Articles | Volume 16, issue 7
https://doi.org/10.5194/tc-16-2819-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2819-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula
Philipp Bernhard
CORRESPONDING AUTHOR
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
Simon Zwieback
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Irena Hajnsek
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
Microwaves and Radar Institute, German Aerospace Center (DLR) e.V., 82234 Wessling, Germany
Related authors
Kathrin Maier, Zhuoxuan Xia, Lin Liu, Mark J. Lara, Jurjen van der Sluijs, Philipp Bernhard, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2187, https://doi.org/10.5194/egusphere-2025-2187, 2025
Short summary
Short summary
Our study explores how thawing permafrost on the Qinghai-Tibet Plateau triggers landslides, mobilising stored carbon. Using satellite data from 2011 to 2020, we measured soil erosion, ice loss, and carbon mobilisation. While current impacts are modest, increasing landslide activity suggests future significance. This research underscores the need to understand permafrost thaw's role in carbon dynamics and climate change.
Shiyi Li, Lanqing Huang, Philipp Bernhard, and Irena Hajnsek
The Cryosphere, 19, 1621–1639, https://doi.org/10.5194/tc-19-1621-2025, https://doi.org/10.5194/tc-19-1621-2025, 2025
Short summary
Short summary
This work presents an improved method for seasonal wet snow mapping in Karakoram using synthetic aperture radar (SAR) data and topographic data. This method enables robust wet snow classification in complex mountainous terrain. Large-scale wet snow maps were generated using the proposed method, covering three major water basins in Karakoram over 4 years (2017–2021). Crucial snow variables were further derived from the maps and provided valuable insights on regional snow melting dynamics.
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Short summary
We present an investigation of retrogressive thaw slumps in 10 study sites across the Arctic. These slumps have major impacts on hydrology and ecosystems and can also reinforce climate change by the mobilization of carbon. Using time series of digital elevation models, we found that thaw slump change rates follow a specific type of distribution that is known from landslides in more temperate landscapes and that the 2D area change is strongly related to the 3D volumetric change.
Kathrin Maier, Zhuoxuan Xia, Lin Liu, Mark J. Lara, Jurjen van der Sluijs, Philipp Bernhard, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2187, https://doi.org/10.5194/egusphere-2025-2187, 2025
Short summary
Short summary
Our study explores how thawing permafrost on the Qinghai-Tibet Plateau triggers landslides, mobilising stored carbon. Using satellite data from 2011 to 2020, we measured soil erosion, ice loss, and carbon mobilisation. While current impacts are modest, increasing landslide activity suggests future significance. This research underscores the need to understand permafrost thaw's role in carbon dynamics and climate change.
Shiyi Li, Lanqing Huang, Philipp Bernhard, and Irena Hajnsek
The Cryosphere, 19, 1621–1639, https://doi.org/10.5194/tc-19-1621-2025, https://doi.org/10.5194/tc-19-1621-2025, 2025
Short summary
Short summary
This work presents an improved method for seasonal wet snow mapping in Karakoram using synthetic aperture radar (SAR) data and topographic data. This method enables robust wet snow classification in complex mountainous terrain. Large-scale wet snow maps were generated using the proposed method, covering three major water basins in Karakoram over 4 years (2017–2021). Crucial snow variables were further derived from the maps and provided valuable insights on regional snow melting dynamics.
Sara-Patricia Schlenk, Georg Fischer, Matteo Pardini, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2024-3474, https://doi.org/10.5194/egusphere-2024-3474, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) revealed ice features of unknown glaciological origin in southwest Greenland’s ablation zone. Using SAR techniques, we identified low-backscatter areas with surface scattering, in contrast to surrounding high-backscatter areas with scattering from the subsurface. Our first theory relates the low backscatter to residual liquid water in a weathering crust and the surrounding to bare glacier ice. These findings may deepen our understanding of ablation zone properties.
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024, https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Short summary
Interferometric synthetic aperture radar can measure the total freeboard of sea ice but can be biased when radar signals penetrate snow and ice. We develop a new method to retrieve the total freeboard and analyze the regional variation of total freeboard and roughness in the Weddell and Ross seas. We also investigate the statistical behavior of the total freeboard for diverse ice types. The findings enhance the understanding of Antarctic sea ice topography and its dynamics in a changing climate.
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023, https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Short summary
In cold regions of the Earth, thawing permafrost can change the landscape, impact ecosystems, and lead to the release of greenhouse gases. In this study we used many observational tools to better understand how sediment moves on permafrost hillslopes. Some topographic change conforms to our understanding of slope stability and sediment transport as developed in temperate landscapes, but much of what we observed needs further explanation by permafrost-specific geomorphic models.
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022, https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Short summary
The coherent backscatter opposition effect can enhance the intensity of radar backscatter from dry snow by up to a factor of 2. Despite widespread use of radar backscatter data by snow scientists, this effect has received notably little attention. For the first time, we characterize this effect for the Earth's snow cover with bistatic radar experiments from ground and from space. We are also able to retrieve scattering and absorbing lengths of snow at Ku- and X-band frequencies.
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Short summary
We present an investigation of retrogressive thaw slumps in 10 study sites across the Arctic. These slumps have major impacts on hydrology and ecosystems and can also reinforce climate change by the mobilization of carbon. Using time series of digital elevation models, we found that thaw slump change rates follow a specific type of distribution that is known from landslides in more temperate landscapes and that the 2D area change is strongly related to the 3D volumetric change.
Lanqing Huang, Georg Fischer, and Irena Hajnsek
The Cryosphere, 15, 5323–5344, https://doi.org/10.5194/tc-15-5323-2021, https://doi.org/10.5194/tc-15-5323-2021, 2021
Short summary
Short summary
This study shows an elevation difference between the radar interferometric measurements and the optical measurements from a coordinated campaign over the snow-covered deformed sea ice in the western Weddell Sea, Antarctica. The objective is to correct the penetration bias of microwaves and to generate a precise sea ice topographic map, including the snow depth on top. Excellent performance for sea ice topographic retrieval is achieved with the proposed model and the developed retrieval scheme.
Simon Zwieback and Franz J. Meyer
The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021, https://doi.org/10.5194/tc-15-2041-2021, 2021
Short summary
Short summary
Thawing of ice-rich permafrost leads to subsidence and slumping, which can compromise Arctic infrastructure. However, we lack fine-scale maps of permafrost ground ice, chiefly because it is usually invisible at the surface. We show that subsidence at the end of summer serves as a
fingerprintwith which near-surface permafrost ground ice can be identified. As this can be done with satellite data, this method may help improve ground ice maps and thus sustainably steward the Arctic.
Cited articles
Abbott, B. W. and Jones, J. B.: Permafrost collapse alters soil carbon stocks,
respiration, CH4, and N2O in upland tundra, Glob. Change Biol., 21,
4570–4587, https://doi.org/10.1111/gcb.13069, 2015. a
Alexanderson, H., Adrielsson, L., Hjort, C., Möller, P., Antonov, O.,
Eriksson, S., and Pavlov, M.: Depositional history of the North Taymyr
ice-marginal zone, Siberia – a landsystem approach, J. Quaternary
Sci., 17, 361–382,
https://doi.org/10.1002/jqs.677, 2002. a, b, c
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S.,
Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The
configuration of Northern Hemisphere ice sheets through the Quaternary,
Nat. Commun., 10, 1–10, https://doi.org/10.1038/s41467-019-11601-2, 2019. a
Bernhard, P.: Dataset for “Accelerated Mobilization of Organic Carbon from Retrogressive Thaw Slumps on the Northern Taymyr Peninsula”, ETH Zurich [data set], https://doi.org/10.3929/ethz-b-000529493, 2022. a
Bernhard, P., Zwieback, S., Leinss, S., and Hajnsek, I.: Mapping
Retrogressive Thaw Slumps Using Single-Pass TanDEM-X Observations,
IEEE J. Sel. Top. Appl.,
13, 3263–3280, https://doi.org/10.1109/JSTARS.2020.3000648, 2020. a, b, c, d
Bernhard, P., Zwieback, S., Bergner, N., and Hajnsek, I.: Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic, The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, 2022. a, b, c
Boggs, P. T. and Rogers, J. E.: Orthogonal Distance Regression, Statistical
analysis of measurement error models and applications: proceedings of the
AMS-IMS-SIAM joint summer research conference, Snowbird, Utah, 10–16 June 1989, 112–186, 1990. a
Boyd, D. W.: Normal freezing and thawing degree-days from normal monthly
temperatures, Can. Geotech. J., 13, 176–180, 1976. a
Bröder, L., Keskitalo, K., Zolkos, S., Shakil, S., Tank, S. E., Kokelj, S. V.,
Tesi, T., Van Dongen, B. E., Haghipour, N., Eglinton, T. I., and Vonk, J. E.:
Preferential export of permafrost-derived organic matter as retrogressive
thaw slumping intensifies, Environ. Res. Lett., 16, 054059,
https://doi.org/10.1088/1748-9326/abee4b,
2021. a
Cassidy, A. E., Christen, A., and Henry, G. H.: Impacts of active retrogressive
thaw slumps on vegetation, soil, and net ecosystem exchange of carbon dioxide
in the Canadian High Arctic, Arctic Science, 3, 179–202,
https://doi.org/10.1139/as-2016-0034, 2017. a
Chen, Y.-C., Chang, K.-T., Wang, S.-F., Huang, J.-C., Yu, C.-K., Tu, J.-Y.,
Chu, H.-J., and Liu, C.-C.: Controls of preferential orientation of
earthquake- and rainfall-triggered landslides in Taiwan's orogenic mountain
belt, Earth Surf. Proc. Land., 44, 1661–1674,
https://doi.org/10.1002/esp.4601, 2019. a
Clauset, A., Shalizi, C. R., and Newman, M. E.: Power-law distributions in
empirical data, SIAM Rev., 51, 661–703, https://doi.org/10.1137/070710111, 2009. a
Couture, N. and Pollard, W.: An assessment of ground ice volume near Eureka,
Northwest Territories, in: Proceedings of the 7th International Permafrost
Conference, Yellowknife, NT, 23–27 June 1998, 23–27, 1998. a
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F.,
Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical
High-Resolution Mission for GMES Operational Services, Remote Sens.
Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031,
2017. a
Grosse, G., Harden, J., Turetsky, M., McGuire, A. D., Camill, P., Tarnocai, C.,
Frolking, S., Schuur, E. A., Jorgenson, T., Marchenko, S., Romanovsky, V.,
Wickland, K. P., French, N., Waldrop, M., Bourgeau-Chavez, L., and Striegl,
R. G.: Vulnerability of high-latitude soil organic carbon in North America
to disturbance, J. Geophys. Res.-Biogeo., 116, G4,
https://doi.org/10.1029/2010JG001507, 2011. a
Grosval'd, M. G., Vtyurin, B. I., Sukhodrovskiy, V. L., and Shishorina, Z. G.:
Underground ice in Western Siberia: Origin and geological significance, Polar Geography and Geology, 10, 173–183, https://doi.org/10.1080/10889378609377286, 1986. a
Hjort, C., Fedorov, G., Funder, S., and Onishev, A.: Taymyr quaternary geology
2002-The glaciers did not always come from the Kara Sea, edited by: Rickberg, S., Polarforskningssekretariatet, Årsbok, 80–84, 2002. a
Hjort, C., Möller, P., and Alexanderson, H.: Weichselian glaciation of the
Taymyr Peninsula, Siberia, in: Quaternary Glaciations – Extent and Chronology, vol. 1, edited by: Ehlers, J. and Gibbard, P. L., Europe, 359–367, Elsevier, Amsterdam, 2004. a
Huang, L., Luo, J., Lin, Z., Niu, F., and Liu, L.: Using deep learning to map
retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from
CubeSat images, Remote Sens. Environ., 237, 111534,
https://doi.org/10.1016/j.rse.2019.111534, 2020. a
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014. a
Jones, M. K. W., Pollard, W. H., and Jones, B. M.: Rapid initialization of
retrogressive thaw slumps in the Canadian high Arctic and their response to
climate and terrain factors, Environ. Res. Lett., 14, 055006,
https://doi.org/10.1088/1748-9326/ab12fd, 2019. a, b
Jorgenson, M. and Osterkamp, T.: Response of boreal ecosystems to varying modes
of permafrost degradation, Can. J. Forest Res., 35,
2100–2111, 2005. a
Kay, S. M.: Fundamentals of Statistical Signal Processing: Estimation Theory,
Prentice-Hall, Inc., 1993. a
Khomutov, A., Leibman, M., Dvornikov, Y., Gubarkov, A., Mullanurov, D., and
Khairullin, R.: Activation of Cryogenic Earth Flows and Formation of
Thermocirques on Central Yamal as a Result of Climate Fluctuations, in:
Advancing Culture of Living with Landslides, edited by: Mikoš, M.,
Vilímek, V., Yin, Y., and Sassa, K., 209–216, Springer International
Publishing, Cham, https://doi.org/10.1007/978-3-319-53483-1_24, 2017. a
Kokelj, S., Tunnicliffe, J., Lacelle, D., Lantz, T. C., and Fraser, R. H.:
Retrogressive thaw slumps: From slope process to the landscape sensitivity
of northwestern Canada, 68e Conférence Canadienne de
Géotechnique et 7e Conférence Canadienne sur le Pergélisol,
20–23 September 2015, Québec, 2015. a, b, c
Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R., and Lacelle, D.:
Climate-driven thaw of permafrost preserved glacial landscapes, northwestern
Canada, Geology, 45, 371–374, https://doi.org/10.1130/G38626.1, 2017. a
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., and
Zink, M.: TanDEM-X: A satellite formation for high-resolution SAR
interferometry, IEEE T. Geosci. Remote,
45, 3317–3340, https://doi.org/10.1109/TGRS.2007.900693, 2007. a, b, c
Lacelle, D., Bjornson, J., and Lauriol, B.: Climatic and geomorphic factors
affecting contemporary (1950-2004) activity of retrogressive thaw slumps on
the Aklavik plateau, Richardson mountains, NWT, Canada, Permafrost
Periglac., 21, 1–15, https://doi.org/10.1002/ppp.666, 2010. a
Lacelle, D., Brooker, A., Fraser, R. H., and Kokelj, S. V.: Distribution and
growth of thaw slumps in the Richardson Mountains-Peel Plateau region,
northwestern Canada, Geomorphology, 235, 40–51,
https://doi.org/10.1016/j.geomorph.2015.01.024, 2015. a
Lamoureux, S. F. and Lafreniere, M. J.: Fluvial impact of extensive active
layer detachments, Cape Bounty, Melville Island, Canada,
Arct. Antarct. Alp. Res., 41, 59–68, https://doi.org/10.1657/1523-0430-41.1.59, 2009. a
Lantuit, H. and Pollard, W. H.: Temporal stereophotogrammetric analysis of retrogressive thaw slumps on Herschel Island, Yukon Territory, Nat. Hazards Earth Syst. Sci., 5, 413–423, https://doi.org/10.5194/nhess-5-413-2005, 2005. a
Lantz, T. C. and Kokelj, S. V.: Increasing rates of retrogressive thaw slump
activity in the Mackenzie Delta region, N.W.T., Canada, Geophys. Res.
Lett., 35, 6, https://doi.org/10.1029/2007GL032433, 2008. a, b
Larsen, I., Montgomery, D., and Korup, O.: Landslide erosion controlled by hillslope
material, Nat. Geosci., 3, 247–251, https://doi.org/10.1038/ngeo776, 2010. a
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J., and Slater, A.:
Permafrost thaw and resulting soil moisture changes regulate projected
high-latitude CO2 and CH4 emissions, Environ. Res. Lett., 10,
094011, https://doi.org/10.1088/1748-9326/10/9/094011, 2015. a
Leibman, M., Khomutov, A., and Kizyakov, A.: Cryogenic Landslides in the Arctic
Plains of Russia: Classification, Mechanisms, and Landforms, in: Landslide
Science for a Safer Geoenvironment, edited by: Sassa, K., Canuti, P., and Yin,
Y., 493–497, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-04996-0_75, 2014. a
Lewkowicz, A. G.: Dynamics of active-layer detachment failures, Fosheim
Peninsula, Ellesmere Island, Nunavut, Canada, Permafrost Periglac., 18, 89–103, https://doi.org/10.1002/ppp.578, 2007. a
López-Blanco, E., Exbrayat, J.-F., Lund, M., Christensen, T. R., Tamstorf, M. P., Slevin, D., Hugelius, G., Bloom, A. A., and Williams, M.: Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system, Earth Syst. Dynam., 10, 233–255, https://doi.org/10.5194/esd-10-233-2019, 2019. a
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide
inventories and their statistical properties, Earth Surf. Proc.
Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004. a
Markovsky, I. and Van Huffel, S.: Overview of total least-squares methods,
Signal Processing, 87, 2283–2302, https://doi.org/10.1016/j.sigpro.2007.04.004,
2007. a
Martone, M., Bräutigam, B., Rizzoli, P., Gonzalez, C., Bachmann, M., and
Krieger, G.: Coherence evaluation of TanDEM-X interferometric data,
ISPRS J. Photogramm., 73, 21–29,
https://doi.org/10.1016/j.isprsjprs.2012.06.006, 2012. a
McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G.,
Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., et al.:
Dependence of the evolution of carbon dynamics in the northern permafrost
region on the trajectory of climate change, P. Natl.
Acad. Sci. USA, 115, 3882–3887, https://doi.org/10.1073/pnas.1719903115, 2018. a
Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A.,
Harden, J. W., Jastrow, J. D., Ping, C.-L., Riley, W. J., Schuur, E. A. G.,
Matamala, R., Siewert, M., Nave, L. E., Koven, C. D., Fuchs, M., Palmtag, J.,
Kuhry, P., Treat, C. C., Zubrzycki, S., Hoffman, F. M., Elberling, B.,
Camill, P., Veremeeva, A., and Orr, A.: Spatial heterogeneity and
environmental predictors of permafrost region soil organic carbon stocks,
Sci. Adv., 7, eaaz5236, https://doi.org/10.1126/sciadv.aaz5236, 2021. a, b, c, d
Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M.-J., Willis, M., Bates,
B., Willamson, C., and Peterman, K.: ArcticDEM, a publically available, high
resolution elevation model of the Arctic, in: Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17–22 April 2016 EPSC2016–8396, 2016. a
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.e2161bac, last access:
4 October 2021, 2019. a, b
Murton, J. B., Edwards, M. E., Lozhkin, A. V., Anderson, P. M., Savvinov,
G. N., Bakulina, N., Bondarenko, O. V., Cherepanova, M. V., Danilov, P. P.,
Boeskorov, V., et al.: Preliminary paleoenvironmental analysis of permafrost
deposits at Batagaika megaslump, Yana Uplands, northeast Siberia, Quaternary
Res., 87, 314–330, https://doi.org/10.1017/qua.2016.15, 2017. a
Möller, P., Hjort, C., Alexanderson, H., and Sallaba, F.: Chapter 28 –
Glacial History of the Taymyr Peninsula and the Severnaya Zemlya Archipelago,
Arctic Russia, in: Quaternary Glaciations – Extent and Chronology, edited by:
Ehlers, J., Gibbard, P. L., and Hughes, P. D., 15, Developments
in Quaternary Sciences, 373–384, Elsevier,
https://doi.org/10.1016/B978-0-444-53447-7.00028-3, 2011. a, b, c
Nitze, I., Grosse, G., Jones, B., Romanovsky, V., and Boike, J.: Remote
sensing quantifies widespread abundance of permafrost region disturbances
across the Arctic and Subarctic, Nat. Commun., 9, 1–11, 2018. a
Obu, J.: How Much of the Earth's Surface is Underlain by Permafrost?, J. Geophys. Res.-Earth, 126, e2021JF006123,
https://doi.org/10.1029/2021JF006123, 2021. a
Obu, J., Westermann, S., Kääb, A., and Bartsch, A.: Ground
Temperature Map, 2000–2016, Northern Hemisphere Permafrost, PANGAEA,
https://doi.org/10.1594/PANGAEA.888600, 2018. a
Ohtani, K.: Bootstrapping R2 and adjusted R2 in regression analysis, Econ. Model., 17, 473–483, https://doi.org/10.1016/S0264-9993(99)00034-6, 2000. a
Overland, J. E. and Wang, M.: The 2020 Siberian heat wave,
Int. J. Climatol., 41, E2341–E2346, https://doi.org/10.1002/joc.6850, 2021. a
Planet-Team: Planet Application Program Interface: In Space for Life on Earth,
https://api.planet.com (last access: 12 July 2022), 2018. a
Pollard, W.: The nature and origin of ground ice in the Herschel Island area,
Yukon Territory, in: 5th Canadian Permafrost Conference, Universite Laval, Québec, 6–8 June 1990, 23–30, 1990. a
Proskurnin, V., and Gavrish, G. S., and Nagaitseva, N.: The
1:1000000 State Geological Map of the Russian Federation (3rd ed.), Ser.
Taimyr-Severnaya Zemlya, Sheet S-46 (Tareya) Explanatory Note, St.
Petersburg: Vseross, Nauchno-Issled, Geol. Inst., 2016 (in Russian). a
Ramage, J. L., Irrgang, A. M., Herzschuh, U., Morgenstern, A., Couture, N., and
Lantuit, H.: Terrain Controls on the Occurrence of Coastal Retrogressive
Thaw Slumps along the Yukon Coast, Canada, J. Geophys. Res.-Earth, 122, 1619–1634, https://doi.org/10.1002/2017JF004231, 2017. a, b
Rizzoli, P., Martone, M., Rott, H., and Moreira, A.: Characterization of snow
facies on the Greenland ice sheet observed by TanDEM-X interferometric SAR
data, Remote Sensing, 9, 315, https://doi.org/10.3390/rs9040315, 2017. a
rp5.ru: Weather archive in Cape Celjuskin, https://rp5.ru/Weather_archive_in_Cape_Celjuskin (last access: 12 July 2022),
2022a. a
rp5.ru: Weather archive in Sterlegov (cape), https://rp5.ru/Weather_archive_in_Sterlegov_(cape) (last access: 12 July 2022),
2022b. a
Runge, A., Nitze, I., and Grosse, G.: Remote sensing annual dynamics of rapid
permafrost thaw disturbances with LandTrendr, Remote Sens. Environ.,
268, 112752, https://doi.org/10.1016/j.rse.2021.112752, 2022. a
Schuur, E. A., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B.,
Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.:
Vulnerability of permafrost carbon to climate change: Implications for the
global carbon cycle, BioScience, 58, 701–714, https://doi.org/10.1641/B580807, 2008. a
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali,
S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat,
C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback,
Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
a
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G.,
Knoblauch, C., Romanovsky, V., Schädel, C., von Deimling, T. S.,
Schuur, E. A., Shmelev, D., Ulrich, M., and Veremeeva, A.: Deep Yedoma
permafrost: A synthesis of depositional characteristics and carbon
vulnerability, Earth-Sci. Rev., 172,
75–86, https://doi.org/10.1016/j.earscirev.2017.07.007,
2017. a
Swanson, D. K. and Nolan, M.: Growth of retrogressive thaw slumps in the
Noatak Valley, Alaska, 2010–2016, measured by airborne photogrammetry,
Remote Sensing, 10, 983, https://doi.org/10.3390/rs10070983, 2018. a
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D.,
Schuur, E. A., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., and Lawrence, D. M.: Carbon
release through abrupt permafrost thaw, Nat. Geosci., 13, 138–143,
https://doi.org/10.1038/s41561-019-0526-0, 2020. a, b, c
Virkkala, A.-M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C., Natali,
S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur, E. A. G.,
Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys, E.,
Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst, S.,
Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C.,
Sonnentag, O., Parmentier, F.-J. W., Ueyama, M., Celis, G., St.Louis, V. L.,
Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., Nilsson, M. B.,
Oberbauer, S. F., Torn, M. S., Park, S.-J., Dolman, H., Mammarella, I., Chae,
N., Poyatos, R., López-Blanco, E., Christensen, T. R., Kwon, M. J., Sachs,
T., Holl, D., and Luoto, M.: Statistical upscaling of ecosystem CO2 fluxes
across the terrestrial tundra and boreal domain: Regional patterns and
uncertainties, Glob. Change Biol., 27, 4040–4059,
https://doi.org/10.1111/gcb.15659, 2021. a, b, c, d, e
Vonk, J. E. and Gustafsson, Ö.: Permafrost-carbon complexities, Nat.
Geosci., 6, 675–676, https://doi.org/10.1038/ngeo1937, 2013. a
Zscheischler, J., Mahecha, M. D., Avitabile, V., Calle, L., Carvalhais, N., Ciais, P., Gans, F., Gruber, N., Hartmann, J., Herold, M., Ichii, K., Jung, M., Landschützer, P., Laruelle, G. G., Lauerwald, R., Papale, D., Peylin, P., Poulter, B., Ray, D., Regnier, P., Rödenbeck, C., Roman-Cuesta, R. M., Schwalm, C., Tramontana, G., Tyukavina, A., Valentini, R., van der Werf, G., West, T. O., Wolf, J. E., and Reichstein, M.: Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations, Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, 2017. a
Zwieback, S., Boike, J., Marsh, P., and Berg, A.: Debris cover on thaw slumps
and its insulative role in a warming climate, Earth Surf. Proc.
Land., 45, 2631–2646, https://doi.org/10.1002/esp.4919, 2020. a, b
Short summary
With climate change, Arctic hillslopes above ice-rich permafrost are vulnerable to enhanced carbon mobilization. In this work elevation change estimates generated from satellite observations reveal a substantial acceleration of carbon mobilization on the Taymyr Peninsula in Siberia between 2010 and 2021. The strong increase occurring in 2020 coincided with a severe Siberian heatwave and highlights that carbon mobilization can respond sharply and non-linearly to increasing temperatures.
With climate change, Arctic hillslopes above ice-rich permafrost are vulnerable to enhanced...