Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3343-2023
https://doi.org/10.5194/tc-17-3343-2023
Research article
 | 
21 Aug 2023
Research article |  | 21 Aug 2023

A model for the Arctic mixed layer circulation under a summertime lead: implications for the near-surface temperature maximum formation

Alberto Alvarez

Related authors

A model for the Artic mixed layer circulation under a melted lead: Implications on the near-surface temperature maximum formation
Alberto Alvarez
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-322,https://doi.org/10.5194/tc-2020-322, 2020
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Sea ice | Subject: Ocean Interactions
Two-dimensional numerical simulations of mixing under ice keels
Sam De Abreu, Rosalie M. Cormier, Mikhail G. Schee, Varvara E. Zemskova, Erica Rosenblum, and Nicolas Grisouard
The Cryosphere, 18, 3159–3176, https://doi.org/10.5194/tc-18-3159-2024,https://doi.org/10.5194/tc-18-3159-2024, 2024
Short summary
Seasonal and diurnal variability of sub-ice platelet layer thickness in McMurdo Sound from electromagnetic induction sounding
Gemma M. Brett, Greg H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, Natalie J. Robinson, and Anne Irvin
The Cryosphere, 18, 3049–3066, https://doi.org/10.5194/tc-18-3049-2024,https://doi.org/10.5194/tc-18-3049-2024, 2024
Short summary
The role of upper-ocean heat content in the regional variability of Arctic sea ice at sub-seasonal timescales
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024,https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
A method for constructing directional surface wave spectra from ICESat-2 altimetry
Momme C. Hell and Christopher Horvat
The Cryosphere, 18, 341–361, https://doi.org/10.5194/tc-18-341-2024,https://doi.org/10.5194/tc-18-341-2024, 2024
Short summary
Underestimation of oceanic carbon uptake in the Arctic Ocean: ice melt as predictor of the sea ice carbon pump
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023,https://doi.org/10.5194/tc-17-2665-2023, 2023
Short summary

Cited articles

Alam, A. and Curry, J.: Lead-induced atmospheric circulations, J. Geophys. Res.-Oceans, 100, 4643–4651, https://doi.org/10.1029/94JC02562, 1995. 
Barry, R. G., Miles, M. W., Cianflone, R. C., Scharfen, G., and Schnell, R. C.: Characteristics of Arctic sea ice from remote sensing data and their relationship to atmospheric processes, Ann. Glaciol., 12, 9–15, https://doi.org/10.3189/S0260305500006893, 1989. 
Bettge, T. W., Weatherly, J. W., Washington, W. M., Pollard, D., Briegleb, B. R., and Strand Jr., W. G.: The NCAR CSM sea ice model, Boulder, CO, National Center for Atmospheric Research, (NCAR Tech. Note NCAR/TN-425+STR), 1996. 
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999. 
Brohan, D. and Kaleschke, L.: A nine year climatology of Arctic sea ice lead orientation and frequency from AMSR-E, Remote Sens.-Basel, 6, 1451–1475, https://doi.org/10.3390/rs6021451, 2014. 
Download
Short summary
A near-surface temperature maximum (NSTM) layer is typically observed under different Arctic basins. Although its development seems to be related to solar heating in leads, its formation mechanism is under debate. This study uses numerical modeling in an idealized framework to demonstrate that the NSTM layer forms under a summer lead exposed to a combination of calm and moderate wind periods. Future warming of this layer could modify acoustic propagation with implications for marine mammals.