Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3177-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3177-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Instituto Pirenaico de Ecología, Consejo Superior de
Investigaciones Científicas (IPE-CSIC), Saragossa, Spain
Eñaut Izagirre
Department of Geography, Prehistory and Archaeology, University of
the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
Luis Mariano del Rio
Department of Applied Physics, Escuela Politécnica Superior de
Cáceres, University of Extremadura, Cáceres, Spain
Esteban Alonso-González
Centre d'Etudes Spatiales de la Biosphère, Université de
Toulouse, CNRS/CNES/IRD/INRA/UPS, Toulouse, France
Francisco Rojas-Heredia
Instituto Pirenaico de Ecología, Consejo Superior de
Investigaciones Científicas (IPE-CSIC), Saragossa, Spain
Enrique Serrano
Department of Geography, GIR PANGEA, University of Valladolid,
Valladolid, Spain
Ana Moreno
Instituto Pirenaico de Ecología, Consejo Superior de
Investigaciones Científicas (IPE-CSIC), Saragossa, Spain
Juan Ignacio López-Moreno
Instituto Pirenaico de Ecología, Consejo Superior de
Investigaciones Científicas (IPE-CSIC), Saragossa, Spain
Jesús Revuelto
Instituto Pirenaico de Ecología, Consejo Superior de
Investigaciones Científicas (IPE-CSIC), Saragossa, Spain
Related authors
Ixeia Vidaller, Toshiyuki Fujioka, Juan Ignacio López-Moreno, Ana Moreno, and the ASTER Team
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-75, https://doi.org/10.5194/cp-2024-75, 2024
Preprint under review for CP
Short summary
Short summary
Since the Pyrenean Last Glacial Maximum (75 ka), the deglaciation of the Ésera glacier (central Pyrenees) was characterized by complex dynamics, with advances and rapid retreats. Cosmogenic dates of moraines along the headwaters of the valley and lacustrine sediments analyses allowed to reconstruct evolutionary history of the Ésera glacier and the associated environmental implications during the last deglaciation and calculate the Equilibrium Line Altitude to determine changes in temperature.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
Clim. Past, 21, 1235–1261, https://doi.org/10.5194/cp-21-1235-2025, https://doi.org/10.5194/cp-21-1235-2025, 2025
Short summary
Short summary
In this paper we present a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe in the last 16 500 years before present.
Esteban Alonso-González, Adrian Harpold, Jessica D. Lundquist, Cara Piske, Laura Sourp, Kristoffer Aalstad, and Simon Gascoin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2347, https://doi.org/10.5194/egusphere-2025-2347, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Simulating the snowpack is challenging, as there are several sources of uncertainty due to e.g. the meteorological forcing. Using data assimilation techniques, it is possible to improve the simulations by fusing models and snow observations. However in forests, observations are difficult to obtain, because they cannot be retrieved through the canopy. Here, we explore the possibility of propagating the information obtained in forest clearings to areas covered by the canopy.
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
The Cryosphere, 19, 1973–1993, https://doi.org/10.5194/tc-19-1973-2025, https://doi.org/10.5194/tc-19-1973-2025, 2025
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (central western Greenland). By > 2050 glacier mass loss may have doubled in rate compared to the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Carlos Sancho, Ánchel Belmonte, Maria Leunda, Marc Luetscher, Christoph Spötl, Juan Ignacio López-Moreno, Belén Oliva-Urcia, Jerónimo López-Martínez, Ana Moreno, and Miguel Bartolomé
EGUsphere, https://doi.org/10.5194/egusphere-2025-8, https://doi.org/10.5194/egusphere-2025-8, 2025
Short summary
Short summary
Ice caves, vital for paleoclimate studies, face rapid ice loss due to global warming. A294 cave, home to the oldest firn deposit (6100 years BP), shows rising air temperatures (~1.07–1.56 °C in 12 years), fewer freezing days, and melting rates (15–192 cm/year). Key factors include warmer winters, increased rainfall, and reduced snowfall. This study highlights the urgency of recovering data from these unique ice archives before they vanish forever.
Helen Flynn, J. Julio Camarero, Alba Sanmiguel-Vallelado, Francisco Rojas Heredia, Pablo Domínguez Aguilar, Jesús Revuelto, and Juan Ignacio López-Moreno
Biogeosciences, 22, 1135–1147, https://doi.org/10.5194/bg-22-1135-2025, https://doi.org/10.5194/bg-22-1135-2025, 2025
Short summary
Short summary
In the Spanish Pyrenees, changing snow seasons and warmer growing seasons could impact tree growth in the montane evergreen forests. We used automatic sensors that measure tree growth to monitor and analyze the interactions between the climate, snow, and tree growth at the study site. We found a transition in the daily growth cycle that is triggered by the presence of snow. Additionally, warmer February and May temperatures enhanced tree growth.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Joan J. Fornós, Hai Cheng, and R. Lawrence Edwards
Clim. Past, 21, 465–487, https://doi.org/10.5194/cp-21-465-2025, https://doi.org/10.5194/cp-21-465-2025, 2025
Short summary
Short summary
We offer a clearer view of the timing of three relevant past glacial terminations. By analyzing the climatic signal recorded in stalagmite and linking it with marine records, we revealed differences in the intensity and duration of the ice melting associated with these three key deglaciations. This study shows that some deglaciations began earlier than previously thought; this improves our understanding of natural climate processes, helping us to contextualize current climate change.
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024, https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 65 % by 2100.
Ixeia Vidaller, Toshiyuki Fujioka, Juan Ignacio López-Moreno, Ana Moreno, and the ASTER Team
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-75, https://doi.org/10.5194/cp-2024-75, 2024
Preprint under review for CP
Short summary
Short summary
Since the Pyrenean Last Glacial Maximum (75 ka), the deglaciation of the Ésera glacier (central Pyrenees) was characterized by complex dynamics, with advances and rapid retreats. Cosmogenic dates of moraines along the headwaters of the valley and lacustrine sediments analyses allowed to reconstruct evolutionary history of the Ésera glacier and the associated environmental implications during the last deglaciation and calculate the Equilibrium Line Altitude to determine changes in temperature.
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024, https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Short summary
High-accuracy precision maps of the surface temperature of snow were acquired with an uncooled thermal-infrared camera during winter 2021–2022 and spring 2023. The accuracy – i.e., mean absolute error – improved from 1.28 K to 0.67 K between the seasons thanks to an improved camera setup and temperature stabilization. The dataset represents a major advance in the validation of satellite measurements and physical snow models over a complex topography.
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404, https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Short summary
In this work, we use the satellite laser altimeter ICESat-2 to retrieve snow depth in areas where snow amounts are still poorly estimated despite the high societal importance. We explore how to update snow models with these observations through algorithms that spatially propagate the information beyond the narrow satellite profiles. The positive results show the potential of this approach for improving snow simulations, both in terms of average snow depth and spatial distribution.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Josep Bonsoms, Juan Ignacio López-Moreno, and Esteban Alonso-González
The Cryosphere, 17, 1307–1326, https://doi.org/10.5194/tc-17-1307-2023, https://doi.org/10.5194/tc-17-1307-2023, 2023
Short summary
Short summary
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During warm and wet seasons, seasonal snow depth is expected to be reduced by −37 %, −34 %, and −27 % per degree Celsius at low-, mid-, and high-elevation areas, respectively. The largest snow reductions are anticipated at low elevations of the eastern Pyrenees. Results anticipate important impacts on the nearby ecological and socioeconomic systems.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Esteban Alonso-González and Víctor Fernández-García
Earth Syst. Sci. Data, 13, 1925–1938, https://doi.org/10.5194/essd-13-1925-2021, https://doi.org/10.5194/essd-13-1925-2021, 2021
Short summary
Short summary
We present the first global burn severity database (MOSEV database), which is based on Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance and burned area products. The database inludes monthly scenes with the dNBR, RdNBR and post-burn NBR spectral indices at 500 m spatial resolution from November 2000 onwards. Moreover, in this work we show that there is a close relationship between the burn severity metrics included in MOSEV and the same ones obtained from Landsat-8.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Cited articles
Arenillas-Parra, M., Cobos-Campos, G., and Navarro-Caravallo, J.: Datos
sobre la nieve y los glaciares en las cordilleras españolas, El programa
ERHIN (1984–2008), Ministerio., Madrid, 236 pp., 2008.
Barrand, N. E., Way, R. G., Bell, T., and Sharp, M. J.: Recent changes in area and thickness of Torngat Mountain glaciers (northern Labrador, Canada), The Cryosphere, 11, 157–168, https://doi.org/10.5194/tc-11-157-2017, 2017.
Bohleber, P., Sold, L., Hardy, D. R., Schwikowski, M., Klenk, P., Fischer, A., Sirguey, P., Cullen, N. J., Potocki, M., Hoffmann, H., and Mayewski, P.: Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field, The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, 2017.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The State and Fate of Himalayan Glaciers, Science, 336,
310–314, https://doi.org/10.1126/science.1215828, 2012.
Braithwaite, R. J. and Hughes, P. D.: Regional geography of glacier mass
balance variability over seven decades 1946–2015, Front. Earth Sci.,
8, 302, https://doi.org/10.3389/feart.2020.00302, 2020.
Braithwaite, R. J. and Raper, S. C. B.: Glaciers and their contribution to
sea level change, Phys. Chem. Earth, Parts A/B/C, 27,
1445–1454, https://doi.org/10.1016/S1474-7065(02)00089-X,
2002.
Brown, L. E. E. E., Hannah, D. M., and Milner, A. M.: Vulnerability of
alpine stream biodiversity to shrinking glaciers and snowpacks, Global
Change Biol., 13, 958–966,
https://doi.org/10.1111/j.1365-2486.2007.01341.x, 2007.
Brown, R. D. and Mote, P. W.: The Response of Northern Hemisphere Snow
Cover to a Changing Climate, J. Climate, 22, 2124–2145,
https://doi.org/10.1175/2008JCLI2665.1, 2009.
Buisan, S. T., Saz, M. A., and López-Moreno, J. I.: Spatial and temporal
variability of winter snow and precipitation days in the western and central
Spanish Pyrenees, Int. J. Climatol., 35, 259–274,
https://doi.org/10.1002/joc.3978, 2015.
Campos, N., Alcalá-Reygosa, J., Watson, S. C., Kougkoulos, I.,
Quesada-Román, A., and Grima, N.: Modeling the retreat of the Aneto
Glacier (Spanish Pyrenees) since the Little Ice Age, and its accelerated
shrinkage over recent decades, The Holocene, 31, 1315–1326,
https://doi.org/10.1177/09596836211011678, 2021.
Carrascosa-López, C., Carvache-Franco, M., and Carvache-Franco,
W.: Perceived Value and Its Predictive Relationship with Satisfaction and
Loyalty in Ecotourism: A Study in the Posets-Maladeta Natural Park in Spain,
Sustainability, 13, 14, https://doi.org/10.3390/su13147860, 2021
Carturan, L., Baroni, C., Brunetti, M., Carton, A., Dalla Fontana, G., Salvatore, M. C., Zanoner, T., and Zuecco, G.: Analysis of the mass balance time series of glaciers in the Italian Alps, The Cryosphere, 10, 695–712, https://doi.org/10.5194/tc-10-695-2016, 2016.
Carvache-Franco, M., Carrascosa-López, C., and Carvache-Franco,
W.: Market Segmentation by Motivations in Ecotourism: Application in the
Posets-Maladeta Natural Park, Spain, Sustainability, 14, 9,
https://doi.org/10.3390/su14094892, 2022.
Cuadrat, J. M., Valero-Garcés, B., Moreno, A., Verfaillie, D., Galop, D., Rodríguez, E., Tejedor, E., Lostres, F. B., Soubeyroux, J.-M., Cunillera, J., García-Ruiz, J. M., López-Moreno, J. I., Trapero, L., Pons, M., Prohom, M., Saz, M. A., González-Sampériz, P., Ramos, P., Amblar, P., Copons, R., Serrano-Notivoli, R., Gascoin, S., and Luna, Y.: Clima y variabilidad climática en los Pirineos, in: El cambio climático en los Pirineos: impactos, vulnerabilidades y adaptación, edited by: Terrádez, J., and Arauzo, I., OPCC, 6–17, ISBN 9788409062683, 2018.
Davaze, L., Rabatel, A., Dufour, A., Hugonnet, R., and Arnaud, Y.: Region-Wide Annual Glacier Surface Mass Balance for the European Alps From 2000 to 2016, Front. Earth Sci., 8, 149, https://doi.org/10.3389/feart.2020.00149, 2020.
DeBeer, C. M. and Sharp, M. J.: Topographic influences on recent changes of
very small glaciers in the Monashee Mountains, British Columbia, Canada,
J. Glaciol., 55, 691–700,
https://doi.org/10.3189/002214309789470851, 2009.
del Río, M., Rico, I., Serrano, E., and Tejado, J. J.: Applying GPR and
laser scanner techniques to monitor the Ossoue Glacier (Pyrenees), J.
Environ. Eng. Geophys., 19, 239–248,
https://doi.org/10.2113/JEEG19.4.239, 2014.
de Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., de
Smedt, P., Chu, W., Antrop, M., de Maeyer, P., Finke, P., van Meirvenne, M.,
Verniers, J., and Crombé, P.: Application of the topographic position
index to heterogeneous landscapes, Geomorphology, 186, 39–49,
https://doi.org/10.1016/j.geomorph.2012.12.015, 2013.
Drenkhan, F., Buytaert, W., Mackay, J. D., Barrand, N. E., Hannah, D. M.,
and Huggel, C.: Looking beyond glaciers to understand mountain water
security, Nat. Sustain., 6, 130–138, https://doi.org/10.1038/s41893-022-00996-4,
2023.
Fischer, A.: Calculation of glacier volume from sparse ice-thickness data, applied to Schaufelferner, Austria, J. Glaciol., 55, 453–460, https://doi.org/10.3189/002214309788816740, 2009.
Fountain, A. G. and Tangborn, W. V.: The Effect of Glaciers on Streamflow
Variations, Water Resour. Res., 21, 579–586,
https://doi.org/10.1029/WR021i004p00579, 1985.
García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M.,
Lasanta–Martínez, T., and Beguería, S.: Mediterranean water
resources in a global change scenario, Earth-Sci. Rev., 105,
121–139, https://doi.org/10.1016/j.earscirev.2011.01.006, 2011.
García-Ruiz, J. M., Palacios, D., Andrés, N., and López-Moreno,
J. I.: Neoglaciation in the Spanish Pyrenees: a multiproxy challenge,
Mediterranean Geoscience Reviews, 2, 21–36,
https://doi.org/10.1007/s42990-020-00022-9, 2020.
Gascoin, S. and René, P.: Recent evolution of the Vignemale glaciers
(2013–2017), Pirineos, 173, e037, https://doi.org/10.3989/pirineos.2018.173004,
2018.
Girardeau-Montaut, D.: CloudCompare, Retrieved from CloudCompare, https://www.danielgm.net/cc (last access: October 2022), 2016.
Grove, J. M.: Little ice ages: Ancient and modern, Routledge, London,
1–718 pp., https://doi.org/10.4324/9780203505205, 2004.
Grunewald, K. and Scheithauer, J.: Europe's southernmost glaciers: response
and adaptation to climate change, J. Glaciol., 56, 129–142,
https://doi.org/10.3189/002214310791190947, 2010.
Huggel, C., Salzmann, N., Allen, S., Caplan-Auerbach, J., Fischer, L., Haeberli, W., Larsen, C., Schneider, D., and Wessels, R.: Recent and future warm extreme events and high-mountain
slope stability, Philos. T. Roy. Soc. A, 368, 2435–2459,
https://doi.org/10.1098/rsta.2010.0078, 2010
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013.
Huss, M. and Fischer, M.: Sensitivity of very small glaciers in the Swiss
Alps to future climate change, Front. Earth Sci., 4, 34,
https://doi.org/10.3389/feart.2016.00034, 2016.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., Mark, B. G., Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without permanent snow and ice, Earth's Future,
5, 418–435, https://doi.org/10.1002/2016EF000514, 2017.
James, M.: Precision maps and 3-D uncertainty-based topographic change
detection with structure-from-motion photogrammetry, Earth Surf. Procss.
Landf., 42, 1769–1788, https://doi.org/10.1002/esp.4125, 2017.
Jiménez-Vaquero, C.: Cartografiado de la morfología subglaciar de La Maladeta y Aneto mediante georradar, PhD thesis, Universidad de València, Spain, 306 pp., 2016.
Jomelli, V., Chapron, E., Favier, V., Rinterknecht, V., Braucher, R.,
Tournier, N., Gascoin, S., Marti, R., Galop, D., Binet, S.,
Deschamps-Berger, C., Tissoux, H., Aumaitre, G., Bourlès, D. L., and
Keddadouche, K.: Glacier fluctuations during the Late Glacial and Holocene
on the Ariège valley, northern slope of the Pyrenees and reconstructed
climatic conditions, Mediterr. Geosci. Rev., 2, 37–51,
https://doi.org/10.1007/s42990-020-00018-5, 2020.
Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel, J. S.: Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?, The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021.
Kellerer-Pirklbauer, A., Lieb, G. K., Avian, M., and Carrivick, J.: Climate
change and rock fall events in high mountain areas: Numerous and extensive
rock falls in 2007 at Mittlerer Burgstall, Central Austria, Geografiska
Annaler: Series A, 94, 59–78,
https://doi.org/10.1111/j.1468-0459.2011.00449.x, 2012
Lampre Vitaller, F.: Monumentos Naturales de los Glaciares Pirenaicos,
Diputación General de Aragón, 36 pp., ISBN 9788477537571, 2003.
Llena, M., Cavalli, M., Vericat, D., and Crema, S.: Assessing landscape
changes associated to anthropic disturbances by means of the application of
Structure from Motion photogrammetry using historical aerial imagery,
Rendiconti Online Societa Geologica Italiana, 46, 74–81,
https://doi.org/10.3301/ROL.2018.55, 2018.
Llena, M., Vericat, D., Martínez-Casasnovas, J. A., and Smith, M. W.:
Geomorphic adjustments to multi-scale disturbances in a mountain river: A
century of observations, Catena (Amst), 192, 104584,
https://doi.org/10.1016/j.catena.2020.104584, 2020.
López-Moreno, J. I.: Recent variations of snowpack depth in the central
Spanish Pyrenees, Arct. Antarct. Alp. Res., 37, 253–260,
https://doi.org/10.1657/1523-0430(2005)037[0253:RVOSDI]2.0.CO;2, 2005.
López-Moreno, J. I., Nogués-Bravo, D., Chueca-Cía, J., and
Julían-Andrés, A.: Change of topographic control on the extent of
cirque glaciers since the Little Ice Age, Geophys. Res. Lett., 33, 1–5,
https://doi.org/10.1029/2006GL028204, 2006.
López-Moreno, J. I., Alonso-González, E., Monserrat, O., del
Río, L. M., Otero, J., Lapazaran, J., Luzi, G., Dematteis, N., Serreta,
A., Rico, I., Serrano-Cañadas, E., Bartolomé, M., Moreno, A.,
Buisan, S., and Revuelto, J.: Ground-based remote-sensing techniques for
diagnosis of the current state and recent evolution of the Monte Perdido
Glacier, Spanish Pyrenees, J. Glaciol., 65, 85–100,
https://doi.org/10.1017/jog.2018.96, 2019.
López-Moreno, J. I., García-Ruiz, J. M., Vicente-Serrano, S. M., Alonso-González, E., Revuelto-Benedí, J., Rico, I., Izagirre, E., and Beguería-Portugués, S.: Critical
discussion of: “A farewell to glaciers: Ecosystem services loss in the
Spanish Pyrenees”, J. Environ. Manage., 275, 111247,
https://doi.org/10.1016/j.jenvman.2020.111247, 2020.
Marcer, M., Stentoft, P. A., Bjerre, E., Cimoli, E., Bjørk, A., Stenseng,
L., and MacHguth, H.: Three decades of volume change of a small Greenlandic
glacier using Ground Penetrating Radar, Structure from Motion, and Aerial
Photogrammetry, Arctic, Antarct. Alp. Res., 49, 411–425,
https://doi.org/10.1657/AAAR0016-049, 2017.
Marti, R., Gascoin, S., Houet, T., Ribière, O., Laffly, D., Condom, T., Monnier, S., Schmutz, M., Camerlynck, C., Tihay, J. P., Soubeyroux, J. M., and René, P.: Evolution of Ossoue Glacier (French Pyrenees) since the end of the Little Ice Age, The Cryosphere, 9, 1773–1795, https://doi.org/10.5194/tc-9-1773-2015, 2015.
Meier, M. F., Dyurgerov, M. B., Rick, U. K., O’Neel, S., Pfeffer, W. T., Anderson, R. S., and Glazovsky, A. F.: Glaciers Dominate Eustatic Sea-Level Rise in the
21st Century, Science, 317, 1064–1067,
https://doi.org/10.1126/science.1143906, 2007.
Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E., Füreder, L., Cauvy-Fraunié, S., Gíslason, G. M., Jacobsen, D., Hannah, D. M., Hodson, A. J., Hood, E., Lencioni, V., Ólafsson, J. S., Robinson, C. T., Tranter, M., and Brown, L. E.: Glacier shrinkage driving global changes in
downstream systems, P. Natl. Acad. Sci. USA,
114, 9770–9778, https://doi.org/10.1073/pnas.1619807114, 2017.
Mölg, N. and Bolch, T.: Structure-from-Motion using historical aerial
images to analyse changes in glacier surface elevation, Remote Sens. (Basel),
9, 10, https://doi.org/10.3390/rs9101021, 2017.
Oliva, M., Ruiz-Fernández, J., Barriendos, M., Benito, G., Cuadrat, J.
M., Domínguez-Castro, F., García-Ruiz, J. M., Giralt, S.,
Gómez-Ortiz, A., Hernández, A., López-Costas, O.,
López-Moreno, J. I., López-Sáez, J. A., Martínez-Cortizas,
A., Moreno, A., Prohom, M., Saz, M. A., Serrano, E., Tejedor, E., Trigo, R.,
Valero-Garcés, B., and Vicente-Serrano, S. M.: The Little Ice Age in
Iberian mountains, Earth Sci. Rev., 177, 175–208,
https://doi.org/10.1016/j.earscirev.2017.11.010, 2018.
Otero-García, J.: Generación automática de malla de elementos finitos en modelos evolutivos de dinámica de glaciares, PhD thesis, Universidad Politécnica de Madrid, Spain, 149 pp., 2008.
Otto, J.-C.: Proglacial lakes in high mountain environments, Geomorphology
of Proglacial Systems, Springer, 231–247,
https://doi.org/10.1007/978-3-319-94184-4_14, 2019.
Palacios, D., Hughes, P., García-Ruiz, J., and de Andrés, N.: European
Glacial Landscapes. The last deglaciation, ELSEIVER, ISBN 9780323918992,
2022.
Pastor Argüello, F.: Determinación del balance anual de masa y
movimiento del hielo en el glaciar de la Maladeta. Año hidrológico
2012–2013, Programa ERHIN, 68, 2013.
Pepin, N. and Mountain Research Initiative EDW Working Group: Elevation-dependent warming in mountain regions of the
world, Nat. Clim. Change, 5, 424–430,
https://doi.org/10.1038/nclimate2563, 2015.
Procházková, B., Engel, Z., and Tomíček, J.: Geometric
changes of three glaciers in Dickson Land, central Spitsbergen, during the
period 1990–2015, Polar Sci., 20, 129–135,
https://doi.org/10.1016/j.polar.2019.05.004, 2019.
Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R., Vuille, M., Sicart, J.-E., Huggel, C., Scheel, M., Lejeune, Y., Arnaud, Y., Collet, M., Condom, T., Consoli, G., Favier, V., Jomelli, V., Galarraga, R., Ginot, P., Maisincho, L., Mendoza, J., Ménégoz, M., Ramirez, E., Ribstein, P., Suarez, W., Villacis, M., and Wagnon, P.: Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change, The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, 2013.
Rajendra, Y. D., Mehrotra, S. C., Kale, K. V., Manza, R. R., Dhumal, R. K.,
Nagne, A. D., and Vibhute, A. D.: Evaluation of partially overlapping 3D
point cloud's registration by using ICP variant and cloudcompare, Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. – ISPRS Arch., XL–8, 891–897,
https://doi.org/10.5194/isprsarchives-XL-8-891-2014, 2014.
Revuelto, J., Alonso-González, E., Vidaller-Gayán, I., Lacroix, E.,
Izagirre, E., Rodríguez-López, G., López-Moreno, J. I.:
Intercomparison of UAV platforms for mapping snow depth distribution in
complex apline terrain, Cold Reg. Sci. Technol., 190, 103344,
https://doi.org/10.1016/j.coldregions.2021.103344, 2021.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6, Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center [data set], https://doi.org/10.7265/4m1f-gd79, 2017.
Rico, I., Serrano, E., Sanjosé, J. J., and del Rioi, M.: Responses to
Climatic Chages sinde the Little Ice Age in La Paul Glacier (Central
Pyrenees), KREI, Círculo de Estratigrafía Analítica, Gasteiz,
105–116, 2015.
Rico, I., Izagirre, E., Serrano, E., and López-Moreno, J. I.: Superficie
glaciar actual en los Pirineos: Una actualización para 2016, Pirineos,
172, e029, https://doi.org/10.3989/Pirineos.2017.172004, 2017.
Rico, I., Magnin, F., López Moreno, J. I., Serrano, E., Alonso-González, E., Revuelto, J., Hughes-Allen, L., and Gómez-Lende, M.: First evidence of rock wall
permafrost in the Pyrenees (Vignemale peak, 3,298 m a.s.l., 42∘46′16′′ N/0∘08′33′′ W), Permafrost Periglac.
Process., 32, 673–680,
https://doi.org/10.1002/ppp.2130, 2021.
Riihimaki, C. A., MacGregor, K. R., Anderson, R. S., Anderson, S. P., and
Loso, M. G.: Sediment evacuation and glacial erosion rates at a small alpine
glacier, J. Geophys. Res.-Earth Surf., 110, F03003,
https://doi.org/10.1029/2004JF000189, 2005.
Shaw, T. E., Ulloa, G., Farías-Barahona, D., Fernandez, R., Lattus, J.
M., and McPhee, J.: Glacier albedo reduction and drought effects in the
extratropical Andes, 1986–2020, J. Glaciol., 67, 158–169,
https://doi.org/10.1017/jog.2020.102, 2021.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman,
K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Chang., 10,
939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Snavely, N., Seitz, S. M., and Szeliski, R.: Photo tourism: exploring photo
collections in 3D, ACM Trans. Graph., 25, 835–846,
https://doi.org/10.1145/1141911.1141964, 2006.
Snook, D. L. and Milner, A. M.: The influence of glacial runoff on stream
macroinvertebrate communities in the Taillon catchment, French
Pyrénées, Freshwater Biol., 46, 1609–1623,
https://doi.org/10.1046/j.1365-2427.2001.00848.x, 2001.
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D.
S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi,
K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.: Glacier
fluctuations during the past 2000 years, Quaternary Sci. Rev., 149,
61–90, https://doi.org/10.1016/j.quascirev.2016.04.008, 2016.
Vidaller, I., Revuelto, J., Izagirre, E., Rojas-Heredia, F.,
Alonso-González, E., Gascoin, S., René, P., Berthier, E., Rico, I.,
Moreno, A., Serrano, E., Serreta, A., and López-Moreno, J. I.: Toward an
ice-free mountain range: Demise of Pyrenean glaciers during 2011–2020,
Geophys. Res. Lett., 48, e2021GL094339, https://doi.org/10.1029/2021GL094339, 2021.
Vidaller, I., Izagirre, E., del Río, L. M., Alonso-González, E., Rojas-Heredia, F., Serrano, E., Moreno, A., López-Moreno, J. I., and Revuelto, J.: Reconstructed Aneto glacier surfaces from historic aerial image photogrammetry (1981) and remote sensing techniques (2020, 2021, 2022), Zenodo [data set], https://doi.org/10.5281/zenodo.7472185, 2022.
Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., and
Bradley, R. S.: Climate change and tropical Andean glaciers: Past, present
and future. Earth-Sci. Rev., 89, 79–96,
https://doi.org/10.1016/j.earscirev.2008.04.002, 2008.
Weiss, A.: Topographic position and landforms analysis, in Poster presentation, ESRI user conference, San Diego, CA, vol. 200, 2001.
Westoby, M. J., Rounce, D. R., Shaw, T. E., Fyffe, C. L., Moore, P. L.,
Stewart, R. L., and Brock, B. W.: Geomorphological evolution of a
debris-covered glacier surface, Earth Surf. Process. Landf., 45, 3431–3448, https://doi.org/10.1002/esp.4973, 2020.
Yao, X., Liu, S., Han, L., Sun, M., and Zhao, L.: Definition and
classification system of glacial lake for inventory and hazards study,
J. Geogr. Sci., 28, 193–205,
https://doi.org/10.1007/s11442-018-1467-z, 2018.
Yue, X., Li, Z., Zhao, J., Fan, J., Takeuchi, N., and Wang, L.: Variation in
albedo and its relationship with surface dust at Urumqi Glacier No. 1 in
Tien Shan, China, Front. Earth Sci., 8, 110,
https://doi.org/10.3389/feart.2020.00110, 2020.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M.,
Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B.,
Bajracharya, S., Baroni, C., Braun, L. N., Càceres, B. E., Casassa, G.,
Cobos, G., Dàvila, L. R., Delgado Granados, H., Demuth, M. N., Espizua,
L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O.,
Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V.,
Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurdsson,
O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically unprecedented
global glacier decline in the early 21st century, J. Glaciol., 61,
745–762, https://doi.org/10.3189/2015JoG15J017, 2015.
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice...