Articles | Volume 17, issue 8
Research article
21 Aug 2023
Research article |  | 21 Aug 2023

A model for the Arctic mixed layer circulation under a summertime lead: implications for the near-surface temperature maximum formation

Alberto Alvarez

Related authors

A model for the Artic mixed layer circulation under a melted lead: Implications on the near-surface temperature maximum formation
Alberto Alvarez
The Cryosphere Discuss.,,, 2020
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Sea ice | Subject: Ocean Interactions
Underestimation of oceanic carbon uptake in the Arctic Ocean: ice melt as predictor of the sea ice carbon pump
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680,,, 2023
Short summary
Uncertainty analysis of single- and multiple-size-class frazil ice models
Fabien Souillé, Cédric Goeury, and Rem-Sophia Mouradi
The Cryosphere, 17, 1645–1674,,, 2023
Short summary
Wave–sea-ice interactions in a brittle rheological framework
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457,,, 2021
Short summary
Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up
Joey J. Voermans, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Aleksey Marchenko, Clarence O. Collins III, Mohammed Dabboor, Graig Sutherland, and Alexander V. Babanin
The Cryosphere, 14, 4265–4278,,, 2020
Short summary
High-resolution simulations of interactions between surface ocean dynamics and frazil ice
Agnieszka Herman, Maciej Dojczman, and Kamila Świszcz
The Cryosphere, 14, 3707–3729,,, 2020
Short summary

Cited articles

Alam, A. and Curry, J.: Lead-induced atmospheric circulations, J. Geophys. Res.-Oceans, 100, 4643–4651,, 1995. 
Barry, R. G., Miles, M. W., Cianflone, R. C., Scharfen, G., and Schnell, R. C.: Characteristics of Arctic sea ice from remote sensing data and their relationship to atmospheric processes, Ann. Glaciol., 12, 9–15,, 1989. 
Bettge, T. W., Weatherly, J. W., Washington, W. M., Pollard, D., Briegleb, B. R., and Strand Jr., W. G.: The NCAR CSM sea ice model, Boulder, CO, National Center for Atmospheric Research, (NCAR Tech. Note NCAR/TN-425+STR), 1996. 
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15669–15677,, 1999. 
Brohan, D. and Kaleschke, L.: A nine year climatology of Arctic sea ice lead orientation and frequency from AMSR-E, Remote Sens.-Basel, 6, 1451–1475,, 2014. 
Short summary
A near-surface temperature maximum (NSTM) layer is typically observed under different Arctic basins. Although its development seems to be related to solar heating in leads, its formation mechanism is under debate. This study uses numerical modeling in an idealized framework to demonstrate that the NSTM layer forms under a summer lead exposed to a combination of calm and moderate wind periods. Future warming of this layer could modify acoustic propagation with implications for marine mammals.