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Abstract. Sea ice drift and deformation, namely sea ice dy-
namics, play a significant role in atmosphere–ice–ocean cou-
pling. Deformation patterns in sea ice can be observed over
a wide range of spatial and temporal scales, though high-
resolution objective quantification of these features remains
difficult. In an effort to better understand local deformation of
sea ice, we adapt the trajectory-stretching exponents (TSEs),
quasi-objective measures of Lagrangian stretching in con-
tinuous media, to sea ice buoy data and develop a tempo-
ral analysis of TSE time series. Our work expands on previ-
ous ocean current studies that have shown TSEs provide an
approximation of Lagrangian coherent structure diagnostics
when only sparse trajectory data are available. As TSEs do
not require multiple buoys, we find they have an expanded
range of use when compared with traditional Eulerian buoy-
array deformation metrics and provide local-stretching infor-
mation below the length scales possible when averaging over
buoy arrays. We verify the ability of TSEs to temporally and
spatially identify dynamic features for three different sea ice
datasets. The ability of TSEs to quantify trajectory stretching
is verified by concurrent ice fracture in buoy neighborhoods
ranging from tens to hundreds of kilometers in diameter, as
well as the temporal concurrence of significant storm events.

1 Introduction

The Arctic is warming at a much greater rate than the rest of
the Earth, and sea ice plays an important role in regulating
energy exchanges between the atmosphere, cryosphere, and
ocean. The recent decline in sea ice extent and the prevalence
of younger, thinner ice are well documented (Rothrock et al.,
1999; Kwok and Rothrock, 2009; Landy et al., 2022), with
thin ice being more susceptible to deformation and fracture.
As the ice warms in spring, melt is accelerated around exist-
ing fractures due to a reduction in albedo and the presence of
more open water. Arctic amplification, the disproportionate
warming of the Arctic in a changing global climate, has been
partially attributed to the enhanced oceanic heating and ice–
albedo feedback caused by diminishing sea ice (Screen and
Simmonds, 2010; Dai et al., 2019; Thackeray and Hall, 2019;
Jenkins and Dai, 2021). Changes in the Arctic sea ice cover
in recent years have also led to modifications of larger at-
mospheric circulation patterns (Moore et al., 2018) and mid-
latitude weather (Siew et al., 2020). It is therefore of great
importance to accurately measure sea ice dynamics to under-
stand the state of ice deformation, fracture, and refreezing, as
well as the impacts on global climate, infrastructure in Arctic
waters, and access for northern communities.

Sea ice deformation is a physical phenomenon that is
highly localized in space and time (Oikkonen et al., 2017;
Rampal et al., 2019), with local and regional deformation
influencing summer sea ice melt rates and future weather.
Even short winter storms have been shown to have long-term
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impacts on sea ice extent and melt (Graham et al., 2019b;
Lukovich et al., 2021). Quantitative methods that identify
deformation rates and sea ice flow patterns are thus criti-
cal for understanding atmosphere–ice–ocean exchange pro-
cesses and grounding sea ice models.

Previous studies have used both displacement grids and
sea ice buoy trajectories to quantify observations of sea ice
deformation (e.g., Rampal et al., 2009; Hutchings et al.,
2011; Szanyi et al., 2016a; Oikkonen et al., 2017). Over sev-
eral decades, various approaches have been developed, in-
cluding both Eulerian diagnostics that focus on ice behav-
ior in a single time slice and Lagrangian diagnostics that as-
sess the evolution of ice flow and the underlying flow pat-
terns (Szanyi et al., 2016a, b). Perhaps the most common
sea ice deformation metrics are the instantaneous values di-
vergence, shear, and total deformation as defined from com-
ponents of the two-dimensional velocity gradient, ∇v (Lep-
päranta, 2011):
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These Eulerian diagnostics (Eqs. 1–3) have been used ex-
tensively for both sea ice model validation and experimental
observations.

An alternative approach to studying sea ice dynamics is
through methods that robustly identify significant sea ice
flow features that persist over time, i.e., Lagrangian coher-
ent structures (LCSs). LCSs are rigorously defined mathe-
matical structures adapted from dynamical systems theory
that behave as the underlying skeleton of fluid flow, thus
shaping patterns in the evolution of material (Haller, 2015).
Of particular relevance to the study of sea ice deformation
are hyperbolic LCSs. As a material evolves over a particular
time window, hyperbolic LCSs identify the curves of maxi-
mum stretching and compression. Previous work by Szanyi
et al. (2016a, b) studied hyperbolic LCSs to determine dis-
tinct zones of deformation in Arctic sea ice and how they
varied over time, but in general, the extent of their use in sea
ice dynamics is currently limited.

In Fig. 1 we show an example of a hyperbolic LCS re-
trieved from ocean surface current data. This visualization
reveals why hyperbolic LCSs are particularly relevant for
studying the deformation of sea ice. In Fig. 1a, an initial gray
square of fluid at time t0 is shown. The hyperbolic repelling
(MR) and attracting (MA) manifolds are drawn in blue and
red, respectively. As the fluid evolves from time t0 to t2 (pan-
els a–c), fluid particles are attracted to MA with material
stretching along that axis and repel from MR, with compres-
sion along that direction. When evaluating sea ice dynamics
from an LCS perspective, it follows that separations between

distinct dynamic regions may correspond with strong shear
zones or separation features, such as cracks and ridges, as
previously performed at a pan-Arctic scale by Szanyi et al.
(2016a). It is our hypothesis that resolving the time-varying
dynamics of these coherent structures may also help identify
periods of significant ice modification, such as during influ-
ential storms or other breakup events.

Hyperbolic LCSs are typically approximated by ridges
of the finite-time Lyapunov exponent (FTLE) (e.g., Szanyi
et al., 2016a). Calculation of FTLE fields, however, rely on
advecting grids of particles in time-resolved velocity fields
and quantifying spatial gradients of the flow map, as dis-
cussed in detail in Appendix A1 and by Haller (2015). Ob-
taining gridded sea ice velocity data that can be used to cal-
culate rate-of-strain invariants (1–3) and FTLE fields is a sig-
nificant hurdle. This is currently only feasible at large scales
via motion tracking algorithms and remotely sensed data.
Several of these gridded velocity products are also known
to be hindered by artificial velocity discontinuities caused
when assimilating different data streams (Bouillon and Ram-
pal, 2015; Szanyi et al., 2016b). These limitations prevent
calculation of reliable Eulerian and Lagrangian diagnostics,
especially at high (sub-daily) temporal resolution. In con-
trast, buoy GPS trajectories are often sampled at hourly or
sub-hourly timescales and can provide a wealth of true sea
ice motion data. Lagrangian and Eulerian diagnostics from
these data sources can help address some of the limitations
in gridded velocity studies.

Buoys passively follow ice floes and are typically sparse in
the spatial domain, and we have limited control over where
the data will be available. Therefore, spatial derivatives of ice
velocity are not immediately available from buoy trajectories
as with a gridded product. A common approach for obtain-
ing Eqs. (1–3) from buoys is to study arrays of buoys that
form convex polygons and calculate discretized contour inte-
grals (via Green’s theorem) at each time step. This approach
can be traced back to at least the early 1990s, when it was
applied to sparse sea ice motion vectors obtained from se-
quential synthetic aperture radar (SAR) frames (Kwok et al.,
1990). Deformation metrics can be calculated by tracking
predefined polygons (Hutchings et al., 2011, 2012) or by
looking at statistics for all suitable triangles (e.g., no small
angles) in an array (Itkin et al., 2017). For an N -sided poly-
gon, with vertices indexed in counterclockwise orientation
such that (xN+1,yN+1)= (x1,y1), ∇v can be approximated
as follows:
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Figure 1. Example of time evolution of fluid particles surrounding hyperbolic LCSs in an incompressible ocean surface current simulation
from time t0 to t2. MA is an attracting hyperbolic LCS (unstable manifold), and MR is a repelling hyperbolic LCS (stable manifold).
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where A is the area of the polygon.
Complications with the method based on Green’s theorem

include sensitivities to user choice of array, accounting for
GPS signal-to-noise ratios, and several physical inaccuracies
arising from discretization. As arrays of buoys passively fol-
low ice floes, they typically do not maintain a shape that al-
lows for accurate calculation of the spatial velocity gradi-
ents from drift trajectories. Some of these issues have been
previously discussed by Lindsay and Stern (2003), Hutch-
ings et al. (2012), and Dierking et al. (2020), including the
polygon array selection method. Because of the necessary
discretization of a continuous boundary, integral approxima-
tions by finite sums in the approach based on Green’s the-
orem also generate errors. Lindsay and Stern (2003) previ-
ously addressed boundary representation errors for nonlinear
velocity fields, but only errors from discontinuities (leads)
that intersect polygon boundaries were studied. Uncertainty
also stems from the trapezoid rule approximation of the con-
tour integral shown in Eq. (4). For a known continuous ve-
locity field (e.g., without cracks), the upper bound of integral
approximations can be quantified (Atkinson, 1989), though
an explicit impact of this error cannot be found in the sea ice
literature. As is detailed in Appendix A2, the trapezoid rule
error can cause equilateral triads to indicate both divergent
and convergent conditions in a steady, divergence-free, and
continuous (fracture-free) flow, depending on array orienta-
tion.

In light of these complications, alternative methods that
do not rely on buoy geometry or orientation, such as sin-

gle trajectory metrics, could be largely beneficial, even if
only to identify and separate dynamically active regions. One
primary issue with single-trajectory metrics is that they are
not frame-indifferent. That is, they depend on the reference
frame of the observer. One may argue that it is sufficient to
require all computations to be performed in the same refer-
ence frame, but one of the main axioms of mechanics is that
the material response (e.g., ridging, fracturing) of a material
is independent of the observer (Gurtin, 1981). One intuitive
interpretation of this axiom is a fracture formed in ice is in-
dependent of whether the ice is viewed from an airplane or
from the ice surface. Frame indifference is, therefore, a foun-
dational benchmark that diagnostics must meet in order to
identify coherent features in any deforming continuum. In-
variants of the rate-of-strain tensor are frame-indifferent, as
is the FTLE, but velocity and velocity gradients are not.

As an alternative to Eulerian contour integral diagnos-
tics, we propose using novel single-buoy stretching diagnos-
tics, the trajectory-stretching exponents (TSEs) (Haller et al.,
2021, 2022), to approximate the influence of hyperbolic
LCSs. For a trajectory x(t), TSEs are quasi-objective La-
grangian metrics of material stretching. That is, they approx-
imate true material stretching in slowly varying flows (i.e.,
when Lagrangian timescales dominate Eulerian timescales,
as is typical in geophysical flows). As shown by Haller et al.
(2021), TSEs identify the same hyperbolic LCS as the FTLE
in open-ocean currents and provide significant advantages
when identifying structures in sparse, randomly positioned
trajectory data. We extend this analysis to the exception-
ally sparse sea ice domain by developing a temporal analysis
of stretching exponent time series. Large TSE values corre-
spond to hyperbolic LCSs, which are regions of significant
attraction, repulsion, and shear. We can then use single buoys
to find spatial and temporal domains when sea ice is behav-
ing like it is near an underlying hyperbolic LCS.

There are limited frame-indifferent Lagrangian alterna-
tives for coherent structure identification with sparse buoy
data to compare to. One notable exception is single-point
(squared) relative dispersion (Haller and Yuan, 2000), also
known as two-particle dispersion, which monitors the sep-
aration between a pair of particles. Similar variations have

https://doi.org/10.5194/tc-17-1545-2023 The Cryosphere, 17, 1545–1566, 2023



1548 N. O. Aksamit et al.: Single-buoy sea ice stretching

been applied in various contexts by Rampal et al. (2009)
and Lukovich et al. (2014, 2015, 2017). These approaches
are not evaluated here as one cannot generate both spatial
maps and time series in a manner comparable to TSEs or
Eqs. (1–3). This is because relative dispersion relies on ini-
tially nearby buoys, whose motions decorrelate at longer
timescales. Relative dispersion diagnostics may show spa-
tially coherent structures for a short window of time, but as
the initially close buoys become decorrelated, one must re-
select new buoy pairs, thus preventing a single meaningful
time series of local conditions as is possible with TSEs or
Eqs. (1–3). In this way, methods based on relative dispersion
are more often used for understanding scaling relationships
of sea ice motion.

In the present research, we show that TSEs localize re-
gions and periods of significant stretching and compression,
some of which is not evident with conventional buoy metrics.
We independently verify the TSE stretching and compression
features with two approaches. While TSEs are not a fracture-
specific diagnostic, concurrent lead formation in remotely
sensed data provides a frame-indifferent confirmation of ma-
terial sea ice response. We also compare our event detections
with synoptic storm analysis from a high-resolution sea de-
formation experiment. This approach provides coupling be-
tween TSEs and the passage of storms previously verified
to have significant sea ice influence. We discuss several lo-
gistical and computational advantages with the single-buoy
diagnostics, as well as future insights possible with TSE ap-
plications. We also compare our quasi-objective Lagrangian
ice deformation analysis with standard Eulerian array-based
rate-of-strain metrics.

2 Analytical methods

For a continuously differentiable velocity field v(x, t), a par-
ticle’s trajectory x(t) is governed by the ordinary differen-
tial equation ẋ(t)= v(x(t), t), where t represents time. Con-
sider a material curve γ (t;s)⊂ U ⊂ R2, parameterized by
the scalar parameter s ∈ R at time t that has evolved from
an initial curve γ (t0;s). One can quantify the stretching of
vectors tangent to this material curve using the equation of
variations. In a steady flow (with no time dependence), par-
ticle trajectories are themselves material curves, and the La-
grangian velocity vector v(t) evolves as

v̇(t)=∇v(x(t))v. (5)

Haller et al. (2021) showed that the average material stretch-
ing over the time interval t ∈ [t0, tN ] of the Lagrangian ve-
locity vector, v0 = v(x0), can be written as

λ
tN
t0
(x0,v0)=

1
tN − t0

tN∫
t0

d
dt

log
|v(x(t))|

|v0|
dt

=
1

tN − t0
log
|v(x(tN ))|

|v0|
. (6)

For our situation, Eq. (6) gives an objective measure of
sea ice stretching from only a single buoy velocity v(x(t)).
This degree of stretching also only depends on initial and fi-
nal conditions. That is, interim cycles of stretching and com-
pression can cancel out. In sea ice, cycles of stretching and
compression may lead to significant ridging and fracturing
that one would not see in a standard fluid flow. To quantify
the cumulative impact of repeated stretching, relaxation, or
compression over a given time window, we can also utilize
the averaged hyperbolicity strength with a strictly positive
integrand,

λ
tN
t0
(x0,v0)=

1
tN − t0

tN∫
t0

∣∣∣∣ d
dt

log
|v(x(t))|

|v0|

∣∣∣∣dt. (7)

Equation (7) adds up all hyperbolic (stretching and com-
pression) action, giving a measure of cumulative changes, but
does not differentiate stretching or compression. For slowly
varying (steady) flows, λtNt0 approximates (equals) the finite-
time Lyapunov exponent associated with the initial vector ẋ0
at the initial position x0, an objective Lagrangian measure
of deformation over time (Ott and Yorke, 2008; Haller et al.,
2021).

Remark 1. In an unsteady flow, the right-hand side of
Eq. (5) would also include a δtv(x(t), t) term. For unsteady
flows, the magnitude of the approximation error of tangential
stretching in Eq. (6) strongly depends on the slowly vary-
ing nature of the flow, such as when Eulerian acceleration
is much smaller than Lagrangian acceleration. The pointwise
slowly varying nature of sea ice velocities are assessed in Ap-
pendix A3 using Polar Pathfinder Daily 25 km EASE-Grid
Sea Ice Motion Vectors (Tschudi et al., 2018), similar to the
analysis conducted for ocean currents by Haller et al. (2022).
Our assessment of the slowly varying assumption does not
depend on a specific integration time as it is a point-by-
point comparison of Eulerian and Lagrangian acceleration.
It does, however, depend on the temporal and spatial reso-
lution of the underlying Pathfinder velocity field. A finer-
resolution velocity product could reveal sharper velocity gra-
dients at smaller scales, such as across fractures, and further
support the slowly varying hypothesis. A shorter sampling
period may also reveal stronger temporal gradients surround-
ing fracture events. However, this cannot be investigated un-
til higher-resolution and artifact-free velocity fields become
available and is a topic of future research.

Remark 2. Tangential stretching is rigorously defined
when the trajectory is traveling in a continuous, incompress-
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Figure 2. Example evolution of a small volume of sea ice surround-
ing a buoy in a steady flow. From time t1 to t2, the buoy velocity
vector v(t)= v(x(t)) increases, leading to compression in the plane
of sea ice orthogonal to the buoy trajectory and positive TSEs.

ible medium. While it is true that sea ice velocity fields
are not continuously differentiable, we can assume they are
piecewise continuously differentiable (between fractures),
and thus trajectory-stretching exponents are well defined in
large continuously deforming ice covers. In a steady incom-
pressible two-dimensional flow, a negative stretching expo-
nent, λtNt0 , equals the growth exponent of a vector normal to
the material line formed by the trajectory x(t) (Fig. 2) (Haller
et al., 2021). For unsteady compressible flows, such as sea
ice, λtNt0 and λ̄tNt0 are proxies for the material change in a plane
normal to the trajectory and may indicate stretching, ridging,
or fracture. Negative λtNt0 values indicate compressive pro-
cesses, whereas positive values indicate stretching along the
trajectory (Fig. 2). The degree to which this differs from the
growth exponent of the plane orthogonal to the trajectory de-
pends on slowly varying and compressibility conditions, as
well as the rheology of the ice. These considerations parallel
those for standard rate-of-strain metrics when dealing with a
fractured ice cover, varying rheology, or regions with sea ice
concentration less than 100 %. For example, one is no longer
solely quantifying the divergence of sea ice material when
the ice is fractured and leads are present, rather the diver-
gence of the mixed water–ice continuum. With these consid-
erations in mind, we focus primarily on midwinter and early
spring ice dynamics to minimize extensive fracturing of the
ice cover but briefly discuss dynamics during ice disintegra-
tion in Sect. 4.2. We further suggest due consideration when
calculating stretching from ice buoys as ice concentration de-
creases, and their trajectories become more representative of
ocean dynamics than ice cover dynamics.

For real discrete observational trajectory data with an
initial position x0 = x(0), we approximate the integrals in
Eqs. (6) and (7) and define the trajectory-stretching expo-
nents (TSEs) used for the remainder of this research:

TSEtNt0 (x0)=
1

tN − t0
log
|ẋ(tN )|

|ẋ(t0)|
(8)

TSE
tN
t0
(x0)=

1
tN − t0

N−1∑
i=0

∣∣∣∣log
|ẋ(ti+1)|

|ẋ(ti)|

∣∣∣∣ . (9)

As with λ, the TSE is positive for stretching and negative
for compression along a trajectory. TSE does not allow for
this cancellation as the summand is strictly positive and gives
a measure of cumulative changes but does not differentiate
stretching or compression, as with λ. The TSE and TSE have
been shown to accurately separate dynamically distinct re-
gions (eddies and fronts) in sparsely sampled open-ocean
flows (Haller et al., 2021) but have not yet been studied in
a sea ice context.

In contrast to Eqs. (2)–(3), TSEs do not differentiate be-
tween contributions from divergence or shear to the stretch-
ing of a material. Rather, they quantify stretching in the di-
rection of vectors tangent to the buoy trajectory. We dis-
cuss the mathematical relationship between Eqs. (2)–(3),
the closely related Lagrangian-averaged divergence (Szanyi
et al., 2016a), and TSEs in Appendix A1. TSEs are calcu-
lated using only buoy speed and do not require projection to
orthogonal velocity components as in Green’s theorem ap-
proximations from arrays. Speed can be easily calculated us-
ing geodesics between GPS locations, which prevents any
inconsistencies of results due to map projections. Further-
more, TSEs are parameter-free, with integration time being
the only user-chosen value. The choice of integration time
defines the average stretching extent but does not prevent
identification of events at timescales shorter or longer than
that. See Sect. 4.1 for one such example of hourly timescale
events being identified by a multi-day integration window.

The sampling period may influence the estimated speed of
each buoy (Lei et al., 2021) and should be mentioned when
performing analysis with TSEs. Once raw data have been
collected, the user may then resample the data at a higher
or lower resolution. Changing this sampling period is akin
to changing the resolution of a Riemann sum that is approxi-
mating an integral. That is precisely what Eqs. (8) and (9) are
with respect to Eqs. (6) and (7). The choice of interpolation
method would have analogous effects.

While Eulerian-strain-based metrics (Eqs. 1–3) provide an
imperfect comparison to an approach to ice deformation that
is based on a Lagrangian coherent structure, they are com-
monly used in sea ice dynamics research and generate long
time series when polygons are suitably chosen (e.g., Hutch-
ings et al., 2012; Itkin et al., 2017). TSEs are Lagrangian
diagnostics and are calculated over a forward-looking win-
dow from a starting time, t0 (Eqs. 8 and 9). By incrementally
increasing t0, we can also generate time series of TSE and
TSE for each step in a buoy trajectory. In this way, large TSE
and TSE time series values should slightly precede signifi-
cant storms, sea ice stretching, or breakup events as the sum-
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mation occurs from t0 forward in time. This also means that
TSE and TSE series will be slightly out of phase with con-
current Eulerian-polygon-based divergence, shear, and defor-
mation series. Indeed, we find this phase difference is on the
order of the length of the integration window when maximiz-
ing the cross-correlation between TSEs and div andD (Eqs. 1
and 3, not pictured). We refer the reader to Appendix A1 for a
thorough numerical comparison of Eulerian and Lagrangian
diagnostics in a simple geophysical model.

Results here focus on the ability of TSEs to accurately
characterize spatially and temporally localized coherent
stretching during short-lived midwinter storms. This choice
is motivated by the availability of recent high-resolution ex-
periments and local deformation being an open problem in
sea ice dynamics (Oikkonen et al., 2017). As with other La-
grangian methods, the integration time is user-defined and
reflects the duration over which we are seeking significant
and coherent stretching. For example, previous LCS analy-
sis using 6-month FTLE fields identified three distinct dy-
namic regions at pan-Arctic scales: the Fram Strait, Beaufort
Gyre, and Northwind Ridge (Szanyi et al., 2016b). Similarly,
TSEs are applicable to both short or long integration times
(tN − t0) and reveal time-averaged dynamics at those speci-
fied scales. We refer the reader to Appendix A1 for a com-
parison of TSEs when varying integration times.

The choice of TSE integration window is only limited
by the accuracy of the GPS trajectory data. Shorter integra-
tion times are likely affected more significantly by small dis-
crepancies in GPS locations. The instantaneous limit of the
TSEs is also well defined and provides approximations of
hyperbolic (or parabolic) objective Eulerian coherent struc-
tures, which are the instantaneous limits of hyperbolic (or
parabolic) LCSs (Serra and Haller, 2016; Nolan et al., 2020).

3 Datasets

Our results verify that TSEs can identify significant ice dy-
namics events using three different data sources at different
spatial scales: synoptic storm analysis from a targeted ex-
periment, linear kinematic feature (LKF) formation in sub-
sequent SAR frames on the order of tens of kilometers, and
sea ice brightness temperature measurements that show land-
fast and free-ice fractures at scales of hundreds of kilome-
ters. We exhibit the utility of TSE and TSE spatiotemporal
analysis for two experimental sea ice buoy datasets, the N-
ICE2015 (Itkin et al., 2015, 2017) and MOSAiC expeditions
(Krumpen et al., 2020), and data from the International Arc-
tic Buoy Program (IABP) (International Arctic Buoy Pro-
gramme, 2022).

3.1 N-ICE2015

The 6-month Norwegian young sea ice cruise (N-ICE2015)
sought to understand the rapid shift to younger and thin-

ner sea ice and its effect on energy fluxes, sea ice dynam-
ics, and ecosystems in the Arctic basin. Numerous in-depth
studies have evaluated the thin ice and weather conditions
during the N-ICE2015 experiment (e.g., Cohen et al., 2017;
Granskog et al., 2017; Itkin et al., 2017; Graham et al.,
2019a). Itkin et al. (2017) conducted a thorough investiga-
tion of the ice response to N-ICE2015 storms, as identified
by Cohen et al. (2017), which provides a test bed of buoy
data where atmosphere–ice relationships during brief synop-
tic events are well understood (i.e., Itkin et al., 2015).

The experiment involved atmospheric, biogeochemical,
oceanographic, and sea ice dynamics components, including
two separate buoy deployments from January to mid-March
and late April to June 2015 (Fig. 3). For our analysis, we fo-
cus on 24 buoy trajectories (Fig. 3) in two time windows pre-
viously examined by Itkin et al. (2017). GPS positions were
primarily sampled at 1 h intervals, though some were sam-
pled every 3 h. Itkin et al. (2017) resampled all trajectories to
a 1 h−1 sampling frequency using a linear interpolant, and we
follow this convention for our N-ICE2015 analysis. After in-
terpolation, subsequent buoy speeds that exceeded 5 km d−1

were removed, and buoy positions were resampled using a
linear interpolant.

Itkin et al. (2017) calculated divergence, shear, and defor-
mation using a tessellation of buoy triads, removing some
of the user dependence but potentially introducing triads
with inappropriate geometry for the contour integral ap-
proach. In particular, the winter deployment of buoys for
the N-ICE2015 campaign was hindered by logistical chal-
lenges as the researchers deployed buoys in the polar night
by snow machines and on skis. This resulted in an initially
quasi-linear buoy array geometry, with many of the triangles
formed by buoy vertices having small angles (< 15◦). Upon
removing the most unreliable calculations, Itkin et al. (2017)
successfully showed the impact of the Cohen et al. (2017)
storms on shear, divergence, and deformation signatures dur-
ing the winter and spring deployments.

3.2 MOSAiC

The Multidisciplinary drifting Observatory for the Study of
Arctic Climate (MOSAiC) is the largest multidisciplinary
Arctic expedition to date, spanning the winter of 2019–2020
(Krumpen et al., 2020). The study centered around the re-
search icebreaker Polarstern (Knust, 2017; Nicolaus et al.,
2022; Rabe et al., 2022) which was moored to an ice floe
for an entire year. MOSAiC provides an unprecedented look
at winter ice dynamics with 213 unique buoy deployments
and complementary atmosphere, ocean, ecology, and biogeo-
chemistry data.

We focus here on the paths of 101 buoys deployed within
40 km of the Polarstern. This public dataset was documented
by Bliss et al. (2023). The half-hourly buoy track data were
cleaned following Hutchings et al. (2012). Triads were also
handpicked from the MOSAiC buoys with data spanning Oc-
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Figure 3. Trajectories of the N-ICE2015 buoys deployed north of
Svalbard from January to June 2015, with positions colored by date.

Figure 4. (a) Trajectories of the MOSAiC buoys from October 2019
to July 2020, with positions colored by date. (b–d) The MOSAiC
buoys (diamonds) and triads (outlined with solid lines) as arranged
for deformation calculation. The same array at three times is shown,
with maps centered on (85.08◦ N, 132.9◦ E), (88.4◦ N, 65.9◦ E), and
(81.9◦ N, 8.3◦ E) from (b) to (d) respectively. The scale of the maps
is shown in the bottom right.

tober 2019 to June 2020, and this is the focus of a forthcom-
ing publication. The arrays were selected to maintain reason-
able shapes (no small angles, area greater than 1 km2) from
the beginning to the end of the time series, and the public
data were resampled to uniform 6-hourly intervals. Hand-

Figure 5. Trajectories of the IABP buoys from 1 January 2017 to
1 January 2018.

picking triads, however, does require user discretion. Buoy
tracks were resampled to match the triad sampling rate. The
arrays used are shown in Fig. 4. A deeper comparison and
refinement of geometrically suitable arrays in the MOSAiC
data is a current topic of research. The method we use here is
in line with previous work (Hutchings et al., 2011, 2012).

Though MOSAiC analysis is now just beginning, there are
currently limited midwinter buoy data available for the Arc-
tic. MOSAiC and N-ICE2015 provide the best test beds for
evaluating the efficacy of TSEs to identify significant stretch-
ing events at high spatial resolution in coherent ice floes.

3.3 IABP

The International Arctic Buoy Program (IABP; https://iabp.
apl.uw.edu/data.html, last access: 3 March 2022) is a net-
work of drifting buoys that have been deployed in the Arctic
Ocean by a collection of nations since the 1970s. In compar-
ison with the previous two experiments, IABP buoy density
is significantly lower, but the length of the IABP buoy record
and its considerable spatial coverage allows for analysis of
ice dynamics at much greater scales (see Fig. 5). IABP data
have been a useful ground truth of sea ice motion for several
decades and continue to provide invaluable information for
both model verification and understanding the complexities
of ice dynamics (Rampal et al., 2009; Bouchat and Trem-
blay, 2020). IABP buoy tracks are available in both raw and
cleaned formats. We focus our analysis on the publicly avail-
able 3-hourly L2 IABP buoy data. We downsampled the data
with a 6 h sampling to maintain consistency with the MO-
SAiC data using a linear interpolant. We focus our analysis
on trajectories during 2017 (Fig. 5), with particular interest
in the well-studied Beaufort Sea.
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4 Results

4.1 N-ICE2015

For our first evaluation of TSEs, we utilize previous storm
analysis from the N-ICE2015 expedition. Cohen et al. (2017)
studied winter storms during this sea ice cruise and found
they typically occurred with a duration between 3 and 10 d.
Using a buoy-array approach (Eqs. 1–4), Itkin et al. (2017)
found that sea ice deformation events could be roughly cou-
pled with the passage of these storms. As we wish to quan-
tify coherent ice deformation over a given time window, we
choose a 3 d integration period for stretching exponent calcu-
lations so as to capture the storm-scale Lagrangian stretching
without averaging over too wide of a time window. In this
way, TSE provides a before-and-after stretching measure,
while TSE calculates the accumulation of trajectory stretch-
ing and contraction during the 3 d window.

Figure 6 details TSEs for the winter- and springtime win-
dows analyzed by Itkin et al. (2017). The significant N-
ICE2015 storms from Cohen et al. (2017) are shaded as pink
regions and underlay plots of TSE and TSE for all buoys in
the two deployments. In winter, every storm of note was pre-
ceded by local TSE extrema, including the short 10 h storm
on 22 January and the 5 h storm on 13 February. These two
storms are well below the timescale of TSE integration we
have chosen (3 d) but are still evident in the TSEs. This is be-
cause TSEs look at average behavior over a given time, not
specific events with a given duration.

Every coherent TSE peak above 1 d−1 (marked by hori-
zontal dashed line) was immediately followed by a signifi-
cant storm in the TSE integration window, but local maxima
do not always correspond to the passage of storms. This is
likely due to oceanic influences not immediately related to
the passage of storms. Itkin et al. (2017) calculated a sig-
nificant divergence and shearing event for the buoy array on
26 January, which did not correspond with the presence of a
storm but was instead related to a change in wind-direction.
While the TSE and TSE are both sensitive to accelerations
caused by changes in wind direction, values in Fig. 6a–b do
not reveal such a coherent stretching event and indicate a pos-
sible advantage of using single-buoy stretching that is less
reliant on buoy array geometry.

Storms during the spring deployment also coincided with
significant stretching events, even for the sub-12 h storms on
16 May, 30 May, and 8 June. Similar to the analysis of Itkin
et al. (2017), stretching time series for the spring deployment
exhibited sub-daily oscillations, likely related to a more frac-
tured sea ice cover, tides, or inertial motions. There is also
a large variance in the underlying buoy velocities, which is
potentially an effect of using a 1 h sampling window, where
small variations can lead to large velocity fluctuations. Due to
these fluctuations, we find TSE is less informative in spring
as an increase in small fluctuations has a positive cumulative

effect during summation and reveals less about the storm-
scale dynamics.

4.2 MOSAiC

Our second example utilizes MOSAiC buoy data from
November 2019 to April 2020. We again choose a 3 d in-
tegration window in the absence of an alternative integration
scale. Should an exhaustive storm study, such as that con-
ducted for N-ICE2015, be performed, revisiting this analy-
sis may be insightful. While the effect of integration scale
does have some effect on TSEs, identification of the underly-
ing dynamical features is surprisingly robust (Appendix A1).
In Fig. 7a–d we compare time series of TSEs (Fig. 7a) and
TSE (Fig. 7c) with triad-based instantaneous approximations
of divergence and deformation (Eqs. 1–4). We plot all TSE
time series available (101) and again find there is impressive
coherence in stretching exhibited by the entire cluster. Lo-
cal values of TSEs and TSE also have the largest variance
during peak stretching events. This allows us to both analyze
the temporal localization of sea ice fracture by TSEs and po-
tentially relate spatial differences of trajectory stretching to
nearby LKFs. In Fig. 7b and d, blue dots indicate the instan-
taneous value from each buoy triad, and the black lines show
the mean over all triangles.

Qualitatively, prior to the 31 January event there is a rea-
sonable agreement between TSEs and triad-based events,
when accounting for the 3 d integration window. For the en-
tire period, one finds that all strong divergence and defor-
mation events are accounted for as extrema (> 1 d−1) in the
TSEs, though often with a different relative magnitude. In
mid-November 2019, large TSE magnitudes generate a spike
in TSE that is also evident as spikes in div and D. Local
TSE maxima in middle and late December also correlate well
with spikes in div and D. Mean div provides a suggestion
of whether divergence or convergence was more prevalent
amongst the triads at a given time, but the significant scatter
of both positive and negative values obscures such behavior
at finer spatial scales. In contrast, there is much less ambi-
guity of the characteristic ice behavior for the entire cluster
in the TSE series, suggesting the cluster remained part of a
largely coherent structure that stretched and compressed to-
gether, with variance between buoys appearing during dy-
namic events.

After 31 January, several relatively large peaks in TSEs
appear as minor oscillations in div or D or are not present.
This indicates local dynamic stretching and potential frac-
ture events may not be evident with the contour integral met-
rics. One such example is shown for the peak on 17 April,
highlighted by the vertical dashed black line. In div and D
plots, we also show the 3 d integration window in green.
This example was chosen due to the concurrent availabil-
ity of pre- and post-storm SAR data during the period af-
ter the major 31 January event, as well as a relatively mi-
nor signature in div and D. The large stretching indicated
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Figure 6. Comparison of TSE and TSE time series for 24 buoys during two stages of the N-ICE2015 experiment. Significant storm events
for the winter deployment (a, b) and spring deployment (c, d) are shown as pink regions. A good correlation between strong stretching events
and Arctic storms is shown: TSE extrema (> 1 d−1, marked by dashed lines) precede all storms and show no false positive sea ice stretching
indicators.

by TSEs on 17 April corresponds with multiple leads that
formed throughout the domain of the MOSAiC buoys. These
fractures can be seen in the pair of HH polarization Sentinel-
1 frames (Copernicus, 2020) (Fig. 7e–f), where white re-
gions indicate new ice forming in leads or wind-driven waves
(Grenfell et al., 1998). Points showing buoy locations have
been colored by the 17 April TSE values. The spatial distri-
bution of TSE values is difficult to interpret and would re-
quire a deeper analysis of the meteorological and ice condi-
tions.

In the 3 d window following the 17 April TSE and TSE
peak, the mean buoy divergence oscillated around zero
(Fig. 7b), with the magnitude staying below 0.1 d−1. This is
approximately 1 % of peak values of mean divergence, sug-
gesting a relatively insignificant period of divergence. This
is in contrast to the TSE and TSE on 17 April, which sits at
approximately 50 % of their total peak values, suggesting a
relatively localized motion with a larger contribution to ice
dynamics at the same time.

The contribution to total deformation from shear was
slightly larger, with a peak mean deformation of 0.46 d−1

at 17:00 UTC on 17 April. The choice of triangles dictates
which LKFs are spanned during this dynamic event and may
explain why there was a weak deformation signature from
the triads. As well, the lack of objectivity or trapezoid rule
errors when using Green’s theorem approximations with tri-
ads, as detailed in Appendix A2, may also contribute. In this
scenario, the stretching and relaxation measured by the TSE
present a clear correlation with material deformation of the
ice and suggest TSEs may provide ice behavior insight dur-
ing times when Green’s theorem methods are not possible,
such as when there are too few buoys or they are their ori-
entation is inappropriate and when array-based approaches
have underestimated dynamic behavior.

As sea ice melts in spring, ice concentration drops, and the
ice pack loses integrity, TSEs and rate-of-strain diagnostics
are no longer strictly representing the deformation of the ice
cover. In Fig. 8, we look at mean TSE and meanD during dif-
ferent stages of the melt period identified by Lei et al. (2022).
In late spring, TSE values increase as the ice becomes more
dynamic. Once the ice floe enters warmer upper-ocean water
over the Yermak Plateau, basal melting increases, and TSE
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Figure 7. (a–d) Time series comparison of trajectory-stretching exponents and common buoy-array-based approximations of divergence of
and total deformation during the MOSAiC expedition. The vertical dashed black lines show a sea ice fracture event that was largely missed
in the divergence and deformation. Panels (e) and (f) show a before-and-after comparison of HH Sentinel-1 frames surrounding the 17 April
spike. Over this time span, the creation of multiple LKFs in white can be seen, as well as the concurrent TSE values of nearby buoys.

Figure 8. Average TSE andD during the MOSAiC melt period. A gradual increase in trajectory stretching is found until the onset of ice floe
disintegration. Peak stretching was found immediately after all snow and snow ice was melted off the ice floe. Much larger TSE variance
was found after a period of enhanced ocean heat flux as the ice floe crossed the Yermak Plateau. At this stage, the ice concentration dropped
below 60 %–85 %, mean TSE values look flat from uncorrelated motions, and meanD spikes are an order of magnitude larger than when the
ice floe remained intact.
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oscillations trend upwards. At the same time, oscillations in
D also begin to increase. By 25 June, snow and snow ice had
completely melted from the sea ice cover, further enhancing
the surface melt rates. After this, we obtain peak TSE values
for the year, followed by a sharp drop. It is at the end of this
sharp decline in stretching that Krumpen et al. (2021) note
the ice floe begins to disintegrate. We hypothesize that TSE
spikes precisely because this onset of disintegration enters
the integration window.

At the timing of this drop in TSE and onset in disinte-
gration, D values also obtain large values never seen be-
fore in the flow. The sea ice concentration now drops to be-
tween 60 % and 85 %, depending on location of the buoy.
From here on, buoy trajectories are no longer correlated, and
each buoy’s TSE is measuring different dynamical flow fea-
tures. At this stage, a mean TSE is no longer meaningful.
However, future research may investigate spatially resolv-
ing single-trajectory flow features for heavily fractured ice
floes, as has been done with analogous techniques in the open
ocean (Encinas-Bartos et al., 2022).

4.3 IABP

In this section, we focus specifically on behavior in the
Beaufort Sea from October 2016 to October 2017. During
this winter, thinner-than-usual sea ice may have caused the
collapse of a typical high-pressure system over the Beau-
fort and anomalous surface winds (Moore et al., 2018). We
again choose a 3 d integration window for our study to main-
tain comparability with the previous examples, though other
timescales are equally applicable.

In Fig. 9a, we show the 3 d TSE for each buoy in the
Beaufort during that period in gray. The maximum distance
between buoys sampled here is approximately 30 times the
length scale of the previous experiments. Due to the sparse
sampling over a much larger spatial domain, there is much
more variance around the mean TSE value, shown in black
in Fig. 9a. The absolute maximum of mean TSEs during this
period is indicated by a red dot, signifying a period of max-
imal stretching and deformation over a large domain. The
following two peaks are also identified by red dots. These
events correspond with three dynamic shifts in Beaufort Sea
ice structure and behavior. The frame pairs in Fig. 9b–d show
before-and-after frames of AMSR2 Sea Ice Brightness Tem-
perature (89 V GHz) (Meier et al., 2018) for times corre-
sponding to high TSE values. Buoy positions are again col-
ored by TSEs in the initial frame, and color maps are consis-
tent across all frames. Please review the “Video supplement”
section for further information and a full animation of this
breakup event.

The first event corresponds to stretching from 26 to
29 March 2017. Previous mean TSE oscillations gradu-
ally increased to the absolute maximum of mean TSEs on
26 March. Prior to any evidence of detachment of the mobile
pack ice in the Beaufort Sea, TSE values were indicating an

ongoing increase of stress and strain, leading to the major
fracturing in March and April 2017.

Between 26 and 29 March, an initial significant fracture
formed when the mobile Beaufort pack ice separates from
the landfast ice on the northern coast of Alaska. The fracture
extends to just off the coast of Banks Island (BI in Fig. 9c)
as the ice in the Beaufort Gyre begins to freely rotate in an
anticyclonic motion. All buoys in the free-drift region have
large positive (red) TSE values and create another local max-
imum in the mean time series, further supporting this rela-
tively significant stretching event in March and April when
compared to times prior to and after these months. From 3 to
8 April, significant fracturing throughout the region south of
76◦ N occurred, with another major fracture extending off the
northwest corner of Banks Island. The buoys in the region of
this enhanced fracturing showed large positive TSE values,
whereas buoys further north without new fracturing showed
low TSE values. The last pair of frames show the last major
shift in ice dynamics from 13 to 17 April. At this time, a ma-
jor lead formed off Prince Patrick Island (PI). This was the
last stage of the changing dynamics, after which all ice south
of the PI lead exhibited a much freer anticyclonic rotation,
decoupled with the surrounding ice. Again, the largest posi-
tive TSE values were found in the spatial domain where sig-
nificant ice breakup was occurring, with lower TSE values,
hundreds of kilometers away, delimiting the fracture domain
to the north. After the 17 April fracturing, TSE values remain
relatively low compared to these distinct peaks, similar to the
behavior of the MOSAiC buoys during the disintegration of
the ice floe in Sect. 4.2.

One specific benefit displayed in this example is the sig-
nificant spatial extent of the large positive TSE values prior
to each fracture in the Beaufort Gyre. Not only was the edge
of the gyre identified in the gap between positive and nega-
tive TSEs, but a positive TSE was also found 1000 km from
the Prince Patrick and Banks Island fractures on the western
edge of the gyre. This supports the ability of TSEs to identify
the Lagrangian coherent structures in the mobile pack ice as
a whole, not just locally highlight a fracture.

5 Conclusions

We find that TSEs successfully identify significant local ma-
terial deformation tangent to individual sea ice buoy trajec-
tories. Periods of strong local stretching are representative
of changing ice dynamics in a neighborhood to 10–1000 km.
That is, though TSEs are local in nature, their values pro-
vide insight into much larger coherent sea ice structures and
distant fracture events. This local–regional connection pro-
vides a valuable avenue for researching sea ice dynamics
in sparsely sampled regions and understanding the changing
rheology of sea ice. In contrast, conventional polygon-based
approaches provide an estimate of the spatial average of di-
vergence, shear, or deformation over an ice volume, with er-
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Figure 9. (a) Time series of TSEs for buoys in the Beaufort Sea from October 2016–2017, with mean shown in black. Red points correspond
to local maxima of TSEs as the ice breaks into a state of free drift. (b–d) The three steps of the Beaufort Gyre sea ice freeing itself from
surrounding ice beginning its spring anticyclonic acceleration, corresponding with the three highlighted TSE spikes in (a). Before and
after brightness temperature images show the significant fractures at the northern coast of Alaska (b), Banks Island (c), and Prince Patrick
Island (d).

rors increasing as the area decreases, the number of buoys
decreases, or the array becomes skewed.

Approaching sea ice dynamics through quasi-objective
stretching, we were able to capture coherent deformation
events in concentrated and sparsely sampled buoy experi-
ments. Spatial and temporal signatures of stretching with
TSEs are well correlated with formation of nearby leads
and changing ice transport patterns, as well as with the con-
currence of well studied sea-ice-impacting storms. For two
high-resolution midwinter buoy deployments, we find that
the TSEs had greater sensitivity to sea ice deformation than
the common polygonal approach and potentially avoided a
false positive identification.

Specifically, large TSE values coincided with major
storms in the N-ICE2015 experiment and did not identify a
mysterious storm-free dynamic ice event that was described

by Itkin et al. (2017). For the first half of the MOSAiC ex-
periment, we found a good qualitative agreement between
polygon-based metrics and the TSEs, though this correla-
tion was much weaker following a large midwinter storm.
During this latter half, we verified TSEs were able to iden-
tify an influential stretching event that was much less evident
with Green’s theorem methods. Lastly, TSEs were able to
spatially and temporally isolate major fracture events dur-
ing Beaufort Sea ice breakup using IABP data at a much
lower spatial resolution. A buildup of stress in the Beau-
fort Sea was detailed by increasing local TSE maxima, un-
til an initial separation formed at the land-fast ice during the
seasonal TSE peak. During subsequent diminishing peaks,
the ice fractured and further detached from land-fast regions,
creating a coherent mass of rotating ice that was delimited
spatially with TSEs. TSE events with increasing amplitude
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preceded spring breakup events in both high-resolution MO-
SAiC and sparsely sampled IABP data. This suggests the
predictive abilities of TSEs may possibly be developed with
further investigation.

The single-buoy quasi-objective trajectory-stretching ex-
ponents (TSEs) identify dynamic sea ice events that are po-
tentially significant in terms of understanding spatially and
temporally varying sea ice deformation. As sea ice dynamics
plays an important role in atmosphere–ice–ocean exchange
processes, we find the further event-detection sensitivities
possible with TSEs are a valuable complement to common,
polygon-based divergence, shear, and deformation approxi-
mations. We find TSE usage provides some distinct advan-
tages and potential improvements for future research:

1. TSEs identify deformation events from a single buoy
and are thus unaffected by buoy array geometry or the
number of buoys deployed. As buoys passively follow
ice floes, we can still obtain insights into ice dynamics
as arrays become heavily skewed and non-uniform. The
TSE maintains integrity in this situation, whereas arrays
of buoys become aligned and unsuitable for strain esti-
mates due to shearing in the ice pack. This expands the
domain of potential analysis and reduces logistical bur-
dens of Arctic and Antarctic expeditions as stretching
dynamics can be studied with TSEs from linear, ran-
domly distributed, or organized arrays. This is particu-
larly valuable for the Antarctic, where there are signifi-
cantly fewer buoys deployed than in the Arctic.

2. As TSEs are quasi-objective metrics in continua, their
values provide a useful proxy for frame-indifferent (ob-
jective) measures of stretching, with a quantitative dif-
ference depending on the compressibility of the ice and
slowly varying nature of the flow. In a heavily fractured
ice context, the degree to which these single-trajectory
metrics approximates along-trajectory ice stretching
varies, but this work suggests positive correlations with
remotely sensed dynamic fracture and breakup events.
Further numerical and observational experiments can
help improve these correlations.

3. TSE values do not need to be separated or averaged
based on length scales (e.g., Itkin et al., 2017) and
showed great success in identifying fracture regions at a
wide range of spatial scales.

4. TSE calculations are mathematically simple as the TSE
is calculated using only buoy speed and does not require
projection to orthogonal velocity components. Speed
can be calculated using geodesics between GPS loca-
tions, which prevents any inconsistencies of results due
to choice of map projection or projection distortions,
or needing to perform differential calculus in an ellip-
tic geometry. Furthermore, the TSE is parameter-free,
with integration time being the only user-chosen value.

Calculating TSEs from single buoy trajectories requires sig-
nificantly less effort than SAR-based approaches, is not sub-
ject to the same errors (e.g., Bouchat and Tremblay, 2020),
and also supplements data in the pole hole during winter
(e.g., Krumpen et al., 2021). If we can further verify the
slowly varying nature of sea ice at sub-diurnal timescales,
TSEs may also fill in temporal gaps due to the sparse moni-
toring of satellites. Calculating TSE fields from more general
feature trajectories, such as from X-band and high-frequency
(HF) radar or SAR datasets, would be a straightforward ap-
plication of Eqs. (8) and (9) and can also enrich the analysis
of sea ice dynamics in existing datasets.

The ability of TSEs to overcome some of the shortcom-
ings of other buoy approaches may also provide an addi-
tional source of deformation information, such as is neces-
sary to constrain and improve sea ice models (Bouchat and
Tremblay, 2020). To obtain rate-of-strain invariants for sea
ice deformation, it is still necessary to use a high-density
buoy array. Such an array also reveals gradients of trajectory
stretching and further enhances precise stretching localiza-
tion with TSEs. A modeling study of compressibility, slowly
varying impacts, and sampling frequency would be useful
for TSE applications in model development, as would a fur-
ther comparison with divergence, deformation, and shear to
aid the broader community in the physical interpretation of
TSE signals. This would help interpret TSEs as complemen-
tary sources of stretching information when buoy arrays are
aligned linearly due to strong shear, have edges that span
large distances encompassing multiple fractures or coherent
structures, or have areas below tolerable error thresholds. In
remote polar regions where data are still difficult to obtain,
but the changing climate has an outsized impact, TSEs pro-
vide new physics-based insights into ice dynamics while only
requiring single GPS tracks.

Our findings suggest that spatiotemporal analysis of lo-
cal and regional sea ice dynamics should be revisited with
a comparison between single-trajectory and spatial veloc-
ity gradients. Our comparisons suggest potentially significant
dynamic events in terms of understanding atmosphere–ice–
ocean exchange processes may go undetected using conven-
tional polygon-based methods or, in the case of N-ICE data,
may be inaccurately detected. This advantage stems from the
TSEs’ ability to identify stretching in a small neighborhood
of individual buoys and connect local changes with broader
ice behavior. A deeper understanding of TSEs connection to
more broadly used ice dynamics metrics will help researchers
understand how TSEs can inform ice responses to various
forcings.

Appendix A: Introduction

The first section of the Appendix develops the rigorous con-
nection of trajectory-stretching exponents to more common
deformation diagnostics through the rate-of-strain tensor and
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Cauchy–Green strain tensor. The second section of the Ap-
pendix provides a simple analytic example of buoy motion
to illuminate Green’s theorem estimation errors for a buoy-
array diagnostic. This example shows how Green’s theo-
rem approximation fails to provide self-consistent divergence
quantification (in a divergence-free flow), depending on equi-
lateral triad orientation. The last section of the Appendix pro-
vides an assessment of the assumption that sea ice is a slowly
varying flow to satisfy criteria for the quasi-objectivity of
TSEs.

A1 Relating TSEs to shear and divergence

A1.1 Background

From the gradient of a two-dimensional velocity field v(x, t),

∇v =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
,

we can define the rate-of-strain tensor

S(x, t)=
1
2
(∇v+∇vT ). (A1)

We can express the common Eulerian sea ice deformation
metrics, divergence, and shear, as functions of the eigenval-
ues (principal stresses) of Eq. A1:

div= tr(S)= λ1+ λ2 (A2)

shr=
√

tr(S)2− 4det(S)=
√
(λ1− λ2)2− 2λ1λ2 (A3)

D =
√

shr2
+ div2. (A4)

To quantify the deformation of a material over time, one
considers the flow map

F tt0(x0)= x(t; t0,x0) (A5)

that takes an initial position x0 to its current position
x(t; t0,x0) following the trajectory defined by the different
equation

ẋ = v(x, t).

From the gradient of the flow map, we define the right
Cauchy–Green strain tensor as

C(x0)= [∇F
t
t0
(x0)]

T
∇F tt0(x0). (A6)

Invariants of C are commonly used to study the deforma-
tion of material in continuum mechanics (Truesdell and Noll,
2004). In an incompressible two-dimensional flow, the rate of
length change for an infinitesimal material element vector l
based at the point x is

1
2

d
dt
|l|2 = 〈l,S(x, t)l〉. (A7)

Likewise, consider a curve γ parameterized by the
dummy-time variable s that is evolving under the flow map,
F tt0(x0). This could represent the evolution of a line of dye
in a fluid or a physical transect along sea ice. A vector ξ0
tangent to γ at x0 evolves as ξ t =∇F

t
t0
ξ0. It then follows

that

|ξ t |
2
= 〈∇F tt0(x0)ξ0,∇F

t
t0
(x0)ξ0〉 = 〈ξ0,C

t
t0
ξ0〉. (A8)

In the case that l or ξ0 are eigenvectors of their respective
tensors, Eqs. (A7) and (A8) equal the respective eigenval-
ues λi , which represent the stretching of an infinitesimally
small sphere into an ellipse along its principal axes (Haller,
2015). When ξ0 is the eigenvector associated with the larger
Cauchy–Green eigenvalue, λ2, one easily obtains the widely
used finite-time Lyapunov exponent,

FTLE=
1

t1− t0
log(λ2(C)).

Otherwise, one can define the averaged stretching exponent

λtt0 =
1

t − t0
log
|ξ t |

|ξ0|
, (A9)

also known as the finite-time Lyapunov exponent associated
with the initial vector ξ0. Due to the exponential growth of
fluid particle separation and chaotic nature of fluid flows, one
often utilizes stretching exponents in this context instead of
eigenvalues of deformation tensors, though they are clearly
closely related.

Lagrangian-averaged versions of shear and divergence can
also be computed as

LStt0 =
1

t − t0

t∫
t0

shr(x(s))ds,

LADtt0 =
1

t − t0

t∫
t0

div(x(s))ds, (A10)

respectively. LAD was previously used by Szanyi et al.
(2016a) to differentiate between different contributions to the
FTLE at pan-Arctic scales.

To calculate the rate-of-strain tensor, once must calculate
spatial derivatives of the velocity field. Similarly, the right
Cauchy–Green strain tensor requires the spatially and tem-
porally resolved velocity field information to accurately cal-
culate the gradient of the flow map. These sorts of spatially
and temporally resolved velocity data are unavailable from
sparse buoy trajectories. TSEs are designed to complement
deformation metrics in sparse data settings.

Consider a trajectory x(t). One can calculate the La-
grangian velocity vector along the trajectory

v(t)= v(x(t))= ẋ(t),
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but we do not have any information about nearby velocities.
Haller et al. (2021) show that, in a reference frame where the
velocity field is steady (does not change with time), x(t) is a
material curve, and v(t) evolves as a tangent vector to the tra-
jectory. Thus the stretching of v(t) is a measure of material
stretching along the trajectory, and we can closely approxi-
mate the averaged stretching exponent in that frame without
the need of spatial derivatives. That is, in a steady flow (no
time dependence), the TSE measures the correct stretching of
Lagrangian velocity vectors as they materially evolve in that
reference frame, as determined by the gradient of the flow
map.

The instantaneous limit of TSEs corresponds with the
analogous Eulerian rate of length change (Eq. A7) for the
choice of vector l = v(t0). In the following examples we
highlight the ability of TSEs and TSE to delineate distinct co-
herent flow features without the use of spatial derivatives and
compare their behavior with other diagnostics. These models
are idealized flows without many of the complication from
sea ice motion. That is, they represent steady-flow incom-
pressible flow fields of a continuous medium and are thus
ideal for comparing these diagnostics.

A1.2 Examples

For our first example, we compare Eulerian and Lagrangian
diagnostics for the widely studied model of geophysical fluid
flow (see, e.g., Rypina et al., 2007), the steady Bickley flow.
The stream function of the flow is given by

ψ(x1,x2)= cx2−U0Ltanh(x2/L)

+AU0Lsech2(x2/L)coskx1, (A11)

where we use the geophysically based parameters U0 =

62.66×10−6, L= 1.77, c = U0/2, A= 0.1, r0 = 6.371, k =
6/r0. As the velocity field is derived from the stream func-
tion, the velocity field is divergence-free. The flow consists
of a central westward jet, two eastward jets above and below,
and clockwise vortices. Figure A1 shows streamlines and ve-
locity vectors for this flow, as well as divergence, shear, and
vorticity fields calculated on a 500× 150 grid. Note that the
div= 0 by design and that the vortex cores align when com-
paring streamlines and vorticity contours. Shear (Fig. A1c)
shows a shear-free core and high shear regions adjacent to
the jet and vortices, though contours of shear do not agree
with the topology suggested by the streamlines or vorticity.
This indicates that shear is not a good indicator of the edges
of all coherent structures.

Figure A2 details TSE and TSE fields for a 500× 150 grid
of initial conditions, calculated from a trajectory integration
time of 90 d. We also calculate LS (see Eq. A10; Fig. A2c)
for each trajectory x(s). For brevity we omit LAD as the flow
is divergence-free.

Contours of TSEs or TSE organize particles with simi-
lar trajectory stretching and reveal coherent structures of the

flow. Note that both TSE and TSE can identify the edges of
the central jet and eddies as shown in the streamlines of this
steady flow. TSE also reveals where cumulative trajectory-
tangent stretching is greatest, near the edges of the eddies.
TSE provides intricate stretching and compression informa-
tion surrounding the vortex cores and hyperbolic saddles,
suggesting a complex stretch–relax cycle for material in the
flow. The LS also does a much better job than Eulerian shear
to extract the boundaries of each feature and also highlights
the stronger shear near the edges of the central jet.

These underlying structures and their subsequent influence
on sea ice deformation is exactly the kind of information that
TSEs provide for sea ice dynamics analysis. As can be seen,
mathematically there is limited relationship between the Eu-
lerian metrics (Eqs. A2–A4) and the stretching exponents
(Eq. A9), particularly because ξ is not necessarily aligned
with the eigenvectors of S. Qualitatively, one can see there
is no relation between div and TSEs for this simple example
and very limited similarity with shear, except when evaluat-
ing a Lagrangian average (LS).

We also examine the influence of integration time on TSEs
for this steady flow. In Fig. A3, we increase the integration
time of particle trajectories from 1 to 30 d and plot TSE and
TSE contours. The eddies, saddles between eddies, and cen-
tral jet are evident for all integration times, but the clarity
of boundaries increases as integration time increases. Note
this improvement is not always possible with time-dependent
flows as features may change. In more complex turbulent
flows, such clarity at higher integration times can also be
hindered by trajectories traveling near multiple uncorrelated
coherent structures.

For our second example we use, there is in fact no reliable
relationship to be inferred between TSEs and shear with a
simple divergent flow:

v1 = x1 (A12)
v2 = x2. (A13)

It is easy to analytically calculate that shear and vorticity
are constantly zero, and divergence is uniformly equal to 2.
This is reflected in the contour plots of Fig. A4. Stretching
is also constant along trajectories in this flow due to the lin-
ear acceleration away from the origin. In this way, TSEs and
TSE reveal the same uniform deformation structures as the
divergence field (Fig. A5). As shear is zero everywhere, the
LS is also zero and reveals the same uniform structure as the
TSEs, divergence, and LAD.

A1.3 Conclusion

The previous mathematical exposition and examples show
there is no simple relationship between TSEs and TSE with
div, shr, or vorticity. This is in part because TSEs and TSE are
Lagrangian metrics, measuring material deformation over
time, whereas div, shr, and vorticity are Eulerian, relying only
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on instantaneous rates of change at one point in time. TSEs
and TSE do not approximate div, shr, or vorticity.

As such, TSE and TSE fields are most successfully used
for identifying dynamic flow features, such as the edge of a
gyre or deformation across a jet. This stems from an integra-
tion of temporal changes in material stretching along a trajec-
tory. As such, Lagrangian-averaged shear also revealed more
about the flow structures than Eulerian shear. Temporal anal-
ysis of TSE and TSE time series, as conducted in the research
presented here, reveals changes in deformation immediately
around x(t) as a buoy transitions from one flow feature to an-
other. For an additional in-depth comparison with TSEs and
TSE and other Lagrangian metrics, one is referred to Haller
et al. (2021).

A2 Trapezoid rule errors for buoy arrays in a
continuous flow

Consider the incompressible 2D flow

u(x,y)=−y2, v(x,y)= x2. (A14)

One finds ∂u/∂x(x,y)= ∂v/∂y(x,y)= 0, and
div(x,y)≡ 0. Consider also the equilateral triangle formed
by three buoys positioned on the unit circle, (xb1,yb1)=

(cos(π2 ),sin(π2 )), (xb2,yb2)= (cos( 7π
6 ),sin( 7π

6 )),
(xb3,yb3)= (cos(−π6 ),sin(−π6 )). We estimate the “Green’s
theorem divergence” for this triad as divG =−0.5. Though
this flow is entirely divergence-free, the value of divG is
sensitive to the triad’s rotation on the unit circle. Figure A6c
shows the range of divG as the triad is rotated. Depending
on how the vertices are oriented, this approach will suggest
either a divergent or convergent flow, with the correct value
only appearing for two specific orientations.

In contrast to errors that have been discussed and quanti-
fied before (e.g., Lindsay and Stern, 2003; Hutchings et al.,
2012; Dierking et al., 2020), this issue arises from the ap-
proximation of the partial derivative contour integrals by the
trapezoid rule. For a generic real-valued twice-differentiable
function f (x) defined on the interval [a,b] ⊂ R, the differ-
ence between the true integral and trapezoid rule is bounded
by (Atkinson, 1989)

E =−
(b− a)3

12
f ′′(y) y ∈ [a,b]. (A15)

That is, the potential error of each partial derivative scales
with the cube of the distance between buoys and the second
derivative of the associated velocity component along that
interval. If we increase the number of uniformly distributed
buoys on the unit circle in this velocity field, we find the av-
erage divergence approximation inside the polygons quickly
converges to the true value (Fig. A6b). In fact, using a four-
sided polygon can significantly reduce the error for this sim-
ple flow, as an equal number of buoys can be positioned on ei-
ther side of the axis-dominant flow structure (Fig. A6a). This

improvement can be expected for other flows as well, though
more complex flow structures would require a greater num-
ber of vertices to avoid these same errors. Analogous errors
are evident in Green’s theorem approximations of shear and
total deformation as well, reminding researchers to consider
the number of buoys and methods used when quantifying sea
ice dynamics.

A3 Slowly varying condition of sea ice

The TSE is a quasi-objective metric, indicating it approxi-
mates an objective metric under a given condition. For the
work presented here, this requires that the velocity field of in-
terest be slowly varying. That is, |vt (x(t), t)| � |a(t)|, where
a(t) is the Lagrangian velocity. In order to calculate the tem-
poral derivative on the temporal derivative in vt , we rely on
daily gridded sea ice velocity data from Tschudi et al. (2018)
as a best estimate for the flow. While one can calculate a(t)
from trajectory data, discrete calculations of vt (x(t), t) rely
on repeat measurements of velocity at the same location. In
this way, we require gridded velocity data to validate the
slowly varying assumption.

The use of Pathfinder sea ice displacement grids comes
with its own errors, such as the spatial gradient artifacts pre-
viously identified by Szanyi et al. (2016a). Furthermore, the
low temporal resolution of this data smooths the short-time
variability of surrounding instantaneous shear and fracture
events. Prior to the development of a more robust gridded
dataset of ice velocities, this remains the best available op-
tion.

The probability function in Fig. A7 shows that for the ma-
jority of the Arctic domain, the slowly varying condition is
satisfied pointwise along sea ice trajectories. This probability
is representative of midwinter ice conditions and may vary in
the summer months. As this is a pointwise ratio, and not an
integrated comparison, the slowly varying condition does not
depend on a specific time window, the resolution of the un-
derlying Pathfinder velocity field.
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Figure A1. (a) Streamlines and velocity vectors for the geophysi-
cal Bickley jet. (b) The flow is designed to be divergence-free, as
can be verified by a uniform divergence value of zero. (c) Instan-
taneous values of shear indicate strong shear zones adjacent to the
top and bottom eddies and a narrow shear-free core. (d) Vorticity
fields correctly identify the centers of the eddies above and below
the jet. Note that the contours of shear do not agree with the shape
of eddies in (a) and (d).

Figure A2. (a) TSE values show a complex stretch–relax pattern in
the Bickley jet but still accurately identify the edges of each eddy as
well as the central jet. (b) TSE contours clearly reveal the central jet
and the adjacent eddies. There is limited trajectory-tangent stretch-
ing in the central jet, with a slight increase near the boundaries.
(c) Lagrangian-averaged shear also reveals the multiple eddies and
central jet, in contrast to Eulerian shear measurements. Lagrangian-
averaged divergence is omitted as it is zero everywhere.
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Figure A3. Comparison of TSE and TSE contours for increasing integration times from 1 to 30 d (L to R) for a subsection of the Bickley
jet. The eddies, saddles between eddies, and central jet are evident for all integration times, but the clarity of boundaries increases as the
integration time increases. Note this improvement is not always possible with time-dependent flows as features may change.

Figure A4. (a) Streamlines and velocity vectors for the divergent flow (Eq. A13). (b) The flow is designed to be uniformly divergent with a
divergence value of 2. (c) Instantaneous values of zero shear. (d) Vorticity fields are also uniformly zero.
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Figure A5. (a–b) TSEs and TSE show uniform stretching due to the uniform linear acceleration away from the origin. This matches the
structure revealed by the uniform divergence field. (c) Lagrangian-averaged divergence is also constant, thus presenting the same pattern as
TSEs and TSE. The LS is omitted as it is constantly zero in this shear-free flow.

Figure A6. (a) Streamlines for the flow in Eq. (A14) with one example triad position (red) and unit circle of rotation (blue). (b) Average
divergence as approximated by unit polygons as a function of the number of vertices used in the approximation. (c) Average divergence as
approximated by a unit equilateral triad for all possible rotations, with divergence corresponding to (a) the triad in red.

Figure A7. Example assessment of the slowly varying assumption of Arctic sea ice velocities from Polar Pathfinder Daily 25 km EASE-Grid
Sea Ice Motion Vectors, Version 4. |vt (x(t), t)|/|a(t)| calculated from 50 d of gridded sea ice trajectories surrounding the analysis in 2017
shown in Fig. 9.
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Code availability. MATLAB scripts for calculating trajectory-
stretching exponents can be found at https://doi.org/10.5281/
zenodo.7796274 (Aksamit, 2023).

Data availability. The ocean flow data used for Figs. 1 can
be obtained from AVISO (https://doi.org/10.24381/cds.4c328c78,
Copernicus Climate Change Service, 2018). The MOSAiC drifter
data (Bliss et al., 2021) are available at https://doi.org/10.18739/
A2Q52FD8S, the N-ICE2015 data (Itkin et al., 2015) are avail-
able at https://doi.org/10.21334/npolar.2015.6ed9a8ca, the IABP
data (International Arctic Buoy Programme, 2022) are available
at http://iabp.apl.uw.edu/data.html, the AMSR data (Meier et al.,
2018) are available at https://doi.org/10.5067/NX1R09ORNOZN,
and the Sentinel-1 data (Copernicus, 2020) are available at https:
//asf.alaska.edu/data-sets/sar-data-sets/sentinel-1/.

Video supplement. The supplemental videos provide a NASA
Worldview animation and TSE buoy animation of the Beaufort Sea
ice breakup detailed in Sect. 3.3. The animations can be viewed
at https://youtu.be/WHCsOaL4Nks (NASA Worldview, 2022) and
https://youtu.be/l2tOJSnTfSY (Aksamit, 2022).
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