Articles | Volume 17, issue 11
https://doi.org/10.5194/tc-17-4873-2023
https://doi.org/10.5194/tc-17-4873-2023
Research article
 | 
20 Nov 2023
Research article |  | 20 Nov 2023

Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys

Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog

Data sets

Temperature and heating induced temperature difference measurements from the modular buoy 2020M26, deployed during MOSAiC 2019/20. M. A. Granskog, B. A. Lange, E. Salganik, P. R. De La Torre, and K. Riemann-Campe https://doi.org/10.1594/PANGAEA.938354

Geolocated sea-ice or snow surface elevation point cloud segments from helicopter-borne laser scanner during the MOSAiC expedition, version 1. A. Jutila, S. Hendricks, G., Birnbaum, L. von Albedyll, R. Ricker, V. Helm, N. Hutter, and C. Haas https://doi.org/10.1594/PANGAEA.950509

Sea-ice draft during the MOSAiC expedition 2019/20. C. Katlein, P. Anhaus S. Arndt D.Krampe, B. A. Lange, I. Matero, J. Regnery, J. Rohde, M. Schiller, and M. Nicolaus https://doi.org/10.1594/PANGAEA.945846

Ridge ice oxygen and hydrogen isotope data MOSAiC Leg 4 (PS122/4). B. A. Lange, E. Salganik, A. R. Macfarlane, M. Schneebeli, K. V. Høyland, J. Gardner, O. Müller, and M. A. Granskog https://doi.org/10.1594/PANGAEA.943746

Snowpit raw data collected during the MOSAiC expedition. A. R. Macfarlane, M. Schneebeli, R. Dadic, D. N. Wagner, S. Arndt, D. Clemens-Sewall, S. Hämmerle, H.-R. Hannula, M. Jaggi, N. Kolabutin, D. Krampe, M. Lehning, I. Matero, M. Nicolaus, M. Oggier, R. Pirazzini, C. Polashenski, I. Raphael, J. Regnery, E. Shimanchuck, M. M. Smith, and A. Tavri https://doi.org/10.1594/PANGAEA.935934

Helicopter-borne RGB orthomosaics and photogrammetric Digital Elevation Models from the MOSAiC Expedition. N. Neckel, N. Fuchs, G. Birnbaum, N., Hutter, A. Jutila, L. Buth, L. von Albedyll, R. Ricker, and C. Haas https://doi.org/10.1594/PANGAEA.949433

First-year sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-FYI) during MOSAiC legs 1 to 4 in 2019/2020. M. Oggier, E. Salganik, L. Whitmore, A. A. Fong, C. J. M. Hoppe, R. Rember, K. V. Høyland, D. V. Divine, S. W. Fons, K. Abrahamsson, A. M. Aguilar-Islas, M. Angelopoulos, J. P. Balmonte, D. Bozzato, J. S. Bowman, E. Chamberlain, J. Creamean, A. D'Angelo, J. Gardner, J. Haapala, A. Immerz, N. Kolabutin, B. A. Lange, R. Lei, C. M. Marsay, S. Maus, L. M. Olsen, O. Müller, J. Ren, A. Rinke, I. Sheikin, E. Shimanchuk, S. Spahic, S. Torres-Valdés, A.Torstensson, A. Ulfsbo, L. Wang, and M. A. Granskog https://doi.org/10.1594/PANGAEA.956732

Drill-hole ridge ice and snow thickness and draft measurements of "Jaridge" during MOSAiC 2019/20. E. Salganik, B. A. Lange, I. Sheikin, K. V. Høyland, and M. A. Granskog https://doi.org/10.1594/PANGAEA.953880

Ridge ice density data MOSAiC Leg 4 (PS122/4). E. Salganik, B. A. Lange, K. V. Høyland, J. Gardner, O. Müller, A.T avri, M. Mahmud, and M.A. Granskog https://doi.org/10.1594/PANGAEA.953865

Continuous meteorological surface measurement during POLARSTERN cruise PS122/4. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven. H. Schmithüsen https://doi.org/10.1594/PANGAEA.935224

Turbulent microstructure profile (MSS) measurements from the MOSAiC drift, Arctic Ocean. K. Schulz, V. Mohrholz, I. Fer, M. A. Janout, M. Hoppmann, J. Schaffer, Z. Koenig, B. Rabe, C. Heuzé, J. Regnery, J. Allerholt, Y.-C. Fang, H. He, T. Kanzow, S. Karam, I. Kuznetsov, B. Kong, H. Liu, M. Muilwijk, I. Schuffenhauer, N.Sukhikh, A. Sundfjord, and S. Tippenhauer https://doi.org/10.1594/PANGAEA.939816

The Eurasian Arctic Ocean along the MOSAiC drift (2019-2020): Core hydrographic parameters. K. Schulz, Z. Koenig, and M. Muilwijk https://doi.org/10.18739/A21J9790B

Download
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.