Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-1125-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1125-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Generating large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission using the Environment and Climate Change Canada automated sea ice tracking system
Stephen E. L. Howell
CORRESPONDING AUTHOR
Climate Research Division, Environment and Climate Change Canada,
Toronto, Canada
Mike Brady
Climate Research Division, Environment and Climate Change Canada,
Toronto, Canada
Alexander S. Komarov
Meteorological Research Division, Environment and Climate Change
Canada, Ottawa, Canada
Related authors
Stephen Howell, Alex Cabaj, David Babb, Jack Landy, Jackie Dawson, Mallik Mahmud, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2025-2029, https://doi.org/10.5194/egusphere-2025-2029, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The Northwest Passage provides a shorter transit route connecting the Atlantic Ocean to the Pacific Ocean but ever-present sea ice has prevented its practical navigation. Sea ice area in the northern route of the Northwest Passage on September 30, 2024 fell to a minimum of 4x103 km2, the lowest ice area observed since 1960. This paper describes the unique processes that contributed to the record low sea ice area in the northern route of the Northwest Passage in 2024.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, Lekima Yakuden, and Frédérique Labelle
Earth Syst. Sci. Data, 17, 423–434, https://doi.org/10.5194/essd-17-423-2025, https://doi.org/10.5194/essd-17-423-2025, 2025
Short summary
Short summary
Sea ice forms a thin boundary between the ocean and the atmosphere, with complex, crust-like dynamics and ever-changing networks of sea ice leads and ridges. Statistics of these dynamical features are often used to evaluate sea ice models. Here, we present a new pan-Arctic dataset of sea ice deformations derived from satellite imagery, from 1 September 2017 to 31 August 2023. We discuss the dataset coverage and some limitations associated with uncertainties in the computed values.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Vigan Mensah, Koji Fujita, Stephen Howell, Miho Ikeda, Mizuki Komatsu, and Kay I. Ohshima
EGUsphere, https://doi.org/10.5194/egusphere-2023-2492, https://doi.org/10.5194/egusphere-2023-2492, 2023
Preprint archived
Short summary
Short summary
We estimated the volume of freshwater released by sea ice, glaciers, rivers, and precipitation into Baffin Bay and the Labrador Sea, and their changes over the past 70 years. We found that the freshwater volume has risen in Baffin Bay due to increased glacier melting, and dropped in the Labrador Sea because of the decline in sea ice production. We also infer that freshwater from the Arctic Ocean has been exported to our study region for the past 30 years, possibly as a result of global warming.
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023, https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Short summary
Observations of large-scale ice thickness have unfortunately only been available since 2003, a short record for researching trends and variability. We generated a proxy for sea ice thickness in the Canadian Arctic for 1996–2020. This is the longest available record for large-scale sea ice thickness available to date and the first record reliably covering the channels between the islands in northern Canada. The product shows that sea ice has thinned by 21 cm over the 25-year record in April.
Stephen E. L. Howell, Randall K. Scharien, Jack Landy, and Mike Brady
The Cryosphere, 14, 4675–4686, https://doi.org/10.5194/tc-14-4675-2020, https://doi.org/10.5194/tc-14-4675-2020, 2020
Short summary
Short summary
Melt ponds form on the surface of Arctic sea ice during spring and have been shown to exert a strong influence on summer sea ice area. Here, we use RADARSAT-2 satellite imagery to estimate the predicted peak spring melt pond fraction in the Canadian Arctic Archipelago from 2009–2018. Our results show that RADARSAT-2 estimates of peak melt pond fraction can be used to provide predictive information about summer sea ice area within certain regions of the Canadian Arctic Archipelago.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Benoit Montpetit, Julien Meloche, Vincent Vionnet, Chris Derksen, Georgina Wooley, Nicolas R. Leroux, Paul Siqueira, J. Max Adams, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2025-2317, https://doi.org/10.5194/egusphere-2025-2317, 2025
Short summary
Short summary
This paper presents the workflow to retrieve snow water equivalent from radar measurements for the future Canadian radar satellite mission, TSMM. The workflow is validated by using airborne radar data collected at Trail Valley Creek, Canada, during winter 2018–19. We detail important considerations to have in the context of an Earth Observation mission over a vast region such as Canada. The results show that it is possible to achieve the desired accuracy for TSMM, over an Arctic environment.
Stephen Howell, Alex Cabaj, David Babb, Jack Landy, Jackie Dawson, Mallik Mahmud, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2025-2029, https://doi.org/10.5194/egusphere-2025-2029, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The Northwest Passage provides a shorter transit route connecting the Atlantic Ocean to the Pacific Ocean but ever-present sea ice has prevented its practical navigation. Sea ice area in the northern route of the Northwest Passage on September 30, 2024 fell to a minimum of 4x103 km2, the lowest ice area observed since 1960. This paper describes the unique processes that contributed to the record low sea ice area in the northern route of the Northwest Passage in 2024.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, Lekima Yakuden, and Frédérique Labelle
Earth Syst. Sci. Data, 17, 423–434, https://doi.org/10.5194/essd-17-423-2025, https://doi.org/10.5194/essd-17-423-2025, 2025
Short summary
Short summary
Sea ice forms a thin boundary between the ocean and the atmosphere, with complex, crust-like dynamics and ever-changing networks of sea ice leads and ridges. Statistics of these dynamical features are often used to evaluate sea ice models. Here, we present a new pan-Arctic dataset of sea ice deformations derived from satellite imagery, from 1 September 2017 to 31 August 2023. We discuss the dataset coverage and some limitations associated with uncertainties in the computed values.
Igor A. Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander S. Komarov, David G. Babb, Sergei A. Kirillov, and David G. Barber
Ocean Sci., 20, 1677–1705, https://doi.org/10.5194/os-20-1677-2024, https://doi.org/10.5194/os-20-1677-2024, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024, https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary
Short summary
Ground measurements of snow water equivalent (SWE) are vital for understanding the accuracy of large-scale estimates from satellites and climate models. We compare two types of measurements – snow courses and airborne gamma SWE estimates – and analyze how measurement type impacts the accuracy assessment of gridded SWE products. We use this analysis to produce a combined reference SWE dataset for North America, applicable for future gridded SWE product evaluations and other applications.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Vigan Mensah, Koji Fujita, Stephen Howell, Miho Ikeda, Mizuki Komatsu, and Kay I. Ohshima
EGUsphere, https://doi.org/10.5194/egusphere-2023-2492, https://doi.org/10.5194/egusphere-2023-2492, 2023
Preprint archived
Short summary
Short summary
We estimated the volume of freshwater released by sea ice, glaciers, rivers, and precipitation into Baffin Bay and the Labrador Sea, and their changes over the past 70 years. We found that the freshwater volume has risen in Baffin Bay due to increased glacier melting, and dropped in the Labrador Sea because of the decline in sea ice production. We also infer that freshwater from the Arctic Ocean has been exported to our study region for the past 30 years, possibly as a result of global warming.
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023, https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Short summary
Observations of large-scale ice thickness have unfortunately only been available since 2003, a short record for researching trends and variability. We generated a proxy for sea ice thickness in the Canadian Arctic for 1996–2020. This is the longest available record for large-scale sea ice thickness available to date and the first record reliably covering the channels between the islands in northern Canada. The product shows that sea ice has thinned by 21 cm over the 25-year record in April.
Vincent Vionnet, Colleen Mortimer, Mike Brady, Louise Arnal, and Ross Brown
Earth Syst. Sci. Data, 13, 4603–4619, https://doi.org/10.5194/essd-13-4603-2021, https://doi.org/10.5194/essd-13-4603-2021, 2021
Short summary
Short summary
Water equivalent of snow cover (SWE) is a key variable for water management, hydrological forecasting and climate monitoring. A new Canadian SWE dataset (CanSWE) is presented in this paper. It compiles data collected by multiple agencies and companies at more than 2500 different locations across Canada over the period 1928–2020. Snow depth and derived bulk snow density are also included when available.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Stephen E. L. Howell, Randall K. Scharien, Jack Landy, and Mike Brady
The Cryosphere, 14, 4675–4686, https://doi.org/10.5194/tc-14-4675-2020, https://doi.org/10.5194/tc-14-4675-2020, 2020
Short summary
Short summary
Melt ponds form on the surface of Arctic sea ice during spring and have been shown to exert a strong influence on summer sea ice area. Here, we use RADARSAT-2 satellite imagery to estimate the predicted peak spring melt pond fraction in the Canadian Arctic Archipelago from 2009–2018. Our results show that RADARSAT-2 estimates of peak melt pond fraction can be used to provide predictive information about summer sea ice area within certain regions of the Canadian Arctic Archipelago.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Cited articles
Agnew, T. A., Le, H., and Hirose, T.: Estimation of large scale sea ice
motion from SSM/I 85.5 GHz imagery, Ann. Glaciol., 25, 305–311, 1997.
Agnew, T., Lambe, A., and Long, D.: Estimating sea ice area flux across the
Canadian Arctic Archipelago using enhanced AMSR-E, J. Geophys. Res., 113,
C10011, https://doi.org/10.1029/2007JC004582, 2008.
Babb, D. G., Kirillov, S., Galley, R. J., Straneo, F., Ehn, J. K., Howell, S. E. L., Brady, M., Ridenour, N. A., and Barber, D. G.: Sea ice dynamics in Hudson Strait and its impact on winter shipping operations, J. Geophys. Res.-Oceans, 126, e2021JC018024, https://doi.org/10.1029/2021JC018024, 2021.
Dawson, J., Pizzolato, L., Howell, S. E. L., Copland, L., and Johnston, M.
E.: Temporal and spatial patterns of ship traffic in the Canadian Arctic from
1990 to 2015, Arctic, 71, 15–26, 2018.
Eguíluz, V., Fernández-Gracia, J., Irigoien, X., and Duarte, C. M.:
A quantitative assessment of Arctic shipping in 2010–2014, Sci. Rep.-UK, 6,
30682, https://doi.org/10.1038/srep30682, 2016.
Emery, W. J., Fowler, C. W., Hawkins, J., and Preller, R. H.: Fram Strait
satellite image-derived ice motions, J. Geophys. Res., 96, 4751–4768,
1991.
Fily, M. and Rothrock, D.: Opening and closing of sea ice leads:
Digital measurement from synthetic aperture radar, J. Geophys. Res.,
95, 789–796, 1990.
Haarpaintner, J.: Arctic-wide operational sea ice drift from enhanced
resolution QuikScat/SeaWinds scatterometry and its validation, IEEE T.
Geosci. Remote, 44, 102–107, 2006.
Howell, S. E. L. and Brady, M.: The dynamic response of sea ice to warming in the Canadian Arctic Archipelago, Geophys. Res. Lett., 46, 13119–13125, https://doi.org/10.1029/2019GL085116, 2019.
Howell, S. E. L., Wohlleben, T., Dabboor, M., Derksen, C., Komarov, A., and
Pizzolato, L.: Recent changes in the exchange of sea ice between the Arctic
Ocean and the Canadian Arctic Archipelago, J. Geophys. Res., 118,
3595–3607, https://doi.org/10.1002/jgrc.20265, 2013.
Howell, S. E. L., Laliberté, F., Kwok, R., Derksen, C., and King, J.: Landfast ice thickness in the Canadian Arctic Archipelago from observations and models, The Cryosphere, 10, 1463–1475, https://doi.org/10.5194/tc-10-1463-2016, 2016.
Howell, S. E. L., Komarov, A. S., Dabboor, M., Montpetit, B., Brady, M.,
Scharien, R. K., Mahmud, M. S., Nandan, V., Geldsetzer, T., and Yackel, J. J.:
Comparing L- and C-band synthetic aperture radar estimates of sea ice motion
over different ice regimes, Remote Sens. Environ., 204, 380–391,
https://doi.org/10.1016/j.rse.2017.10.017, 2018.
Komarov, A. S. and Barber, D. G.: Sea ice motion tracking from sequential
dual-polarization RADARSAT-2 images, IEEE T. Geosci. Remote, 52, 121–136, https://doi.org/10.1109/TGRS.2012.2236845, 2014.
Komarov, A. S. and Buehner, M.: Improved retrieval of ice and open water from
sequential RADARSAT-2 images, IEEE T. Geosci. Remote, 57,
3694–3702, https://doi.org/10.1109/TGRS.2018.2886685, 2019.
Kwok, R.: Annual cycles of multiyear sea ice coverage of the Arctic Ocean:
1999–2003, J. Geophys. Res., 109, C11004, https://doi.org/10.1029/2003JC002238, 2004.
Kwok, R.: Exchange of sea ice between the Arctic Ocean and the Canadian
Arctic Archipelago, Geophys. Res. Lett., 33, L16501,
https://doi.org/10.1029/2006GL027094, 2006.
Kwok, R.: Outflow of Arctic Ocean Sea Ice into the Greenland and Barents
Seas: 1979–2007, J. Climate, 22, 2438–2457, https://doi.org/10.1175/2008JCLI2819.1, 2009.
Kwok, R.: Sea ice convergence along the Arctic coasts of Greenland and the
Canadian Arctic Archipelago:
Variability and extremes (1992–2014), Geophys. Res. Lett., 42, 7598–7605,
https://doi.org/10.1002/2015GL065462, 2015.
Kwok, R., Curlander, J., McConnell, R., and Pang, S.: An ice-motion tracking
system at the Alaska SAR facility, IEEE J. Ocean. Eng., 15, 44–54, 1990.
Kwok, R., Schweiger, A., Rothrock, D. A., Pang, S., and Kottmeier, C.: Sea
ice motion from satellite passive microwave data assessed with ERS SAR and
buoy data, J. Geophys. Res., 103, 8191–8214, 1998.
Kwok, R., Spreen, G., and Pang, S.: Arctic sea ice circulation and drift
speed: Decadal trends and ocean currents, J. Geophys. Res.-Oceans, 118,
2408–2425, https://doi.org/10.1002/jgrc.20191, 2013.
Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., and Breivik, L.-A: Sea
ice motion from low-resolution satellite sensors: An alternative method and
its validation in the Arctic, J. Geophys. Res., 115, C10032,
https://doi.org/10.1029/2009JC005958, 2010.
Lavergne, T., Piñol Solé, M., Down, E., and Donlon, C.: Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission, The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, 2021.
Lindsay, R. W. and Stern, H. L.: The RADARSAT Geophysical Processor System:
Quality of sea ice trajectory and deformation estimates, J. Atmos. Ocean.
Tech., 20, 1333–1347, 2003.
Melling, H.: Sea ice of the northern Canadian Arctic Archipelago, J.
Geophys. Res., 107, 3181, https://doi.org/10.1029/2001JC001102, 2002
Moore, G. W. K., Schweiger, A., Zhang, J., and Steele, M.: Spatiotemporal
variability of sea ice in the Arctic's Last Ice Area, Geophys. Res.
Lett., 46, 11237–11243, https://doi.org/10.1029/2019GL083722, 2019.
Moore, G. W. K., Howell, S. E. L., and Brady, M.: First observations of a
transient polynya in the Last Ice Area north of Ellesmere Island,
Geophys. Res. Lett., 48, e2021GL095099,
https://doi.org/10.1029/2021GL095099, 2021a.
Moore, G. W. K., Howell, S. E. L., Brady, M., McNeil, K., and Xu, X: Anomalous
collapses of Nares Strait ice arches leads to enhanced export of Arctic sea
ice, Nat. Commun., 12, 1,
https://doi.org/10.1038/s41467-020-20314-w, 2021b.
Mudryk, L. R., Dawson, J., Howell, S. E. L. Derksen, C., Zagon, T. A., and
Brady, M.: Impact of 1, 2 and 4 ∘C of global warming on ship
navigation in the Canadian Arctic, Nat. Clim. Chang., 11, 673–679,
https://doi.org/10.1038/s41558-021-01087-6, 2021.
Notz, D. and Stroeve, J.: Observed Arctic sea-ice loss directly follows
anthropogenic CO2 emission, Science, 354, 747–750, https://doi.org/10.1126/science.aag2345, 2016.
OSI SAF: Low resolution sea ice drift product of the EUMETSAT Ocean and Sea Ice Satellite Application Facility, OSI SAF [data set], https://osi-saf.eumetsat.int/products/osi-405-c, last access: 28 March 2022.
Rampal, P., Weiss, J., and Marsan, D: Positive trend in the mean speed and
deformation rate of Arctic sea ice, 1979–2007, J. Geophys. Res., 114,
C05013, https://doi.org/10.1029/2008JC005066, 2009.
Rigor, I. G., Wallace, J. M., and Colony, R. L.: On the response of sea ice to
the Arctic Oscillation, J. Climate, 15, 2546–2663, 2002.
Thompson, A. A.: Overview of the RADARSAT Constellation Mission, Can.
J. Remote Sens., 41, 401–407,
https://doi.org/10.1080/07038992.2015.1104633, 2015.
Thorndike, A. S. and Colony, R.: Sea ice motion in response to geostrophic
winds, J. Geophys. Res., 87, 5845–5852, https://doi.org/10.1029/JC087iC08p05845,
1982.
Torres, R., Snoeij,
P., Geudtner,
D., Bibby,
D., Davidson,
M., Attema,
E., Potin,
P., Rommen,
B., Floury,
N., Brown,
M., Navas Traver,
I., Deghaye,
P., Duesmann,
B., Rosich,
B., Miranda,
N., Bruno,
C., L'Abbate,
M., Croci,
R., Pietropaolo,
A., Huchler,
M.,
and Rostan, F.: GMES Sentinel-1 mission. Remote Sens.
Environ., 120, 9–24, https://doi.org/10.1016/j.rse.2011.05.028, 2012.
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.: Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/INAWUWO7QH7B, 2019.
Tschudi, M. A., Meier, W. N., and Stewart, J. S.: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC), The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, 2020.
Wagner, P.M., Hughes, N., Bourbonnais, P., Stroeve, J., Rabenstein, L.,
Bhatt, U., Little, J., Wiggins H., and Fleming, A: Sea-ice information and
forecast needs for industry maritime stakeholders, Polar Geography, 43,
160–187, https://doi.org/10.1080/1088937X.2020.1766592, 2020.
Wilson, K. J., Barber, D. G., and King, D. J.: Validation and production of
RADARSAT-1 derived ice-motion maps in the North Water (NOW) Polynya,
January–December 1998, Atmosphere-Ocean, 39, 257–278, 2001.
Short summary
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using synthetic aperture radar (SAR) images. The ECCC-ASITS was applied to the incoming image streams of Sentinel-1AB and the RADARSAT Constellation Mission from March 2020 to October 2021 using a total of 135 471 SAR images and generated new SIM datasets (i.e., 7 d 25 km and 3 d 6.25 km).
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice...