Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2455-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2455-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydraulic suppression of basal glacier melt in sill fjords
Department of Meteorology, Stockholm University, 10691 Stockholm, Sweden
Bolin Center for Climate Research, Stockholm University, 10691 Stockholm, Sweden
Eef van Dongen
Department of Meteorology, Stockholm University, 10691 Stockholm, Sweden
Bolin Center for Climate Research, Stockholm University, 10691 Stockholm, Sweden
Martin Jakobsson
Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden
Bolin Center for Climate Research, Stockholm University, 10691 Stockholm, Sweden
Matt O'Regan
Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden
Bolin Center for Climate Research, Stockholm University, 10691 Stockholm, Sweden
Christian Stranne
Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden
Bolin Center for Climate Research, Stockholm University, 10691 Stockholm, Sweden
Related authors
Felicity A. Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 2695–2714, https://doi.org/10.5194/tc-19-2695-2025, https://doi.org/10.5194/tc-19-2695-2025, 2025
Short summary
Short summary
Northern Greenland contains some of the ice sheet's last remaining glaciers with floating ice tongues. One of these is Ryder Glacier, which has been relatively stable in recent decades, in contrast to nearby glaciers. Here, we use a computer model to simulate Ryder Glacier until 2300 under both a low- and a high-emissions scenario. Very high levels of surface melt under a high-emissions future lead to a sea level rise contribution that is an order of magnitude higher than under a low-emissions future.
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023, https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Short summary
Understanding ice–ocean interactions under floating ice tongues in Greenland and Antarctica is a major challenge in climate modelling and a source of uncertainty in future sea level projections. We use a high-resolution ocean model to investigate basal melting and melt-driven circulation under the floating tongue of Ryder Glacier, northwestern Greenland. We study the response to oceanic and atmospheric warming. Our results are universal and relevant for the development of climate models.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Felicity A. Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 2695–2714, https://doi.org/10.5194/tc-19-2695-2025, https://doi.org/10.5194/tc-19-2695-2025, 2025
Short summary
Short summary
Northern Greenland contains some of the ice sheet's last remaining glaciers with floating ice tongues. One of these is Ryder Glacier, which has been relatively stable in recent decades, in contrast to nearby glaciers. Here, we use a computer model to simulate Ryder Glacier until 2300 under both a low- and a high-emissions scenario. Very high levels of surface melt under a high-emissions future lead to a sea level rise contribution that is an order of magnitude higher than under a low-emissions future.
Christian Asker, Eef van Dongen, and Olivier Tasse
Earth Syst. Sci. Data, 17, 3283–3292, https://doi.org/10.5194/essd-17-3283-2025, https://doi.org/10.5194/essd-17-3283-2025, 2025
Short summary
Short summary
Air pollution adversely affects health, ecosystems, and infrastructure. In this work, we have developed a methodology and created a dataset for describing air pollution sources for the heating of individual houses for the Western Balkan region. The dataset has high spatial resolution and can help explain the air pollution situation in the region.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
Biogeosciences, 22, 2261–2286, https://doi.org/10.5194/bg-22-2261-2025, https://doi.org/10.5194/bg-22-2261-2025, 2025
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The data set will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the “Atlantification” of the Arctic Ocean.
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653, https://doi.org/10.5194/egusphere-2025-653, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12,000 years we find that both a warming atmosphere and ocean play a key role in the evolution of the Glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean are required to predict future changes and reliable sea level rise estimates.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023, https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Short summary
Understanding ice–ocean interactions under floating ice tongues in Greenland and Antarctica is a major challenge in climate modelling and a source of uncertainty in future sea level projections. We use a high-resolution ocean model to investigate basal melting and melt-driven circulation under the floating tongue of Ryder Glacier, northwestern Greenland. We study the response to oceanic and atmospheric warming. Our results are universal and relevant for the development of climate models.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Felicity A. Holmes, Eef van Dongen, Riko Noormets, Michał Pętlicki, and Nina Kirchner
The Cryosphere, 17, 1853–1872, https://doi.org/10.5194/tc-17-1853-2023, https://doi.org/10.5194/tc-17-1853-2023, 2023
Short summary
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Raisa Alatarvas, Matt O'Regan, and Kari Strand
Clim. Past, 18, 1867–1881, https://doi.org/10.5194/cp-18-1867-2022, https://doi.org/10.5194/cp-18-1867-2022, 2022
Short summary
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Colin Ware, Larry Mayer, Paul Johnson, Martin Jakobsson, and Vicki Ferrini
Geosci. Instrum. Method. Data Syst., 9, 375–384, https://doi.org/10.5194/gi-9-375-2020, https://doi.org/10.5194/gi-9-375-2020, 2020
Short summary
Short summary
Geographic coordinates (latitude and longitude) are widely used in geospatial applications, and terrains are often defined by regular grids in geographic coordinates. However, because of convergence of lines of longitude near the poles there is oversampling in the latitude (zonal) direction. Also, there is no standard way of defining a hierarchy of grids to consistently deal with data having different spatial resolutions. The proposed global geographic grid system solves both problems.
Cited articles
Armi, L.: The hydraulics of two flowing layers with different densities,
J. Fluid Mech., 163, 27–58, https://doi.org/10.1017/S0022112086002197,
1986. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R.,
Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice
Sheet to sea level over the next millennium, Science Advances, 5, eaav9396,
https://doi.org/10.1126/sciadv.aav9396, 2019. a, b
Bao, W. and Moffat, C.: Impact of shallow sills on heat transport and stratification regimes in proglacial fjords, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2023-32, in review, 2023. a, b, c
Cai, C., Rignot, E., Menemenlis, D., and Nakayama, Y.: Observations and
modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in
northwestern Greenland, Geophys. Res. Lett., 44, 8396–8403,
https://doi.org/10.1002/2017GL073711, 2017. a, b, c
Calder, B., Eriksson, B., Jerram, K., Weidner, E., Holmes, F., Muchowski, J., Prakash, A., Handl, T., Ståhl, E., Mayer, L., and Jakobsson, M.: High-resolution bathymetry from the Ryder 2019 expedition to Northwest Greenland. Dataset version 1, Bolin Centre Database [data set], https://doi.org/10.17043/oden-ryder-2019-bathymetry-1, 2020. a
De Andrés, E., Slater, D. A., Straneo, F., Otero, J., Das, S., and Navarro, F.: Surface emergence of glacial plumes determined by fjord stratification, The Cryosphere, 14, 1951–1969, https://doi.org/10.5194/tc-14-1951-2020, 2020. a
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F., and Mathiot, P.: Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) , Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, 2019. a, b, c
Gade, H.: Melting of ice in sea water: a primitive model with application to
the Antarctic Shelf Ice and icebergs, J. Phys. Oceanogr., 9, 189–198,
https://doi.org/10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2, 1979. a, b
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013. a
Hager, A. O., Sutherland, D. A., Amundson, J. M., Jackson, R. H., Kienholz, C.,
Motyka, R. J., and Nash, J. D.: Subglacial Discharge Reflux and Buoyancy
Forcing Drive Seasonality in a Silled Glacial Fjord, J. Geophys.
Res.-Oceans, 127, e2021JC018355, https://doi.org/10.1029/2021JC018355, 2022. a, b
Hattermann, T., Smedsrud, L. H., Nøst, O. A., Lilly, J. M., and
Galton-Fenzi, B.: Eddy-resolving simulations of the Fimbul Ice Shelf cavity
circulation: Basal melting and exchange with open ocean, Ocean Model., 82,
28–44, 2014. a
Hill, E. A., Carr, J. R., Stokes, C. R., and Gudmundsson, G. H.: Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015, The Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, 2018. a, b, c, d
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice–Ocean Interactions
at the Base of an Ice Shelf, J. Phys. Oceanogr., 29, 1787–1800,
https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999. a, b
Jackson, R. H. and Straneo, F.: Heat, Salt, and Freshwater Budgets for a
Glacial Fjord in Greenland, J. Phys. Oceanogr., 46, 2735–2768, https://doi.org/10.1175/JPO-D-15-0134.1, 2016. a, b, c
Jackson, R. H., Lentz, S. J., and Straneo, F.: The Dynamics of Shelf Forcing in
Greenlandic Fjords, J. Phys. Oceanogr., 48, 2799–2827,
https://doi.org/10.1175/JPO-D-18-0057.1, 2018. a
Jakobsson, M., Mayer, L. A., Nilsson, J., Stranne, C., Calder, B., O'Regan, M.,
Farrell, J. W., Cronin, T. M., Brüchert, V., Chawarski, J., Eriksson,
B., Fredriksson, J., Gemery, L., Glueder, A., Holmes, F. A., Jerram, K.,
Kirchner, N., Mix, A., Muchowski, J., Prakash, A., Reilly, B., Thornton, B.,
Ulfsbo, A., Weidner, E., Åkesson, H., Handl, T., Ståhl, E., Boze,
L.-G., Reed, S., West, G., and Padman, J.: Ryder Glacier in northwest
Greenland is shielded from warm Atlantic water by a bathymetric sill,
Communications Earth & Environment, 1, 45, https://doi.org/10.1038/s43247-020-00043-0,
2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r
Jenkins, A.: A one-dimensional model of ice shelf-ocean interaction, J.
Geophys. Res.-Oceans, 96, 20671–20677, https://doi.org/10.1029/91JC01842,
1991. a, b
Jenkins, A.: The Impact of Melting Ice on Ocean Waters, J. Phys.
Oceanogr., 29, 2370–2381,
https://doi.org/10.1175/1520-0485(1999)029<2370:TIOMIO>2.0.CO;2, 1999. a
Johannessen, O. M., Babiker, M., and Miles, M. W.: Unprecedented retreat in a
50-year observational record for Petermann Glacier, North Greenland,
Atmospheric and Oceanic Science Letters, 6, 259–265,
https://doi.org/10.3878/j.issn.1674-2834.13.0021, 2013. a, b
Johnson, H. L., Münchow, A., Falkner, K. K., and Melling, H.: Ocean
circulation and properties in Petermann Fjord, Greenland, J. Geophys. Res.-Oceans, 116, C01003, https://doi.org/10.1029/2010JC006519, 2011. a, b, c
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori, I., Wang,
I., Zhang, H., Seroussi, H., Moller, D., Noël, B. P. Y., van den Broeke, M. R.,Dinardo,
S., and Willis, J.: Interruption of two decades of
Jakobshavn Isbrae acceleration and thinning as regional ocean cools,
Nat. Geosci., 12, 277–283, 2019. a
Lazeroms, W. M. J., Jenkins, A., Gudmundsson, G. H., and van de Wal, R. S. W.: Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes, The Cryosphere, 12, 49–70, https://doi.org/10.5194/tc-12-49-2018, 2018. a, b
Lazeroms, W. M. J., Jenkins, A., Rienstra, S. W., and van de Wal, R. S. W.: An
Analytical Derivation of Ice-Shelf Basal Melt Based on the Dynamics of
Meltwater Plumes, J. Phys. Oceanogr., 49, 917–939,
https://doi.org/10.1175/JPO-D-18-0131.1, 2019. a
Lewis, E. L. and Perkin, R. G.: Ice pumps and their rates, J. Geophys. Res.,
91, 11756–11762, https://doi.org/10.1029/JC091iC10p11756, 1986. a
Lindeman, M. R., Straneo, F., Wilson, N. J., Toole, J. M., Krishfield, R. A.,
Beaird, N. L., Kanzow, T., and Schaffer, J.: Ocean Circulation and
Variability Beneath Nioghalvfjerdsbræ (79 North Glacier) Ice Tongue,
J. Geophys. Res.-Oceans, 125, e2020JC016091,
https://doi.org/10.1029/2020JC016091, 2020. a
Little, C. M., Gnanadesikan, A., and Hallberg, R.: Large-Scale Oceanographic
Constraints on the Distribution of Melting and Freezing under Ice Shelves, J.
Phys. Oceanogr., 38, 2242–2255, https://doi.org/10.1175/2008JPO3928.1, 2008. a
Little, C. M., Gnanadesikan, A., and Oppenheimer, M.: How ice shelf morphology
controls basal melting, J. Geophys. Res., 114, C12007, https://doi.org/10.1029/2008JC005197,
2009. a, b, c
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L.,
Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K.,
Howat, I., Hubbard, A., Jakobsson, A., Jordan, T. M., Kjeldsen, K. K., Millan, R.,
Mayer, L, Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S.,
Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R.,
Weinrebe, W., Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete Bed
Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo
Sounding Combined With Mass Conservation, Geophys. Res. Lett., 44,
11051–11061, https://doi.org/10.1002/2017GL074954, 2017. a
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P.
Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116,
2019. a, b
Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards, T. L., Pattyn,
F., and van de Wal, R. S. W.: Future sea-level rise from
Greenland's main outlet glaciers in a warming climate, Nature, 497,
235–238, https://doi.org/10.1038/nature12068, 2013. a
Nycander, J., Hogg, A. M., and Frankcombe, L. M.: Open boundary conditions for
nonlinear channel flow, Ocean Model., 24, 108–121,
https://doi.org/10.1016/j.ocemod.2008.06.003, 2008. a
O'Regan, M., Cronin, T. M., Reilly, B., Alstrup, A. K. O., Gemery, L., Golub, A., Mayer, L. A., Morlighem, M., Moros, M., Munk, O. L., Nilsson, J., Pearce, C., Detlef, H., Stranne, C., Vermassen, F., West, G., and Jakobsson, M.: The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland, The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, 2021. a
Polyakov, I. V., Alekseev, G. V., Timokhov, L. A., Bhatt, U. S., Colony, R. L.,
Simmons, H. L., Walsh, D., Walsh, J. E., and Zakharov, V. F.: Variability of
the Intermediate Atlantic Water of the Arctic Ocean over the Last 100
Years, J. Climate, 17, 4485–4497, https://doi.org/10.1175/JCLI-3224.1, 2004. a
Price, J. F. and O'Neil Baringer, M.: Outflows and deep water production by
marginal seas, Prog. Oceanogr., 33, 161–200,
https://doi.org/10.1016/0079-6611(94)90027-2, 1994. a, b, c
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res., 112, F03S28, https://doi.org/10.1029/2006JF000664, f03S28, 2007. a
Schoof, C., Davis, A. D., and Popa, T. V.: Boundary layer models for calving marine outlet glaciers, The Cryosphere, 11, 2283–2303, https://doi.org/10.5194/tc-11-2283-2017, 2017. a
Shroyer, E. L., Padman, L., Samelson, R. M., Münchow, A., and Stearns,
L. A.: Seasonal control of Petermann Gletscher ice-shelf melt by the
ocean's response to sea-ice cover in Nares Strait, J. Glaciol.,
63, 324–330, https://doi.org/10.1017/jog.2016.140, 2017. a
Slater, D. A. and Straneo, F.: Submarine melting of glaciers in Greenland
amplified by atmospheric warming, Nat. Geosci., 15, 794–799,
https://doi.org/10.1038/s41561-022-01035-9, 2022. a, b
Stommel, H. and Farmer, H. G.: Control of salinity in an estuary by a
transition, J. Mar. Res, 12, 13–20, 1953. a
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43,
https://doi.org/10.1038/nature12854, 2013. a, b, c, d
Straneo, F., Sutherland, D., Holland, D., Gladish, C., Hamilton, G., Johnson,
H., and Koppes, M.: Characteristics of ocean waters reaching Greenland's
glaciers, Ann. Glaciol., 53, 202–210,
https://doi.org/10.3189/2012AoG60A059, 2012. a
Stranne, C., Nilsson, J., and Muchowski, J.: Oceanographic LADCP data from the Ryder 2019 expedition, Bolin Centre Database [data set], https://doi.org/10.17043/oden-ryder-2019-ladcp-1, 2020a. a
Stranne, C., Nilsson, J., Muchowski, J., and Chawarski, J.: Oceanographic CTD data from the Ryder 2019 expedition, Dataset version 1, Bolin Centre Database [data set], https://doi.org/10.17043/oden-ryder-2019-ctd-1, 2020b. a
Stranne, C., Nilsson, J., Ulfsbo, A., O'Regan, M., Coxall, H. K., Meire, L.,
Muchowski, J., Mayer, L. A., Brüchert, V., Fredriksson, J., Thornton,
B., Chawarski, J., West, G., Weidner, E., and Jakobsson, M.: The climate
sensitivity of northern Greenland fjords is amplified through sea-ice
damming, Communications Earth & Environment, 2, 70,
https://doi.org/10.1038/s43247-021-00140-8, 2021. a, b
Timmermans, M.-L.: Hydraulic Control and Mixing in a Semi-Enclosed Reservoir,
Tech. rep., Geophys. Fluid Dyn. Summer Study Program Tech. Rep. WHOI-98-09,
1998. a
Truffer, M. and Motyka, R. J.: Where glaciers meet water: Subaqueous melt and
its relevance to glaciers in various settings, Rev. Geophys., 54,
220–239, https://doi.org/10.1002/2015RG000494, 2016. a, b, c
Washam, P., Nicholls, K. W., Münchow, A., and Padman, L.: Summer surface
melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal
melt, J. Glaciol., 65, 662–674, https://doi.org/10.1017/jog.2019.43, 2019. a
Wilson, N., Straneo, F., and Heimbach, P.: Satellite-derived submarine melt rates and mass balance (2011–2015) for Greenland's largest remaining ice tongues, The Cryosphere, 11, 2773–2782, https://doi.org/10.5194/tc-11-2773-2017, 2017. a, b, c
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M., Cai,
C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J.,
Noël, B., Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.:
Ocean forcing drives glacier retreat in Greenland, Science Advances, 7, eaba7282,
https://doi.org/10.1126/sciadv.aba7282, 2021. a, b, c, d, e
Xu, Y., Rignot, E., Fenty, I., Menemenlis, D., and Flexas, M. M.: Subaqueous
melting of Store Glacier, west Greenland from three-dimensional,
high-resolution numerical modeling and ocean observations, Geophys.
Res. Lett., 40, 4648–4653, https://doi.org/10.1002/grl.50825, 2013. a, b, c, d
Zhao, K. X., Stewart, A. L., and McWilliams, J. C.: Sill-Influenced Exchange
Flows in Ice Shelf Cavities, J. Phys. Oceanogr., 49, 163–191,
https://doi.org/10.1175/JPO-D-18-0076.1, 2019.
a
Zhao, K. X., Stewart, A. L., and McWilliams, J. C.: Geometric Constraints on
Glacial Fjord–Shelf Exchange, J. Phys. Oceanogr., 51, 1223–1246, https://doi.org/10.1175/JPO-D-20-0091.1, 2021. a, b
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The...