Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2455-2023
https://doi.org/10.5194/tc-17-2455-2023
Research article
 | 
22 Jun 2023
Research article |  | 22 Jun 2023

Hydraulic suppression of basal glacier melt in sill fjords

Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne

Related authors

Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023,https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021,https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Mechanisms of decadal changes in sea surface height and heat content in the eastern Nordic Seas
Sara Broomé, Léon Chafik, and Johan Nilsson
Ocean Sci., 16, 715–728, https://doi.org/10.5194/os-16-715-2020,https://doi.org/10.5194/os-16-715-2020, 2020
Short summary
Variable C∕P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020,https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Acoustic mapping of mixed layer depth
Christian Stranne, Larry Mayer, Martin Jakobsson, Elizabeth Weidner, Kevin Jerram, Thomas C. Weber, Leif G. Anderson, Johan Nilsson, Göran Björk, and Katarina Gårdfeldt
Ocean Sci., 14, 503–514, https://doi.org/10.5194/os-14-503-2018,https://doi.org/10.5194/os-14-503-2018, 2018
Short summary

Related subject area

Discipline: Ice sheets | Subject: Arctic (e.g. Greenland)
Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024,https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Spatially heterogeneous effect of climate warming on the Arctic land ice
Damien Maure, Christoph Kittel, Clara Lambin, Alison Delhasse, and Xavier Fettweis
The Cryosphere, 17, 4645–4659, https://doi.org/10.5194/tc-17-4645-2023,https://doi.org/10.5194/tc-17-4645-2023, 2023
Short summary
Uncertainties in forecast surface mass balance outweigh uncertainties in basal sliding descriptions for 21st Century mass loss from three major Greenland outlet glaciers
J. Rachel Carr, Emily A. Hill, and G. Hilmar Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1759,https://doi.org/10.5194/egusphere-2023-1759, 2023
Short summary
Improving modelled albedo over the Greenland ice sheet through parameter optimisation and MODIS snow albedo retrievals
Nina Raoult, Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, and Vladislav Bastrikov
The Cryosphere, 17, 2705–2724, https://doi.org/10.5194/tc-17-2705-2023,https://doi.org/10.5194/tc-17-2705-2023, 2023
Short summary
Direct measurement of warm Atlantic Intermediate Water close to the grounding line of Nioghalvfjerdsfjorden (79° N) Glacier, northeast Greenland
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023,https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary

Cited articles

Armi, L.: The hydraulics of two flowing layers with different densities, J. Fluid Mech., 163, 27–58, https://doi.org/10.1017/S0022112086002197, 1986. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Science Advances, 5, eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a, b
Bao, W. and Moffat, C.: Impact of shallow sills on heat transport and stratification regimes in proglacial fjords, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2023-32, in review, 2023. a, b, c
Cai, C., Rignot, E., Menemenlis, D., and Nakayama, Y.: Observations and modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland, Geophys. Res. Lett., 44, 8396–8403, https://doi.org/10.1002/2017GL073711, 2017. a, b, c
Calder, B., Eriksson, B., Jerram, K., Weidner, E., Holmes, F., Muchowski, J., Prakash, A., Handl, T., Ståhl, E., Mayer, L., and Jakobsson, M.: High-resolution bathymetry from the Ryder 2019 expedition to Northwest Greenland. Dataset version 1, Bolin Centre Database [data set], https://doi.org/10.17043/oden-ryder-2019-bathymetry-1, 2020. a
Download
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.