Articles | Volume 15, issue 2
The Cryosphere, 15, 883–895, 2021
The Cryosphere, 15, 883–895, 2021

Research article 19 Feb 2021

Research article | 19 Feb 2021

Trends and spatial variation in rain-on-snow events over the Arctic Ocean during the early melt season

Tingfeng Dou et al.

Related authors

Brief communication: Evaluation of multiple density-dependent empirical snow conductivity relationships in East Antarctica
Minghu Ding, Tong Zhang, Diyi Yang, Ian Allison, Tingfeng Dou, and Cunde Xiao
The Cryosphere, 15, 4201–4206,,, 2021
Short summary
Brief communication: An alternative method for estimating the scavenging efficiency of black carbon by meltwater over sea ice
Tingfeng Dou, Zhiheng Du, Shutong Li, Yulan Zhang, Qi Zhang, Mingju Hao, Chuanjin Li, Biao Tian, Minghu Ding, and Cunde Xiao
The Cryosphere, 13, 3309–3316,,, 2019
Short summary
A key factor initiating surface ablation of Arctic sea ice: earlier and increasing liquid precipitation
Tingfeng Dou, Cunde Xiao, Jiping Liu, Wei Han, Zhiheng Du, Andrew R. Mahoney, Joshua Jones, and Hajo Eicken
The Cryosphere, 13, 1233–1246,,, 2019
Short summary
A record of Antarctic sea ice extent in the Southern Indian Ocean for the past 300 yr and its relationship with global mean temperature
C. Xiao, R. Li, S. B. Sneed, T. Dou, and I. Allison
The Cryosphere Discuss.,,, 2013
Revised manuscript not accepted

Related subject area

Discipline: Other | Subject: Arctic (e.g. Greenland)
Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier
Tobias Reiner Vonnahme, Emma Persson, Ulrike Dietrich, Eva Hejdukova, Christine Dybwad, Josef Elster, Melissa Chierici, and Rolf Gradinger
The Cryosphere, 15, 2083–2107,,, 2021
Short summary
Arctic freshwater fluxes: sources, tracer budgets and inconsistencies
Alexander Forryan, Sheldon Bacon, Takamasa Tsubouchi, Sinhué Torres-Valdés, and Alberto C. Naveira Garabato
The Cryosphere, 13, 2111–2131,,, 2019
Short summary
Dynamic ocean topography of the northern Nordic seas: a comparison between satellite altimetry and ocean modeling
Felix L. Müller, Claudia Wekerle, Denise Dettmering, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
The Cryosphere, 13, 611–626,,, 2019
Short summary

Cited articles

Alaska Climate Research Center: ACIS Daily Data Browser, available at:, last access: 28 July 2020. 
Belington, P. R. and Robinson, D. K.: Data Reduction and Error Analysis for the Physical Sciences, edn. 3, McGraw-Hill Education, University of California, 320 pp., 2003. 
Bi, H., Yang, Q., Liang, X., Zhang, L., Wang, Y., Liang, Y., and Huang, H.: Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean, The Cryosphere, 13, 1423–1439,, 2019. 
Bieniek, P. A., Bhatt, U. S., Walsh, J. E., Lader, R., Griffith, B., Roach, J. K., and Thoman, R. L.: Assessment of Alaska rain-on-snow events using dynamical downscaling, J. Appl. Meteorol. Climatol., 57, 1847–1863,, 2018. 
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim. Change, 7, 263–267, 2017. 
Short summary
Rain-on-snow (ROS) events can accelerate the surface ablation of sea ice, greatly influencing the ice–albedo feedback. We found that spring ROS events have shifted to earlier dates over the Arctic Ocean in recent decades, which is correlated with sea ice melt onset in the Pacific sector and most Eurasian marginal seas. There has been a clear transition from solid to liquid precipitation, leading to a reduction in spring snow depth on sea ice by more than −0.5 cm per decade since the 1980s.