Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermal structure of the Amery Ice Shelf from borehole observations and simulations
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, Australia
College of Oceanic and Atmospheric Sciences, Ocean University of
China, Qingdao, China
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
Chen Zhao
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, Australia
Rupert Gladstone
Arctic Centre, University of Lapland, Rovaniemi, Finland
Ben Galton-Fenzi
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, Australia
Australian Antarctic Division, Kingston, Australia
Australian Centre for Excellence in Antarctic Science, University of
Tasmania, Hobart, Australia
Roland Warner
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, Australia
Related authors
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942, https://doi.org/10.5194/egusphere-2025-1942, 2025
Short summary
Short summary
ISOMIP+ compares 12 ocean models that simulate ice-ocean interactions in a common, idealised, static ice shelf cavity setup, aiming to assess and understand inter-model variability. Models simulate similar basal melt rate patterns, ocean profiles and circulation but differ in ice-ocean boundary layer properties and spatial distributions of melting. Ice-ocean boundary layer representation is a key area for future work, as are realistic-domain ice sheet-ocean model intercomparisons.
Benjamin Keith Galton-Fenzi, Richard Porter-Smith, Sue Cook, Eva Cougnon, David E. Gwyther, Wilma G. C. Huneke, Madelaine G. Rosevear, Xylar Asay-Davis, Fabio Boeira Dias, Michael S. Dinniman, David Holland, Kazuya Kusahara, Kaitlin A. Naughten, Keith W. Nicholls, Charles Pelletier, Ole Richter, Helene L. Seroussi, and Ralph Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4047, https://doi.org/10.5194/egusphere-2024-4047, 2025
Short summary
Short summary
Melting beneath Antarctica’s floating ice shelves is key to future sea-level rise. We compare several different ocean simulations with satellite measurements, and provide the first multi-model average estimate of melting and refreezing driven by both ocean temperature and currents beneath ice shelves. The multi-model average can provide a useful tool for better understanding the role of ice shelf melting in present-day and future ice-sheet changes and informing coastal adaptation efforts.
Fabio Boeira Dias, Matthew H. England, Adele K. Morrison, and Benjamin Galton-Fenzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3905, https://doi.org/10.5194/egusphere-2024-3905, 2025
Short summary
Short summary
The Antarctic Ice Sheet melting dominates the sea-level projection uncertainties. Much uncertainty arises from our limited understanding of how ice shelves melt from below. Using a detailed ocean-ice shelf model, we found that East Antarctic ice shelves experience seasonal melting driven by ocean heat transport variability. In contrast, West Antarctic ice shelves show consistent melting due to a steady supply of warm, deep water, indicating potentially distinct response due to a warming climate.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024, https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Short summary
We introduce an accelerated forcing approach to address timescale discrepancies between the ice sheets and ocean components in coupled modelling by reducing the ocean simulation duration. The approach is evaluated using idealized coupled models, and its limitations in real-world applications are discussed. Our results suggest it can be a valuable tool for process-oriented coupled ice sheet–ocean modelling and downscaling climate simulations with such models.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Yiliang Ma, Liyun Zhao, Rupert Gladstone, Thomas Zwinger, Michael Wolovick, and John C. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2024-1102, https://doi.org/10.5194/egusphere-2024-1102, 2024
Short summary
Short summary
Totten Glacier in Antarctica holds a sea level potential of 3.85 m. Basal sliding and sub-shelf melt rate have important impact on ice sheet dynamics. We simulate the evolution of Totten Glacier using an ice flow model with different basal sliding parameterizations as well as sub-shelf melt rates to quantify their effect on the projections. We found the modelled glacier retreat and mass loss is sensitive to the choice of basal sliding parameterizations and maximal sub-shelf melt rate.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Madelaine Rosevear, Benjamin Galton-Fenzi, and Craig Stevens
Ocean Sci., 18, 1109–1130, https://doi.org/10.5194/os-18-1109-2022, https://doi.org/10.5194/os-18-1109-2022, 2022
Short summary
Short summary
Understanding ocean-driven melting of Antarctic ice shelves is critical for predicting future sea level. However, ocean observations from beneath ice shelves are scarce. Here, we present unique ocean and melting data from the Amery Ice Shelf, East Antarctica. We use our observations to evaluate common methods of representing melting in ocean–climate models (melting
parameterisations) and show that these parameterisations overestimate melting when the ocean is warm and/or currents are weak.
Chen Zhao, Rupert Gladstone, Benjamin Keith Galton-Fenzi, David Gwyther, and Tore Hattermann
Geosci. Model Dev., 15, 5421–5439, https://doi.org/10.5194/gmd-15-5421-2022, https://doi.org/10.5194/gmd-15-5421-2022, 2022
Short summary
Short summary
We use a coupled ice–ocean model to explore an oscillation feature found in several contributing models to MISOMIP1. The oscillation is closely related to the discretized grounding line retreat and likely strengthened by the buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and frequent ice–ocean coupling. Our model choices have a non-trivial impact on mean melt and ocean circulation strength, which might be interesting for the coupled ice–ocean community.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Tian R. Tian, Alexander D. Fraser, Noriaki Kimura, Chen Zhao, and Petra Heil
The Cryosphere, 16, 1299–1314, https://doi.org/10.5194/tc-16-1299-2022, https://doi.org/10.5194/tc-16-1299-2022, 2022
Short summary
Short summary
This study presents a comprehensive validation of a satellite observational sea ice motion product in Antarctica by using drifting buoys. Two problems existing in this sea ice motion product have been noticed. After rectifying problems, we use it to investigate the impacts of satellite observational configuration and timescale on Antarctic sea ice kinematics and suggest the future improvement of satellite missions specifically designed for retrieval of sea ice motion.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.:
Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620,
https://doi.org/10.1038/s41561-020-0616-z, 2020 (data available at https://doi.org/10.6075/J04Q7SHT).
Allison, I.: The AMISOR project: ice shelf dynamics and ice-ocean
interaction of the Amery Ice Shelf, FRISP Rep., 14, 1–9, 2003.
Allison, I. and Craven, M.: Ice shelf – ocean interaction in the cavity beneath the Amery Ice Shelf, Ver. 1, Australian Antarctic Data Centre [data set], https://data.aad.gov.au/metadata/records/ASAC_1164 (last access: 1 April 2022), 2000.
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy
formulation for glaciers and ice sheets, J. Glaciol., 58,
441–457, https://doi.org/10.3189/2012JoG11J088, 2012.
Budd, W. F. and Jacka, T. H.: A review of ice rheology for ice sheet
modelling, Cold Reg. Sci. Technol., 16, 107–144, https://doi.org/10.1016/0165-232X(89)90014-1, 1989.
Budd, W. F., Corry, M. J., and Jacka, T. H.: Results from the Amery Ice Shelf
project, Ann. Glaciol., 3, 36–41, https://doi.org/10.3189/S0260305500002494,
1982.
Buffo, J. J., Schmidt, B. E., and Huber, C.: Multiphase reactive transport
and platelet ice accretion in the sea ice of McMurdo Sound,
Antarctica, J. Geophys. Res.-Oceans, 123, 324–345,
https://doi.org/10.1002/2017JC013345, 2018.
Buffo, J. J., Schmidt, B. E., Huber, C., and Meyer, C. R.: Characterizing
the ice-ocean interface of icy worlds: A theoretical approach, Icarus, 360,
114318, https://doi.org/10.1016/j.icarus.2021.114318, 2021.
Comiso, J. C.: Variability and trends in Antarctic surface temperatures from
In Situ and satellite infrared measurements, J. Climate, 13, 1674–1696,
https://doi.org/10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2,
2000.
Crary, A. P.: Glaciological regime at Little America Station, Antarctica, J.
Geophys. Res., 66, 871–878, https://doi.org/10.1029/jz066i003p00871, 1961.
Craven, M., Allison, I., Brand, R., Elcheikh, A., Hunter, J., Hemer, M., and
Donoghue, S.: Initial borehole results from the Amery Ice Shelf hot-water
drilling project, Ann. Glaciol., 39, 531–539,
https://doi.org/10.3189/172756404781814311, 2004.
Craven, M., Carsey, F., Behar, A., Matthews, J., Brand, R., Elcheikh, A.,
Hall, S., and Treverrow, A.: Borehole imagery of meteoric and marine ice
layers in the Amery Ice Shelf, East Antarctica, J. Glaciol., 51,
75–84, https://doi.org/10.3189/172756505781829511, 2005.
Craven, M., Allison, I., Fricker, H. A., and Warner, A. R.: Properties of a
marine ice layer under the Amery Ice Shelf, East Antarctica, J. Glaciol.,
55, 717–728, https://doi.org/10.3189/002214309789470941, 2009.
Craven, M., Warner, R. C., Galton-Fenzi, B. K., Herraiz-Borreguero, L.,
Vogel, S. W., and Allison, I.: Platelet ice attachment to instrument strings
beneath the Amery Ice Shelf, East Antarctica, J. Glaciol., 60,
383–393, https://doi.org/10.3189/2014JoG13J082, 2014.
Depoorter, M. A., Bamber, J. L., Griggs, J., Lenaerts, J. T. M., Ligtenberg,
S. R. M., van den Broeke, M. R., and Moholdt, G.: Antarctic masks
(ice-shelves, ice-sheet, and islands), link to shape file, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.819147, 2013.
Dierckx, M. and Tison, J.-L.: Marine ice deformation experiments: an
empirical validation of creep parameters, Geophys. Res. Lett., 40, 134–138,
https://doi.org/10.1029/2012GL054197, 2013.
Fricker, H. A.: Redefinition of the Amery Ice Shelf, East Antarctica,
grounding zone, J. Geophys. Res., 107, 1–9, https://doi.org/10.1029/2001jb000383,
2002.
Fricker, H. A., Popov, S., Allison, I., and Young, N.: Distribution of marine
ice beneath the Amery Ice Shelf, Geophys. Res. Lett., 28, 2241–2244,
https://doi.org/10.1029/2000GL012461, 2001.
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013.
Galton-Fenzi, B. K., Maraldi, C., Coleman, R., and Hunter, J.: The cavity
under the Amery Ice Shelf, East Antarctica, J. Glaciol., 54, 881–887,
https://doi.org/10.3189/002214308787779898, 2008.
Galton-Fenzi, B. K., Hunter, J. R., Coleman, R., Marsland, S. J., and Warner,
R. C.: Modeling the basal melting and marine ice accretion of the Amery Ice
Shelf, J. Geophys. Res.-Ocean., 117, 1–19, https://doi.org/10.1029/2012JC008214,
2012.
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012.
Gladstone, R. and Wang, Y.: Antarctic regional inversions using Elmer/Ice:
methodology, Zenodo, https://doi.org/10.5281/ZENODO.5862046, 2022.
Glen, J. W.: The flow law of ice: A discussion of the assumptions made in
glacier theory, their experimental foundations and consequences, IASH Publ.,
47, 171–183, 1958.
Greve, R.: A continuum-mechanical formulation for shallow polythermal ice
sheets, Philos. T. R. Soc. Lond. A 355, 921–974, 1997.
Greve, R., Calov, R., Obase, T., Saito, F., Tsutaki, S., and Abe-Ouchi, A.:
ISMIP6 future projections for the Antarctic ice sheet with the model
SICOPOLIS, Zenodo, https://doi.org/10.5281/ZENODO.4035932, 2020.
Heil, P., Hyland, G., and Allison, I.: : Observatory of East Antarctic near-surface atmosphere and cryosphere, http://aws.cdaso.cloud.edu.au/, last access: 31 March 2022.
Herraiz-Borreguero, L., Allison, I., Craven, M., Nicholls, K. W. and
Rosenberg, M. A.: Ice shelf/ocean interactions under the Amery Ice Shelf:
Seasonal variability and its effect on marine ice formation, J. Geophys.
Res.-Ocean., 118, 7117–7131, https://doi.org/10.1002/2013JC009158, 2013.
Humbert, A.: The temperature regime of Fimbulisen, Antarctica, Ann.
Glaciol., 51, 56–64, https://doi.org/10.3189/172756410791392673, 2010.
Jania, J., Mochnacki, D., and Gdek, B.: The thermal structure of Hansbreen, a
tidewater glacier in southern Spitsbergen, Svalbard, Polar Res., 15,
53–66, https://doi.org/10.3402/polar.v15i1.6636, 1996.
Jourdain, N. C., Asay-Davis, X., Hattermann, T., Straneo, F., Seroussi, H., Little, C. M., and Nowicki, S.: A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections, The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, 2020.
Khazendar, A., Rignot, E., and Larour, E.: Roles of marine ice, rheology, and
fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf, J.
Geophys. Res.-Earth, 114, F04007, https://doi.org/10.1029/2008JF001124, 2009.
King, M. A., Coleman, R., Morgan, P. J., and Hurd, R. S.: Velocity change of
the Amery Ice Shelf, East Antarctica, during the period 1968–1999, J.
Geophys. Res., 112, F01013, https://doi.org/10.1029/2006JF000609, 2007.
Kobs, S., Holland, D. M., Zagorodnov, V., Stern, A., and Tyler, S. W.: Novel
monitoring of Antarctic ice shelf basal melting using a fiber-optic
distributed temperature sensing mooring, Geophys. Res. Lett., 41, 6779–6786,
https://doi.org/10.1002/2014GL061155, 2014.
Kobs, S. B.: In situ temperature monitoring of the McMurdo Ice Shelf and ice
shelf cavity by fiber-optic distributed temperature sensing, Doctoral thesis, http://hdl.handle.net/11714/2917 (last access: 5 April 2022), 2014.
Kulessa, B., Jansen, D., Luckman, A. J., King, E. C., and Sammonds, P. R.:
Marine ice regulates the future stability of a large Antarctic ice shelf,
Nat. Commun., https://doi.org/10.1038/ncomms4707, 2014.
Lambrecht, A., Sandhäger, H., Vaughan, D. G. and Mayer, C.: New ice
thickness maps of Filchner-Ronne Ice Shelf, Antarctica, with specific focus
on grounding lines and marine ice, Antarct. Sci., 19, 521–532,
https://doi.org/10.1017/S0954102007000661, 2007.
Lewis, E. L. and Perkin, R. G.: Ice pumps and their rates, J. Geophys. Res., 91, 11756–11762,
https://doi.org/10.1029/jc091ic10p11756, 1986.
Macayeal, D. R. and Thomas, R. H.: Ross Ice Shelf temperatures support a
history of ice-shelf thickening, Nature, 282, 703–705, https://doi.org/10.1038/282703a0, 1979.
Makinson, K.: BAS hot water drilling on Ronne Ice Shelf, Antarctica, Mem.
Natl. Inst. Polar Res. Spec. issue, 49, 192–202, 1994.
Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D.,
Eagles, G. and Vaughan, D. G.: Heat Flux Distribution of Antarctica
Unveiled, Geophys. Res. Lett., 44, 11417–11426,
https://doi.org/10.1002/2017GL075609, 2017.
McDougall, T. J., Barker, P. M., Feistel, R., and Galton-Fenzi, B. K.:
Melting of ice and sea ice into seawater and frazil ice formation, J. Phys.
Oceanogr., 44, 1751–1775, https://doi.org/10.1175/JPO-D-13-0253.1, 2014.
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 1. Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/C2GFER6PTOS4, 2019.
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry,
D.: Spatial patterns of basal drag inferred using control methods from a
full-Stokes and simpler models for Pine Island Glacier, West Antarctica,
Geophys. Res. Lett., 37, L14502, https://doi.org/10.1029/2010GL043853, 2010.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D. D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J. L., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R., van Ommen, T., van Wessem, M., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Orheim, O., Hagen, J. O., Østerhus, S., and Saetrang, A. C.: Glaciologic
and oceanographic studies on Fimbulisen during NARE 1989/90, FRISP Rep, 4,
120–131, 1990a.
Orheim, O., Hagen, J. O., Østerhus, S., and Sœtrang, A. C.: Studies on,
and underneath, the ice shelf Fimbulisen, Nor. Polarinstitutt Meddelelser,
113, 59–73, 1990b.
Paterson, W. S. B.: The physics of glaciers, 3rd Edn., Oxford, Elsevier, 1994.
Pittard, M. L., Roberts, J. L., Watson, C. S., Galton-Fenzi, B. K., Warner,
R. C., and Coleman, R.: Velocities of the Amery Ice Shelf's primary tributary
glaciers, 2004–12, Antarct. Sci., 27, 511–523,
https://doi.org/10.1017/S0954102015000231, 2015.
Pittard, M. L., Galton-Fenzi, B. K., Watson, C. S., and Roberts J. L.: Future
sea level change from Antarctica's Lambert-Amery glacial system, Geophys.
Res. Lett., 44, 7347–7355, https://doi.org/10.1002/2017GL073486, 2017.
Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica
Ice Velocity Map, Version 2, Boulder, Color., USA, NASA Natl. Snow Ice Data
Cent. Distrib. Act. Arch. Center [data set], https://doi.org/10.5067/D7GK8F5J8M8R,
2017.
Ritz, C.: Time dependent boundary conditions for calculation of temperature
fields in ice sheets, IAHS Publ., 170, 207–216, 1987.
Ryser, C.: Cold ice in an alpine glacier and ice dynamics at the margin of
the Greenland Ice Sheet, Doctoral thesis, ETH Zurich,
https://doi.org/10.3929/ethz-a-010129038, 2014.
Saito, F. and Abe-Ouchi, A.: Thermal structure of Dome Fuji and east
Dronning Maud Land, Antarctica, simulated by a three-dimensional ice-sheet
model, Ann. Glaciol., 39, 433–438, https://doi.org/10.3189/172756404781814258, 2004.
Schoof, C. and Hewitt, I. J.: A model for polythermal ice incorporating
gravity-driven moisture transport, J. Fluid. Mech., 797, 505–535,
https://doi.org/10.1017/jfm.2016.251, 2016.
Seroussi, H., Morlighem, M., Rignot, E., Khazendar, A., Larour, E., and
Mouginot, J.: Dependence of century-scale projections of the Greenland ice
sheet on its thermal regime, J. Glaciol., 59, 1024–1034, https://doi.org/10.3189/2013JoG13J054, 2013.
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020.
Treverrow, A., Warner, R. C., Budd, W. F., and Craven, M.: Meteoric and
marine ice crystal orientation fabrics from the amery ice shelf, East
Antarctica, J. Glaciol., 56, 877–890, https://doi.org/10.3189/002214310794457353,
2010.
Tyler, S. W., Holland, D. M., Zagorodnov, V., Stern, A. A., Sladek, C.,
Kobs, S., White, S., Suárez, F., and Bryenton, J.: Using distributed temperature sensors to monitor an Antarctic ice shelf and sub-ice-shelf cavity, J. Glaciol., 59, 583–591,
https://doi.org/10.3189/2013JoG12J207, 2013.
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.
Wang, Y.: yuwang115/1D-and-3D-model-for-LAGs: 3D and 1D models for the temperature simulations of the LAGs (Version version1), Zenodo [code], https://doi.org/10.5281/zenodo.6400721, 2022.
Wang, Y., Zhao, C., Gladstone, R., Galton-Fenzi, B., and Warner, R.: Time-averaged borehole temperatures at AM01–AM06 on the Amery Ice Shelf (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.6406096, 2022.
Warner, R. C., Craven, M., Galton-Fenzi, B., Elcheikh, A., Christensen, A.
and Vogel, S. W.: Distributed temperature sensing in the Amery Ice shelf and
the sub ice shelf ocean, in: . Book of Abstracts of 26th International Forum for Research into Ice Shelf Processes (FRISP), edited by: Hanke, M. and Kirchner, N., 12–14 June 2012, Stockholm Archipelago, Sweden http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-88405 (last access: 5 April 2022), 2012.
Wexler, H.: Heating and Melting of Floating Ice Shelves, J. Glaciol., 3,
626–645, https://doi.org/10.3189/s0022143000023741, 1960.
Yu, J., Liu, H., Jezek, K. C., Warner, R. C., and Wen, J.: Analysis of
velocity field, mass balance, and basal melt of the Lambert glacier-amery
ice shelf system by incorporating Radarsat SAR interferometry and ICESat
laser altimetry measurements, J. Geophys. Res.-Sol. Ea., 115, B11102,
https://doi.org/10.1029/2010JB007456, 2010.
Short summary
The thermal structure of the Amery Ice Shelf and its spatial pattern are evaluated and analysed through temperature observations from six boreholes and numerical simulations. The simulations demonstrate significant ice warming downstream along the ice flow and a great variation of the thermal structure across the ice flow. We suggest that the thermal structure of the Amery Ice Shelf is unlikely to be affected by current climate changes on decadal timescales.
The thermal structure of the Amery Ice Shelf and its spatial pattern are evaluated and analysed...