Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1545-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1545-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Nikolas O. Aksamit
CORRESPONDING AUTHOR
Department of Geography, University of Victoria, Victoria, BC V8P 5C2, Canada
School of Earth and Environment, University of Canterbury, Christchurch 8041, New Zealand
now at: Department of Mathematics and Statistics, UiT – The Arctic University of Norway, Tromsø, Norway
Randall K. Scharien
Department of Geography, University of Victoria, Victoria, BC V8P 5C2, Canada
Jennifer K. Hutchings
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Jennifer V. Lukovich
Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Related authors
Nikolas O. Aksamit, Ben Kravitz, Douglas G. MacMartin, and George Haller
Atmos. Chem. Phys., 21, 8845–8861, https://doi.org/10.5194/acp-21-8845-2021, https://doi.org/10.5194/acp-21-8845-2021, 2021
Short summary
Short summary
There exist robust and influential material features evolving within turbulent fluids that behave as the skeleton for fluid transport pathways. Recent developments in applied mathematics have made the identification of these time-varying structures more rigorous and insightful than ever. Using short-range wind forecasts, we detail how and why these material features can be exploited in an effort to optimize the spread of aerosols in the stratosphere for climate geoengineering.
Connor Wolfgang Dean, Randall Scharien, Ian Willis, and Kali Anne McDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-4588, https://doi.org/10.5194/egusphere-2025-4588, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In this study we track winter supraglacial lake drainage on the Greenland Ice Sheet. Winter drainage is hard to observe, so we used synthetic aperture radar images to build a method that detects events across ten winter seasons. We find drainage occurs every winter, often in cascades, is most common at lower elevations, and indicates clear links to summer drainage and melt conditions. Winter drainage seldom drives seasonal changes in ice speed, though brief increases can follow cascade events.
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
The Cryosphere, 19, 1413–1430, https://doi.org/10.5194/tc-19-1413-2025, https://doi.org/10.5194/tc-19-1413-2025, 2025
Short summary
Short summary
We quantify the contribution of sea ice drift during coastal-lead events to seasonal ice transport in the Beaufort Sea. Data from GPS tracker buoys deployed as part of the Sea Ice Dynamic Experiment (SIDEx) in spring 2021 show that sea ice in the southern Beaufort Sea became more responsive to wind forcing during fracturing events detected from satellite observations. Nearly all the spring 2021 sea ice transport occurred during these events, highlighting their importance at seasonal timescales.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023, https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Short summary
Sea ice repeatedly fractures near a prominent Alaskan headland as winds move ice along the coast, challenging predictions of sea ice drift. We find winds from high-pressure systems drive these fracturing events, and the Alaskan coastal boundary modifies the resultant ice drift. This observational study shows how wind patterns influence sea ice motion near coasts in winter. Identified relations between winds, ice drift, and fracturing provide effective test cases for dynamic sea ice models.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Brent G. T. Else, Araleigh Cranch, Richard P. Sims, Samantha Jones, Laura A. Dalman, Christopher J. Mundy, Rebecca A. Segal, Randall K. Scharien, and Tania Guha
The Cryosphere, 16, 3685–3701, https://doi.org/10.5194/tc-16-3685-2022, https://doi.org/10.5194/tc-16-3685-2022, 2022
Short summary
Short summary
Sea ice helps control how much carbon dioxide polar oceans absorb. We compared ice cores from two sites to look for differences in carbon chemistry: one site had thin ice due to strong ocean currents and thick snow; the other site had thick ice, thin snow, and weak currents. We did find some differences in small layers near the top and the bottom of the cores, but for most of the ice volume the chemistry was the same. This result will help build better models of the carbon sink in polar oceans.
Nikolas O. Aksamit, Ben Kravitz, Douglas G. MacMartin, and George Haller
Atmos. Chem. Phys., 21, 8845–8861, https://doi.org/10.5194/acp-21-8845-2021, https://doi.org/10.5194/acp-21-8845-2021, 2021
Short summary
Short summary
There exist robust and influential material features evolving within turbulent fluids that behave as the skeleton for fluid transport pathways. Recent developments in applied mathematics have made the identification of these time-varying structures more rigorous and insightful than ever. Using short-range wind forecasts, we detail how and why these material features can be exploited in an effort to optimize the spread of aerosols in the stratosphere for climate geoengineering.
Stephen E. L. Howell, Randall K. Scharien, Jack Landy, and Mike Brady
The Cryosphere, 14, 4675–4686, https://doi.org/10.5194/tc-14-4675-2020, https://doi.org/10.5194/tc-14-4675-2020, 2020
Short summary
Short summary
Melt ponds form on the surface of Arctic sea ice during spring and have been shown to exert a strong influence on summer sea ice area. Here, we use RADARSAT-2 satellite imagery to estimate the predicted peak spring melt pond fraction in the Canadian Arctic Archipelago from 2009–2018. Our results show that RADARSAT-2 estimates of peak melt pond fraction can be used to provide predictive information about summer sea ice area within certain regions of the Canadian Arctic Archipelago.
Cited articles
Aksamit, N. O.: TSE of IABP Buoys, Beaufort Sea, 2017, YouTube [video], https://youtu.be/l2tOJSnTfSY, last access: 16 December 2022. a
Aksamit, N. O.: NikAksamit/TRA_TSE: TRA and TSE MATLAB Scripts (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7796274, 2023. a
Bliss, A., Hutchings, J., Anderson, P., et al.:
Sea ice drift tracks from the Distributed Network of autonomous buoys
deployed during the Multidisciplinary drifting Observatory for the Study of
Arctic Climate (MOSAiC) expedition 2019–2021, (Arctic Data Center) [data set],
https://doi.org/10.18739/A2Q52FD8S, 2021. a
Bliss, A. C., Hutchings, J. K., and Watkins, D. M.: Sea ice drift tracks from
autonomous buoys in the MOSAiC Distributed Network, Scientific
Data – Nature, submitted, 2023. a
Bouchat, A. and Tremblay, B.: Reassessing the Quality of Sea-Ice Deformation
Estimates Derived From the RADARSAT Geophysical Processor System and Its
Impact on the Spatiotemporal Scaling Statistics, J. Geophys.
Res.-Oceans, 125, 1–29, https://doi.org/10.1029/2019JC015944, 2020. a, b, c
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015. a
Cohen, L., Hudson, S. R., Walden, V. P., Graham, R. M., and Granskog, M. A.:
Meteorological conditions in a thinner Arctic sea ice regime from winter to
summer during the Norwegian Young sea ice expedition (N-ICE2015), J.
Geophys. Res., 122, 7235–7259, https://doi.org/10.1002/2016JD026034, 2017. a, b, c, d, e
Copernicus Climate Change Service, Climate Data Store: Sea level daily gridded data from satellite observations for the global ocean from 1993 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.4c328c78, 2018. a
Dai, A., Luo, D., Song, M., and Liu, J.: Arctic amplification is caused by
sea-ice loss under increasing CO2, Nat. Commun., 10, 1–13,
https://doi.org/10.1038/s41467-018-07954-9, 2019. a
Dierking, W., Stern, H. L., and Hutchings, J. K.: Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays, The Cryosphere, 14, 2999–3016, https://doi.org/10.5194/tc-14-2999-2020, 2020. a, b
Encinas-Bartos, A. P., Aksamit, N. O., and Haller, G.: Quasi-objective eddy
visualization from sparse drifter data, Chaos, 32, 113143,
https://doi.org/10.1063/5.0099859, 2022. a
Graham, R. M., Cohen, L., Ritzhaupt, N., Segger, B., Graversen, R. G., Rinke,
A., Walden, V. P., Granskog, M. A., and Hudson, S. R.: Evaluation of six
atmospheric reanalyses over Arctic sea ice from winter to early summer,
J. Climate, 32, 4121–4143, https://doi.org/10.1175/JCLI-D-18-0643.1,
2019a. a
Graham, R. M., Itkin, P., Meyer, A., Sundfjord, A., Spreen, G., Smedsrud,
L. H., Liston, G. E., Cheng, B., Cohen, L., Divine, D., Fer, I., Fransson,
A., Gerland, S., Haapala, J., Hudson, S. R., Johansson, A. M., King, J.,
Merkouriadi, I., Peterson, A. K., Provost, C., Randelhoff, A., Rinke, A.,
Rösel, A., Sennéchael, N., Walden, V. P., Duarte, P., Assmy, P.,
Steen, H., and Granskog, M. A.: Winter storms accelerate the demise of sea
ice in the Atlantic sector of the Arctic Ocean, Sci. Rep., 9,
1–16, https://doi.org/10.1038/s41598-019-45574-5, 2019b. a
Granskog, M. A., Rösel, A., Dodd, P. A., Divine, D., Gerland, S., Martma,
T., and Melanie J. Leng: Snow contribution to first-year and second-year
Arctic sea ice mass balance north of Svalbard, J. Geophys.
Res.-Oceans, 122, 1–22, https://doi.org/10.1002/2016JC012398, 2017. a
Grenfell, T. C., Barber, D. G., Fung, A. K., Gow, A. J., Jezek, K. C., Knapp,
E. J., Nghiem, S. V., Onstott, R. G., Perovich, D. K., Roesler, C. S., Swift,
C. T., and Tanis, F.: Evolution of electromagnetic signatures of sea ice
from initial formation to the establishment of thick first-year ice, IEEE
T. Geosci. Remote Sens., 36, 1642–1654,
https://doi.org/10.1109/36.718636, 1998. a
Gurtin, M. E.: An Introduction to Continuum Mechanics, 1st Edn., Academic Press, San
Diego, USA, ISBN 0123097509, 1981. a
Haller, G.: Lagrangian Coherent Structures, Annu. Rev. Fluid Mech.,
137–162, https://doi.org/10.1146/annurev-fluid-010313-141322, 2015. a, b, c
Haller, G. and Yuan, G.: Lagrangian coherent structures and mixing in
two-dimensional turbulence, Physica D, 147, 352–370,
https://doi.org/10.1016/S0167-2789(00)00142-1, 2000. a
Haller, G., Aksamit, N., and Encinas-Bartos, A. P.: Erratum: “Quasi-objective
coherent structure diagnostics from single trajectories” [Chaos 31, 043131
(2021)], Chaos, 32, 059901, https://doi.org/10.1063/5.0090124, 2022. a, b
Hutchings, J. K., Roberts, A., Geiger, C. A., and Richter-Menge, J.: Spatial
and temporal characterization of sea-ice deformation, Ann. Glaciol.,
52, 360–368, https://doi.org/10.3189/172756411795931769, 2011. a, b, c
Itkin, P., Spreen, G., Cheng, B., Doble, M., Gerland, S., and Granskog, M. A., Haapala, J., Hudson, S. R., Kaleschke, L., Nicolaus, M., Pavlov, A., Shestov, A., Steen, H., Wilkinson, J., and Helgeland, C.: N-ICE2015 buoy data, Norwegian Polar Institute [data set],
https://doi.org/10.21334/npolar.2015.6ed9a8ca, 2015. a, b, c
Itkin, P., Haapala, J., Spreen, G., Cheng, B., Doble, M., Girard-Ardhuin, F.,
Hughes, N., Kaleschke, L., Nicolaus, M., and Wilkinson, J.: Thin ice and
storms: Sea ice deformation from buoy arrays deployed during N-ICE2015,
J. Geophys. Res.-Oceans, 122, 1–22,
https://doi.org/10.1002/2016JC012403, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Jenkins, M. and Dai, A.: The Impact of Sea-Ice Loss on Arctic Climate
Feedbacks and Their Role for Arctic Amplification, Geophys. Res.
Lett., 48, 1–9, https://doi.org/10.1029/2021GL094599, 2021. a
Knust, R.: Polar Research and Supply Vessel POLARSTERN operated by the
Alfred-Wegener-Institute, Journal of Large-Scale Research Facilities,
3, 1–8, https://doi.org/10.17815/jlsrf-3-163, 2017. a
Krumpen, T., Birrien, F., Kauker, F., Rackow, T., von Albedyll, L., Angelopoulos, M., Belter, H. J., Bessonov, V., Damm, E., Dethloff, K., Haapala, J., Haas, C., Harris, C., Hendricks, S., Hoelemann, J., Hoppmann, M., Kaleschke, L., Karcher, M., Kolabutin, N., Lei, R., Lenz, J., Morgenstern, A., Nicolaus, M., Nixdorf, U., Petrovsky, T., Rabe, B., Rabenstein, L., Rex, M., Ricker, R., Rohde, J., Shimanchuk, E., Singha, S., Smolyanitsky, V., Sokolov, V., Stanton, T., Timofeeva, A., Tsamados, M., and Watkins, D.: The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf, The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, 2020. a, b
Krumpen, T., von Albedyll, L., Goessling, H. F., Hendricks, S., Juhls, B., Spreen, G., Willmes, S., Belter, H. J., Dethloff, K., Haas, C., Kaleschke, L., Katlein, C., Tian-Kunze, X., Ricker, R., Rostosky, P., Rückert, J., Singha, S., and Sokolova, J.: MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years, The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, 2021. a, b
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from
submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36,
1–5, https://doi.org/10.1029/2009GL039035, 2009. a
Kwok, R., Curlander, J. C., Pang, S. S., and Mcconnell, R.: An Ice-Motion
Tracking System at the Alaska SAR Facility, IEEE J. Ocean.
Eng., 15, 44–54, https://doi.org/10.1109/48.46835, 1990. a
Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell,
S. E., Krumpen, T., Babb, D. G., Komarov, A. S., Heorton, H. D., Belter,
H. J., and Aksenov, Y.: A year-round satellite sea-ice thickness record from
CryoSat-2, Nature, 609, 517–522, https://doi.org/10.1038/s41586-022-05058-5, 2022. a
Lei, R., Hoppmann, M., Cheng, B., Zuo, G., Gui, D., Cai, Q., Belter, H. J., and Yang, W.: Seasonal changes in sea ice kinematics and deformation in the Pacific sector of the Arctic Ocean in 2018/19, The Cryosphere, 15, 1321–1341, https://doi.org/10.5194/tc-15-1321-2021, 2021. a
Lei, R., Cheng, B., Hoppmann, M., Zhang, F., Zuo, G., Hutchings, J. K., Lin,
L., Lan, M., Wang, H., Regnery, J., Krumpen, T., Haapala, J., Rabe, B.,
Perovich, D. K., and Nicolaus, M.: Seasonality and timing of sea ice mass
balance and heat fluxes in the Arctic transpolar drift during 2019–2020,
Elementa, 10, 1–22, https://doi.org/10.1525/elementa.2021.000089, 2022. a
Leppäranta, M.: The Drift of Sea Ice, edited by: Blondel, P., Springer-Verlag, 2nd Edn., https://doi.org/10.1007/978-3-642-04683-4,
2011. a
Lindsay, R. W. and Stern, H. L.: The RADARSAT Geophysical Processor System:
Quality of sea ice trajectory and deformation estimates, J.
Atmos. Ocean. Tech., 20, 1333–1347,
https://doi.org/10.1175/1520-0426(2003)020<1333:TRGPSQ>2.0.CO;2, 2003. a, b, c
Lukovich, J. V., Bélanger, C., Barber, D. G., and Gratton, Y.: On
coherent ice drift features in the southern Beaufort sea, Deep-Sea Res.
Pt. I, 92, 56–74,
https://doi.org/10.1016/j.dsr.2014.05.013, 2014. a
Lukovich, J. V., Hutchings, J. K., and Barber, D. G.: On sea-ice dynamical
regimes in the Arctic ocean, Ann. Glaciol., 56, 323–331,
https://doi.org/10.3189/2015AoG69A606, 2015. a
Lukovich, J. V., Geiger, C. A., and Barber, D. G.: Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics, The Cryosphere, 11, 1707–1731, https://doi.org/10.5194/tc-11-1707-2017, 2017. a
Lukovich, J. V., Stroeve, J. C., Crawford, A., Hamilton, L., Tsamados, M.,
Heorton, H., and Massonnet, F.: Summer extreme cyclone impacts on arctic sea
ice, J. Climate, 34, 4817–4834, https://doi.org/10.1175/JCLI-D-19-0925.1,
2021. a
Meier, W. N., Comiso, J. C., and Markus, T.: AMSR-E/AMSR2 Unified L3 Daily 6.25 km Polar Gridded 89 GHz Brightness Temperatures, Version 1, NSIDC [data set],
https://doi.org/10.5067/NX1R09ORNOZN, 2018. a, b
Moore, G. W., Schweiger, A., Zhang, J., and Steele, M.: Collapse of the 2017
Winter Beaufort High: A Response to Thinning Sea Ice?, Geophys. Res.
Lett., 45, 2860–2869, https://doi.org/10.1002/2017GL076446, 2018. a, b
NASA Worldview: Beaufort Sea – Nasa Worldview 2017 MAR 20 to 2017 APR 22, YouTube [video], https://youtu.be/WHCsOaL4Nks, last access: 21 June 2022. a
Nicolaus, M., Perovich, D. K., Spreen, G., Granskog, M. A., von Albedyll, L.,
Angelopoulos, M., Anhaus, P., Arndt, S., Jakob Belter, H., Bessonov, V.,
Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B.,
Clemens-Sewall, D., Dadic, R., Damm, E., de Boer, G., Demir, O., Dethloff,
K., Divine, D. V., Fong, A. A., Fons, S., Frey, M. M., Fuchs, N.,
Gabarró, C., Gerland, S., Goessling, H. F., Gradinger, R., Haapala, J.,
Haas, C., Hamilton, J., Hannula, H. R., Hendricks, S., Herber, A.,
Heuzé, C., Hoppmann, M., Høyland, K. V., Huntemann, M., Hutchings,
J. K., Hwang, B., Itkin, P., Jacobi, H. W., Jaggi, M., Jutila, A., Kaleschke,
L., Katlein, C., Kolabutin, N., Krampe, D., Kristensen, S. S., Krumpen, T.,
Kurtz, N., Lampert, A., Lange, B. A., Lei, R., Light, B., Linhardt, F.,
Liston, G. E., Loose, B., Macfarlane, A. R., Mahmud, M., Matero, I. O., Maus,
S., Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M.,
Oppelt, N., Pätzold, F., Perron, C., Petrovsky, T., Pirazzini, R.,
Polashenski, C., Rabe, B., Raphael, I. A., Regnery, J., Rex, M., Ricker, R.,
Riemann-Campe, K., Rinke, A., Rohde, J., Salganik, E., Scharien, R. K.,
Schiller, M., Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M. D.,
Smith, M. M., Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J.,
Thielke, L., Timofeeva, A., Tonboe, R. T., Tavri, A., Tsamados, M., Wagner,
D. N., Watkins, D., Webster, M., and Wendisch, M.: Overview of the MOSAiC
expedition: Snow and sea ice, Elem. Sci. Anth., 10, 000046,
https://doi.org/10.1525/elementa.2021.000046, 2022. a, b
Nolan, P. J., Serra, M., and Ross, S. D.: Finite-time Lyapunov exponents in
the instantaneous limit and material transport, Nonlinear Dynam., 100,
3825–3852, https://doi.org/10.1007/s11071-020-05713-4, 2020. a
Oikkonen, A., Haapala, J., Lensu, M., Karvonen, J., and Itkin, P.: Small-scale
sea ice deformation during N-ICE2015: From compact pack ice to marginal ice
zone, J. Geophys. Res.-Oceans, 122, 5105–5120,
https://doi.org/10.1002/2016JC012387, 2017. a, b, c
Ott, W. and Yorke, J. A.: When Lyapunov exponents fail to exist, Phys.
Rev. E, 78, 1–6,
https://doi.org/10.1103/PhysRevE.78.056203, 2008. a
Rabe, B., Heuze, C., Regnery, J., et al.: Overview of the MOSAiC expedition: Physical
oceanography, Elem. Sci. Anth., 10, 1–31, https://doi.org/10.1525/elementa.2021.00062,
2022. a
Rampal, P., Weiss, J., Marsan, D., and Bourgoin, M.: Arctic sea ice velocity
field: General circulation and turbulent-like fluctuations, J.
Geophys. Res.-Oceans, 114, 1–17, https://doi.org/10.1029/2008JC005227, 2009. a, b, c
Rampal, P., Dansereau, V., Olason, E., Bouillon, S., Williams, T., Korosov, A., and Samaké, A.: On the multi-fractal scaling properties of sea ice deformation, The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019, 2019. a
Rothrock, D. A., Yu, Y., and Maykut, G. A.: Thinning of the Arctic Sea-Ice
cover, Geophys. Res. Lett., 26, 3469–3472,
https://doi.org/10.1029/1999GL010863, 1999. a
Rypina, I. I., Brown, M. G., Beron-Vera, F. J., Koçak, H., Olascoaga,
M. J., and Udovydchenkov, I. A.: On the Lagrangian Dynamics of Atmospheric
Zonal Jets and the Permeability of the Stratospheric Polar Vortex, J. Atmos. Sci., 64, 3595–3610, https://doi.org/10.1175/JAS4036.1, 2007. a
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in
recent Arctic temperature amplification, Nature, 464, 1334–1337,
https://doi.org/10.1038/nature09051, 2010. a
Serra, M. and Haller, G.: Objective eulerian coherent structures, Chaos, 26, 053110,
https://doi.org/10.1063/1.4951720, 2016. a
Siew, P. Y. F., Li, C., Sobolowski, S. P., and King, M. P.: Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation, Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020, 2020. a
Szanyi, S., Lukovich, J. V., Barber, D. G., and Haller, G.: Persistent
artifacts in the NSIDC ice motion data set and their implications for
analysis, Geophys. Res. Lett., 43, 10800–10807,
https://doi.org/10.1002/2016GL069799, 2016b. a, b, c, d
Thackeray, C. W. and Hall, A.: An emergent constraint on future Arctic sea-ice
albedo feedback, Nat. Clim. Change, 9, 972–978,
https://doi.org/10.1038/s41558-019-0619-1, 2019. a
Truesdell, C. and Noll, W.: The Non-Linear Field Theories of Mechanics, edited by: Antman, S. S., 3rd Edn.,
Springer, https://doi.org/10.1007/978-3-662-10388-3_1, 2004. a
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.: Polar
Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4, NSIDC [data set], https://doi.org/10.5067/INAWUWO7QH7B, 2018. a, b
Short summary
Coherent flow patterns in sea ice have a significant influence on sea ice fracture and refreezing. We can better understand the state of sea ice, and its influence on the atmosphere and ocean, if we understand these structures. By adapting recent developments in chaotic dynamical systems, we are able to approximate ice stretching surrounding individual ice buoys. This illuminates the state of sea ice at much higher resolution and allows us to see previously invisible ice deformation patterns.
Coherent flow patterns in sea ice have a significant influence on sea ice fracture and...