Articles | Volume 15, issue 2
https://doi.org/10.5194/tc-15-531-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-531-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A simple parametrization of mélange buttressing for calving glaciers
Tanja Schlemm
Potsdam Institute for Climate Impact Research, Potsdam, Germany
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
Anders Levermann
CORRESPONDING AUTHOR
Potsdam Institute for Climate Impact Research, Potsdam, Germany
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
Lamont-Doherty Earth Observatory, Columbia University, New York, USA
Related authors
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022, https://doi.org/10.5194/tc-16-1979-2022, 2022
Short summary
Short summary
Marine cliff instability, if it exists, could dominate Antarctica's contribution to future sea-level rise. It is likely to speed up with ice thickness and thus would accelerate in most parts of Antarctica. Here, we investigate a possible mechanism that might stop cliff instability through cloaking by ice mélange. It is only a first step, but it shows that embayment geometry is, in principle, able to stop marine cliff instability in most parts of West Antarctica.
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019, https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary
Short summary
We provide a simple stress-based parameterization for cliff calving of ice sheets. According to the resulting increasing dependence of the calving rate on ice thickness, the parameterization might lead to a runaway ice loss in large parts of Greenland and Antarctica.
Anja Katzenberger and Anders Levermann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-40, https://doi.org/10.5194/esd-2024-40, 2025
Preprint under review for ESD
Short summary
Short summary
There is an ongoing societal discussion about speeding up the transition to net-zero carbon emissions. The faster emissions are reduced, the less carbon dioxide will accumulate in the atmosphere determining the level of global warming. In this study, we run simulations with an atmosphere model with different CO2 forcing rates to investigate whether the pace of the emissions itself (in addition to the resulting concentration) significantly influences climate and weather.
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024, https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Short summary
Here we show in simplified simulations that the (ir)reversibility of the retreat of instability-prone, Antarctica-type glaciers can strongly depend on the depth of the bed depression they rest on. If it is sufficiently deep, then the destabilized glacier does not recover from its collapsed state. Our results suggest that glaciers resting on a wide and deep bed depression, such as Antarctica's Thwaites Glacier, are particularly susceptible to irreversible retreat.
Anja Katzenberger and Anders Levermann
Earth Syst. Dynam., 15, 1137–1151, https://doi.org/10.5194/esd-15-1137-2024, https://doi.org/10.5194/esd-15-1137-2024, 2024
Short summary
Short summary
A fifth of the world's population lives in eastern China, whose climate is dominated by the East Asian Summer Monsoon (EASM). Therefore, it is important to know how the EASM will change under global warming. Here, we use the data of 34 climate models of the latest generation to understand how the EASM will change throughout the 21st century. The models project that the EASM will intensify and that variability between years will increase associated with an increase in extremely wet seasons.
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023, https://doi.org/10.5194/gmd-16-7461-2023, 2023
Short summary
Short summary
Future sea-level rise projections exhibit multiple forms of uncertainty, all of which must be considered by scientific assessments intended to inform decision-making. The Framework for Assessing Changes To Sea-level (FACTS) is a new software package intended to support assessments of global mean, regional, and extreme sea-level rise. An early version of FACTS supported the development of the IPCC Sixth Assessment Report sea-level projections.
Johannes Feldmann and Anders Levermann
The Cryosphere, 17, 327–348, https://doi.org/10.5194/tc-17-327-2023, https://doi.org/10.5194/tc-17-327-2023, 2023
Short summary
Short summary
Here we present a scaling relation that allows the comparison of the timescales of glaciers with geometric similarity. According to the relation, thicker and wider glaciers on a steeper bed slope have a much faster timescale than shallower, narrower glaciers on a flatter bed slope. The relation is supported by observations and simplified numerical simulations. We combine the scaling relation with a statistical analysis of the topography of 13 instability-prone Antarctic outlet glaciers.
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022, https://doi.org/10.5194/tc-16-1979-2022, 2022
Short summary
Short summary
Marine cliff instability, if it exists, could dominate Antarctica's contribution to future sea-level rise. It is likely to speed up with ice thickness and thus would accelerate in most parts of Antarctica. Here, we investigate a possible mechanism that might stop cliff instability through cloaking by ice mélange. It is only a first step, but it shows that embayment geometry is, in principle, able to stop marine cliff instability in most parts of West Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1927–1940, https://doi.org/10.5194/tc-16-1927-2022, https://doi.org/10.5194/tc-16-1927-2022, 2022
Short summary
Short summary
We use a numerical model to simulate the flow of a simplified, buttressed Antarctic-type outlet glacier with an attached ice shelf. We find that after a few years of perturbation such a glacier responds much stronger to melting under the ice-shelf shear margins than to melting in the central fast streaming part of the ice shelf. This study explains the underlying physical mechanism which might gain importance in the future if melt rates under the Antarctic ice shelves continue to increase.
Anja Katzenberger, Jacob Schewe, Julia Pongratz, and Anders Levermann
Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, https://doi.org/10.5194/esd-12-367-2021, 2021
Short summary
Short summary
All state-of-the-art global climate models that contributed to the latest Coupled Model Intercomparison Project (CMIP6) show a robust increase in Indian summer monsoon rainfall that is even stronger than in the previous intercomparison (CMIP5). Furthermore, they show an increase in the year-to-year variability of this seasonal rainfall that crucially influences the livelihood of more than 1 billion people in India.
Maria Zeitz, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 14, 3537–3550, https://doi.org/10.5194/tc-14-3537-2020, https://doi.org/10.5194/tc-14-3537-2020, 2020
Short summary
Short summary
The flow of ice drives mass losses in the large ice sheets. Sea-level rise projections rely on ice-sheet models, solving the physics of ice flow and melt. Unfortunately the parameters in the physics of flow are uncertain. Here we show, in an idealized setup, that these uncertainties can double flow-driven mass losses within the possible range of parameters. It is possible that this uncertainty carries over to realistic sea-level rise projections.
Ronja Reese, Anders Levermann, Torsten Albrecht, Hélène Seroussi, and Ricarda Winkelmann
The Cryosphere, 14, 3097–3110, https://doi.org/10.5194/tc-14-3097-2020, https://doi.org/10.5194/tc-14-3097-2020, 2020
Short summary
Short summary
We compare 21st century projections of Antarctica's future sea-level contribution simulated with the Parallel Ice Sheet Model submitted to ISMIP6 with projections following the LARMIP-2 protocol based on the same model configuration. We find that (1) a preceding historic simulation increases mass loss by 5–50 % and that (2) the order of magnitude difference in the ice loss in our experiments following the two protocols can be explained by the translation of ocean forcing to sub-shelf melting.
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, https://doi.org/10.5194/tc-14-633-2020, 2020
Short summary
Short summary
A large ensemble of glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) was analyzed in which four relevant model parameters were systematically varied. These parameters were selected in a companion study and are associated with uncertainties in ice dynamics, climatic forcing, basal sliding and solid Earth deformation. For each ensemble member a statistical score is computed, which enables calibrating the model against both modern and geologic data.
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020, https://doi.org/10.5194/tc-14-599-2020, 2020
Short summary
Short summary
During the last glacial cycles the Antarctic Ice Sheet experienced alternating climatic conditions and varying sea-level history. In response, changes in ice sheet volume and ice-covered area occurred, implying feedbacks on the global sea level. We ran model simulations of the ice sheet with the Parallel Ice Sheet Model (PISM) over the last two glacial cycles to evaluate the model's sensitivity to different choices of boundary conditions and parameters to gain confidence for future projections.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019, https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary
Short summary
We provide a simple stress-based parameterization for cliff calving of ice sheets. According to the resulting increasing dependence of the calving rate on ice thickness, the parameterization might lead to a runaway ice loss in large parts of Greenland and Antarctica.
Anders Levermann and Johannes Feldmann
The Cryosphere, 13, 1621–1633, https://doi.org/10.5194/tc-13-1621-2019, https://doi.org/10.5194/tc-13-1621-2019, 2019
Short summary
Short summary
Using scaling analysis we propose that the currently observed marine ice-sheet instability in the Amundsen Sea sector might be faster than all other potential instabilities in Antarctica.
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-109, https://doi.org/10.5194/tc-2018-109, 2018
Revised manuscript not accepted
Johannes Feldmann and Anders Levermann
The Cryosphere, 11, 1913–1932, https://doi.org/10.5194/tc-11-1913-2017, https://doi.org/10.5194/tc-11-1913-2017, 2017
Jacob Schewe and Anders Levermann
Earth Syst. Dynam., 8, 495–505, https://doi.org/10.5194/esd-8-495-2017, https://doi.org/10.5194/esd-8-495-2017, 2017
Short summary
Short summary
Monsoon systems have undergone abrupt changes in past climates, and theoretical considerations show that threshold behavior can follow from the internal dynamics of monsoons. So far, however, the possibility of abrupt changes has not been explored for modern monsoon systems. We analyze state-of-the-art climate model simulations and show that some models project abrupt changes in Sahel rainfall in response to a dynamic shift in the West African monsoon under 21st century climate change.
Jan Wohland, Torsten Albrecht, and Anders Levermann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-191, https://doi.org/10.5194/tc-2016-191, 2016
Preprint withdrawn
Anders Levermann and Ricarda Winkelmann
The Cryosphere, 10, 1799–1807, https://doi.org/10.5194/tc-10-1799-2016, https://doi.org/10.5194/tc-10-1799-2016, 2016
Short summary
Short summary
In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. Here we derive the basic equations for the melt elevation feedback that can lead to self-amplifying melt of the Greenland Ice Sheet and ice sheets in general. The theory unifies the results of complex models when the feedback dominates the dynamics and it allows us to estimate the melt time of ice sheets from data in cases where ice dynamic loss can be neglected.
Johannes Feldmann and Anders Levermann
The Cryosphere, 10, 1753–1769, https://doi.org/10.5194/tc-10-1753-2016, https://doi.org/10.5194/tc-10-1753-2016, 2016
K. Frieler, M. Mengel, and A. Levermann
Earth Syst. Dynam., 7, 203–210, https://doi.org/10.5194/esd-7-203-2016, https://doi.org/10.5194/esd-7-203-2016, 2016
Short summary
Short summary
Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of > 80 % of the additional ice requires a distance of > 700 km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3 mm yr−1 exceeds 7 % of current global primary energy supply.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
J. Feldmann and A. Levermann
The Cryosphere, 9, 631–645, https://doi.org/10.5194/tc-9-631-2015, https://doi.org/10.5194/tc-9-631-2015, 2015
M. A. Martin, A. Levermann, and R. Winkelmann
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-1705-2015, https://doi.org/10.5194/tcd-9-1705-2015, 2015
Preprint withdrawn
Short summary
Short summary
Numerical ice sheet modelling shows that idealized, step-function type ocean warming in the Weddell Sea, where the ice sheet is close to floatation, leads to more immediate ice discharge with a higher sensitivity to small warming levels than the same warming in the Amundsen Sea. While the cumulative ice loss in the Amundsen Sea Sector is of similar magnitude after five centuries of continued warming, ice loss increases at a slower pace and only for significantly higher warming levels.
D. Ehlert and A. Levermann
Earth Syst. Dynam., 5, 383–397, https://doi.org/10.5194/esd-5-383-2014, https://doi.org/10.5194/esd-5-383-2014, 2014
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
Earth Syst. Dynam., 5, 271–293, https://doi.org/10.5194/esd-5-271-2014, https://doi.org/10.5194/esd-5-271-2014, 2014
T. Albrecht and A. Levermann
The Cryosphere, 8, 587–605, https://doi.org/10.5194/tc-8-587-2014, https://doi.org/10.5194/tc-8-587-2014, 2014
C. F. Schleussner, J. Runge, J. Lehmann, and A. Levermann
Earth Syst. Dynam., 5, 103–115, https://doi.org/10.5194/esd-5-103-2014, https://doi.org/10.5194/esd-5-103-2014, 2014
A. Menon, A. Levermann, J. Schewe, J. Lehmann, and K. Frieler
Earth Syst. Dynam., 4, 287–300, https://doi.org/10.5194/esd-4-287-2013, https://doi.org/10.5194/esd-4-287-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Glaciers
Brief communication: Rapid acceleration of the Brunt Ice Shelf after calving of iceberg A-81
Geometric controls of tidewater glacier dynamics
A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022, https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary
Short summary
The shape of a fjord can promote or inhibit glacier retreat in response to climate change. We conduct experiments with a synthetic setup under idealized conditions in a numerical model to study and quantify the processes involved. We find that friction between ice and fjord is the most important factor and that it is possible to directly link ice discharge and grounding line retreat to fjord topography in a quantitative way.
Ian Joughin, David E. Shean, Benjamin E. Smith, and Dana Floricioiu
The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, https://doi.org/10.5194/tc-14-211-2020, 2020
Short summary
Short summary
Jakobshavn Isbræ, considered to be Greenland's fastest glacier, has varied its speed and thinned dramatically since the 1990s. Here we examine the glacier's behaviour over the last decade to better understand this behaviour. We find that when the floating ice (mélange) in front of the glacier freezes in place during the winter, it can control the glacier's speed and thinning rate. A recently colder ocean has strengthened this mélange, allowing the glacier to recoup some of its previous losses.
Cited articles
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and
Motyka, R. J.: Ice mélange dynamics and implications for terminus stability,
Jakobshavn Isbræ, Greenland, J. Geophys. Res.-Earth,
115, F01005, https://doi.org/10.1029/2009JF001405, 2010. a, b, c, d
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of
calving glaciers from the yield strength envelope of ice,
P. Roy. Soc. Lond. A. Mat., 468, 913–931, https://doi.org/10.1098/rspa.2011.0422, 2011. a, b, c
Bassis, J. N., Petersen, S. V., and Mac Cathles, L.: Heinrich events triggered by ocean forcing and modulated by isostatic adjustment, Nature, 542, 332–334, https://doi.org/10.1038/nature21069, 2017. a
Benn, D. I., Hulton, N. R., and Mottram, R. H.: “Calving laws”, “sliding laws” and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, https://doi.org/10.3189/172756407782871161, 2007. a
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model, J. Geophys. Res.-Earth, 114, F03008, https://doi.org/10.1029/2008JF001179, 2009. a
Burton, J. C., Amundson, J. M., Cassotto, R., Kuo, C.-C., and Dennin, M.:
Quantifying flow and stress in ice mélange, the world's
largest granular material, P. Natl. Acad. Sci. USA,
115, 5105–5110, https://doi.org/10.1073/pnas.1715136115, 2018. a, b, c, d
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea-Level
Rise by 2100, Science, 342, 1445,
https://doi.org/10.1126/science.342.6165.1445-a, 2013. a
Clerc, F., Minchew, B. M., and Behn, M. D.: Marine Ice Cliff Instability
Mitigated by Slow Removal of Ice Shelves, Geophys. Res. Lett., 46, 12108–12116, https://doi.org/10.1029/2019GL084183, 2019. a, b
Cornford, S. L., Seroussi, H., Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C., Christmann, J., Dias dos Santos, T., Feldmann, J., Goldberg, D., Hoffman, M. J., Humbert, A., Kleiner, T., Leguy, G., Lipscomb, W. H., Merino, N., Durand, G., Morlighem, M., Pollard, D., Rückamp, M., Williams, C. R., and Yu, H.: Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+), The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, 2020. a
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597,
https://doi.org/10.1038/nature17145, 2016. a, b, c, d
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013. a
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64, https://doi.org/10.1038/s41586-019-0901-4, 2019. a, b
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., Angelen, J. H., and
Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014. a
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O.,
Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M.: Retreat
of Pine Island Glacier controlled by marine ice-sheet instability,
Nat. Clim. Change, 4, 117–121, https://doi.org/10.1038/nclimate2094, 2014. a
Franco, B., Fettweis, X., and Erpicum, M.: Future projections of the Greenland ice sheet energy balance driving the surface melt, The Cryosphere, 7, 1–18, https://doi.org/10.5194/tc-7-1-2013, 2013. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C. J., and Gasson, E. G. W.: The multi-millennial Antarctic commitment to future sea-level rise, Nature, 526, 421–425,
https://doi.org/10.1038/nature15706, 2015. a
Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J.,
Trusel, L. D., and Edwards, T. L.: Global environmental consequences of
twenty-first-century ice-sheet melt, Nature, 566, 65–72,
https://doi.org/10.1038/s41586-019-0889-9, 2019. a
Hutter, K.: Theoretical Glaciology, D. Reidel Publishing Company/Terra
Scientific Publishing Company, https://doi.org/10.1007/978-94-015-1167-4, 1983. a
Jeong, S., Howat, I. M., and Bassis, J. N.: Accelerated ice shelf rifting and
retreat at Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 43, 11720–11725, https://doi.org/10.1002/2016GL071360, 2016. a, b
Khazendar, A., Rignot, E., and Larour, E.: Roles of marine ice, rheology, and
fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf,
J. Geophys. Res.-Earth, 114, F04007, https://doi.org/10.1029/2008JF001124, 2009. a
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp, S., Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level
Projections, Earth's Future, 5, 1217–1233, https://doi.org/10.1002/2017EF000663, 2017. a
Krug, J., Durand, G., Gagliardini, O., and Weiss, J.: Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics, The Cryosphere, 9, 989–1003, https://doi.org/10.5194/tc-9-989-2015, 2015. a, b, c
Levermann, A. and Winkelmann, R.: A simple equation for the melt elevation feedback of ice sheets, The Cryosphere, 10, 1799–1807, https://doi.org/10.5194/tc-10-1799-2016, 2016. a
Levermann, A., Albrecht, T., Winkelmann, R., Martin, M. A., Haseloff, M., and Joughin, I.: Kinematic first-order calving law implies potential for abrupt ice-shelf retreat, The Cryosphere, 6, 273–286, https://doi.org/10.5194/tc-6-273-2012, 2012. a
Levermann, A., Winkelmann, R., Albrecht, T., Goelzer, H., Golledge, N. R., Greve, R., Huybrechts, P., Jordan, J., Leguy, G., Martin, D., Morlighem, M., Pattyn, F., Pollard, D., Quiquet, A., Rodehacke, C., Seroussi, H., Sutter, J., Zhang, T., Van Breedam, J., Calov, R., DeConto, R., Dumas, C., Garbe, J., Gudmundsson, G. H., Hoffman, M. J., Humbert, A., Kleiner, T., Lipscomb, W. H., Meinshausen, M., Ng, E., Nowicki, S. M. J., Perego, M., Price, S. F., Saito, F., Schlegel, N.-J., Sun, S., and van de Wal, R. S. W.: Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2), Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, 2020. a
Mengel, M., Feldmann, J., and Levermann, A.: Linear sea-level response to
abrupt ocean warming of major West Antarctic ice basin, Nat. Clim. Change, 6, 71–74, https://doi.org/10.1038/nclimate2808, 2016. a
Mercer, J. H.: West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster, Nature, 271, 321–325, https://doi.org/10.1038/271321a0, 1978. a
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello, J., and Prats-Iraola, P.: Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica, Science Advances, 5, eaau3433, https://doi.org/10.1126/sciadv.aau3433, 2019. a
Morlighem, M., Bondzio, J., Seroussi, H., Rignot, E., Larour, E., Humbert, A., and Rebuffi, S.: Modeling of Store Gletscher's calving dynamics, West
Greenland, in response to ocean thermal forcing, Geophys. Res. Lett., 43, 2659–2666, https://doi.org/10.1002/2016GL067695, 2016. a, b
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019. a
Nick, F., van der Veen, C., Vieli, A., and Benn, D.: A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics, J. Glaciol., 56, 781–794,
https://doi.org/10.3189/002214310794457344, 2010. a
Parizek, B. R., Christianson, K., Alley, R. B., Voytenko, D., Vaňková, I.,
Dixon, T. H., Walker, R. T., and Holland, D. M.: Ice-cliff failure via
retrogressive slumping, Geology, 47, 449–452, https://doi.org/10.1130/G45880.1, 2019. a
PISM: PISM, a Parallel Ice Sheet Model, available at:
https://pism-docs.org (last access: 13 June 2020), 2018. a
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driven by hydrofracturing and ice cliff failure,
Earth. Planet. Sc. Lett., 412, 112–121,
https://doi.org/10.1016/j.epsl.2014.12.035, 2015. a, b
Rignot, E. and MacAyeal, D. R.: Ice-shelf dynamics near the front of the
Filchner-Ronne Ice Shelf, Antarctica, revealed by SAR interferometry,
J. Glaciol., 44, 405–418, https://doi.org/10.3189/S0022143000002732, 1998. a
Rignot, E. and Kanagaratnam, P.: Changes in the Velocity Structure of the
Greenland Ice Sheet, Science, 311, 986–990, https://doi.org/10.1126/science.1121381, 2006. a
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and
Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014. a
Rignot, E. Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., and Morlighem, M.: Four
decades of Antarctic Ice Sheet mass balance from 1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J.,
Peyaud, V., and Hindmarsh, R. C. A.: Potential sea-level rise
from Antarctic ice-sheet instability constrained by observations, Nature,
528, 115–118, https://doi.org/10.1038/nature16147, 2015. a
Robel, A. A.: Thinning sea ice weakens buttressing force of iceberg mélange
and promotes calving, Nat. Commun., 8, 14596, https://doi.org/10.1038/ncomms14596, 2017. a, b, c
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth, 112, F03S28,
https://doi.org/10.1029/2006JF000664, 2007. a
Shepherd, A., Wingham, D., and Rignot, E.: Warm ocean is eroding West Antarctic Ice Sheet, Geophys. Res. Lett., 31, L23402,
https://doi.org/10.1029/2004GL021106, 2004. a
Shepherd, A., Fricker, H. A., and Farrell, S. L.: Trends and connections across the Antarctic cryosphere, Nature, 558, 223–232,
https://doi.org/10.1038/s41586-018-0171-6, 2018a. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.-W., Simonsen, S.,
Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg,
W. J., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D.,
Wouters, B., and the T.I.M.B.I.E. team: Mass balance of the Antarctic Ice
Sheet from 1992 to 2017, Nature, 558, 219–222,
https://doi.org/10.1038/s41586-018-0179-y, 2018b. a
Slangen, A. B. A., Adloff, F., Jevrejeva, S., Leclercq, P. W., Marzeion, B.,
Wada, Y., and Winkelmann, R.: A Review of Recent Updates of Sea-Level
Projections at Global and Regional Scales, in: Integrative Study of the Mean Sea Level and Its Components, edited by: Cazenave, A., Champollion, N., Paul, F., and Benveniste, J., Springer International Publishing, Cham, Switzerland, 395–416 pp., https://doi.org/10.1007/978-3-319-56490-6_17, 2017. a
Todd, J. and Christoffersen, P.: Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland, The Cryosphere, 8, 2353–2365, https://doi.org/10.5194/tc-8-2353-2014, 2014.
a
Todd, J., Christoffersen, P., Zwinger, T., Råback, P., Chauché, N., Benn, D.,
Luckman, A., Ryan, J., Toberg, N., Slater, D., and Hubbard, A.: A Full-Stokes
3D Calving Model Applied to a Large Greenlandic Glacier, J. Geophys. Res.-Earth, 123, 410–432,
https://doi.org/10.1002/2017JF004349, 2018. a, b
Todd, J., Christoffersen, P., Zwinger, T., Råback, P., and Benn, D. I.: Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model, The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, 2019. a
Walter, J. I., Box, J. E., Tulaczyk, S., Brodsky, E. E., Howat, I. M., Ahn, Y., and Brown, A.: Oceanic mechanical forcing of a marine-terminating Greenland glacier, Ann. Glaciol., 53, 181–192, https://doi.org/10.3189/2012AoG60A083,
2012. a, b
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018. a
Weertman, J.: Stability of ice-age ice sheets, J. Geophys. Res., 66, 3783–3792, https://doi.org/10.1029/JZ066i011p03783, 1961. a
Weis, M., Greve, R., and Hutter, K.: Theory of shallow ice shelves,
Continuum Mech. Therm., 11, 15–50, https://doi.org/10.1007/s001610050102, 1999. a
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description, The Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011, 2011. a
Xie, S., Dixon, T. H., Holland, D. M., Voytenko, D., and Vaňková, I.: Rapid
iceberg calving following removal of tightly packed pro-glacial mélange,
Nat. Commun., 10, 3250, https://doi.org/10.1038/s41467-019-10908-4, 2019. a
Yin, J., Overpeck, J. T., Griffies, S. M., Hu, A., Russell, J. L., and
Stouffer, R. J.: Different magnitudes of projected subsurface ocean warming
around Greenland and Antarctica, Nat. Geosci., 4, 524–528, https://doi.org/10.1038/ngeo1189, 2011. a
Short summary
Ice loss from Greenland and Antarctica is often cloaked by a mélange of icebergs and sea ice. Here we provide a simple method to parametrize the resulting back stress on the ice flow for large-scale projection models.
Ice loss from Greenland and Antarctica is often cloaked by a mélange of icebergs and sea ice....