith, M. M., von Albedyll, L., and Zhang, J.: Spatiotemporal evolution of melt ponds on Arctic sea ice, Elem. Sci. Anthr., 10, 000072, https://doi.org/10.1525/elementa.2021.000072, 2022.
WMO: World Meteorological Organization (WMO) Sea Ice Nomenclature: WMO-No. 259 922, Supplement to Vol. I, II and II, 5th session of JCOMM Expert Team on Sea ice. Tech. rep., https://doi.org/10.25607/OBP-1530, 2014.
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we...