Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4853-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4853-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of lateral groundwater flow on hydrothermal conditions of the active layer in a high-Arctic hillslope setting
Alexandra Hamm
CORRESPONDING AUTHOR
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Andrew Frampton
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Related authors
Alexandra Hamm, Erik Schytt Mannerfelt, Aaron A. Mohammed, Scott L. Painter, Ethan T. Coon, and Andrew Frampton
The Cryosphere, 19, 3693–3724, https://doi.org/10.5194/tc-19-3693-2025, https://doi.org/10.5194/tc-19-3693-2025, 2025
Short summary
Short summary
The fate of thawing permafrost carbon is essential for understanding the permafrost–climate feedback and projections of future climate. Here we study transport of organic carbon by groundwater in the active layer of a hillslope model. We find that carbon transport velocities and microbial mineralization rates are strongly dependent on liquid saturation in the seasonally thawed active layer. In a warming climate, the rate at which permafrost thaws determines how fast carbon can be transported.
Alexandra Hamm, Erik Schytt Mannerfelt, Aaron A. Mohammed, Scott L. Painter, Ethan T. Coon, and Andrew Frampton
The Cryosphere, 19, 3693–3724, https://doi.org/10.5194/tc-19-3693-2025, https://doi.org/10.5194/tc-19-3693-2025, 2025
Short summary
Short summary
The fate of thawing permafrost carbon is essential for understanding the permafrost–climate feedback and projections of future climate. Here we study transport of organic carbon by groundwater in the active layer of a hillslope model. We find that carbon transport velocities and microbial mineralization rates are strongly dependent on liquid saturation in the seasonally thawed active layer. In a warming climate, the rate at which permafrost thaws determines how fast carbon can be transported.
Andrew Frampton
Adv. Geosci., 65, 149–158, https://doi.org/10.5194/adgeo-65-149-2025, https://doi.org/10.5194/adgeo-65-149-2025, 2025
Short summary
Short summary
This study reveals new insights to the behaviour of subsurface water flow in fractured bedrock which has important implications for environmental safety of geological storage of spent nuclear fuel, carbon sequestration and other unwanted substances. It shows the relevance of accounting for small scale fracture heterogeneity in models to make accurate predictions on the transit times and pathways water flow takes through bedrock.
Cited articles
Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R., and Coon, E. T.:
Feedbacks Between Surface Deformation and Permafrost Degradation in
Ice Wedge Polygons, Arctic Coastal Plain, Alaska, J. Geophys. Res.-Earth, 125, 3, https://doi.org/10.1029/2019JF005349, 2020. a
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015. a
Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R., and Wilson, C. J.:
Influences and interactions of inundation, peat, and snow on active layer
thickness, Geophys. Res. Lett., 43, 5116–5123,
https://doi.org/10.1002/2016GL068550, 2016. a
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn,
I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K.,
Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019. a
Chen, L., Fortier, D., McKenzie, J. M., and Sliger, M.: Impact of heat
advection on the thermal regime of roads built on permafrost,
Hydrol. Process., 34, 1647–1664, https://doi.org/10.1002/hyp.13688, 2020. a
Clayton, L. K., Schaefer, K., Battaglia, M. J., Bourgeau-Chavez, L., Chen, J., Chen, R. H., Chen, A. C., Bakian-Dogaheh, K., Grelik, S., Jafarov, E., Liu, L., Michaelides, R. J., Moghaddam, M., Parsekian, A., Rocha, A. V., Schaefer, S. R., Sullivan, T., Tabatabaeenejad, A., Wang, K., Wilson, C. J., Zebker, H. A., Zhang, T., and Zhao, Y.: Active layer thickness as a function of soil water content, Environ. Res. Lett., 16, 055028,
https://doi.org/10.1088/1748-9326/abfa4c, 2021. a
Coon, E., Svyatsky, D., Jan, A., Kikinzon, E., Berndt, M., Atchley, A., Harp,
D., Manzini, G., Shelef, E., Lipnikov, K., Garimella, R., Xu, C., Moulton,
D., Karra, S., Painter, S., Jafarov, E., and Molins, S.: Advanced
Terrestrial Simulator, language: en, DOE CODE [code], https://doi.org/10.11578/DC.20190911.1, 2019. a, b
Coon, E. T.: ATS: The Advanced Terrestrial Simulator, Github [code],
avaialble at: https://github.com/amanzi/ats (last access: July 2020), 2016. a
Coon, E. T., David Moulton, J., and Painter, S. L.: Managing complexity in
simulations of land surface and near-surface processes, Environ. Modell. Softw., 78, 134–149, https://doi.org/10.1016/j.envsoft.2015.12.017,
2016. a
de Grandpré, I., Fortier, D., and Stephani, E.: Degradation of permafrost
beneath a road embankment enhanced by heat advected in groundwater, Can. J. Earth Sci., 49, 953–962, https://doi.org/10.1139/e2012-018, 2012. a, b
Douglas, T. A., Turetsky, M. R., and Koven, C. D.: Increased rainfall
stimulates permafrost thaw across a variety of Interior Alaskan boreal
ecosystems, npj Climate and Atmospheric Science, 3, 28, https://doi.org/10.1038/s41612-020-0130-4, 2020. a
Evans, S. G. and Ge, S.: Contrasting hydrogeologic responses to warming in
permafrost and seasonally frozen ground hillslopes: Hydrogeology of
Warming Frozen Grounds, Geophys. Res. Lett., 44, 1803–1813,
https://doi.org/10.1002/2016GL072009, 2017. a
Evans, S. G., Godsey, S. E., Rushlow, C. R., and Voss, C.: Water Tracks
Enhance Water Flow Above Permafrost in Upland Arctic Alaska
Hillslopes, J. Geophys. Res.-Earth, 125, e2019JF005256,
https://doi.org/10.1029/2019JF005256, 2020. a, b
Frampton, A. and Destouni, G.: Impact of degrading permafrost on subsurface
solute transport pathways and travel times, Water Resour. Res., 51,
7680–7701, https://doi.org/10.1002/2014WR016689, 2015. a
Frampton, A., Painter, S., Lyon, S. W., and Destouni, G.: Non-isothermal,
three-phase simulations of near-surface flows in a model permafrost system
under seasonal variability and climate change, J. Hydrol., 403,
352–359, https://doi.org/10.1016/j.jhydrol.2011.04.010, 2011. a, b
Frampton, A., Painter, S. L., and Destouni, G.: Permafrost degradation and
subsurface-flow changes caused by surface warming trends, Hydrogeol.
J., 21, 271–280, https://doi.org/10.1007/s10040-012-0938-z, 2013. a
Frauenfeld, O. W., Zhang, T., Barry, R. G., and GilichinskySoil, D.:
Interdecadal changes in seasonal freeze and thaw depths in Russia, J. Geophys. Res., 109, D05101, https://doi.org/10.1029/2003JD004245, 2004. a
Førland, E. J. and Hanssen-Bauer, I.: Increased Precipitation in the
Norwegian Arctic: True or False?, Climatic Change, 46, 485–509,
https://doi.org/10.1023/A:1005613304674, 2000. a
Hamm, A.: a-hamm/ats_hillslope2021: hillslope_experiment_v1, Zenodo [data set], https://doi.org/10.5281/zenodo.5517100, 2021. a
Hanssen-Bauer, I., Førland, E., Hisdal, H., Mayer, S., Sandø, A., and
Sorteberg, A.: Climate in Svalbard 2100 – a knowledge base for climate
adaptation, Tech. Rep. 1/2019, Norwegian Centre for Climate Services, Norway, 2018. a
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014. a
Iijima, Y., Fedorov, A. N., Park, H., Suzuki, K., Yabuki, H., Maximov, T. C.,
and Ohata, T.: Abrupt increases in soil temperatures following increased
precipitation in a permafrost region, central Lena River basin, Russia,
Permafrost. Periglac., 21, 30–41, https://doi.org/10.1002/ppp.662,
2010. a
Isaksen, K., Sollid, J. L., Holmlund, P., and Harris, C.: Recent warming of
mountain permafrost in Svalbard and Scandinavia,
J. Geophys. Res., 112, F02S04, https://doi.org/10.1029/2006JF000522, 2007. a, b
Jafarov, E. E., Coon, E. T., Harp, D. R., Wilson, C. J., Painter, S. L.,
Atchley, A. L., and Romanovsky, V. E.: Modeling the role of preferential snow
accumulation in through talik development and hillslope groundwater flow in a
transitional permafrost landscape, Environ. Res. Lett., 13,
105006, https://doi.org/10.1088/1748-9326/aadd30, 2018. a, b, c
Jan, A. and Painter, S. L.: Permafrost thermal conditions are sensitive to
shifts in snow timing, Environ. Res. Lett., 15, 084026,
https://doi.org/10.1088/1748-9326/ab8ec4, 2020. a, b
Kane, D. L., Hinkel, K. M., Goering, D. J., Hinzman, L. D., and Outcalt, S. I.:
Non-conductive heat transfer associated with frozen soils, Global Planet. Change, 29, 275–292, https://doi.org/10.1016/S0921-8181(01)00095-9, 2001. a, b
Karra, S., Painter, S. L., and Lichtner, P. C.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0), The Cryosphere, 8, 1935–1950, https://doi.org/10.5194/tc-8-1935-2014, 2014. a
Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P.,
Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate
feedbacks accelerate global warming, P. Natl. Acad. Sci. USA, 108, 14769–14774, https://doi.org/10.1073/pnas.1103910108, 2011. a
Kurylyk, B. L., Hayashi, M., Quinton, W. L., McKenzie, J. M., and Voss, C. I.:
Influence of vertical and lateral heat transfer on permafrost thaw, peatland
landscape transition, and groundwater flow: Permafrost thaw, landscape
change and groundwater flow, Water Resour. Res., 52, 1286–1305,
https://doi.org/10.1002/2015WR018057, 2016. a
Langford, J. E., Schincariol, R. A., Nagare, R. M., Quinton, W. L., and
Mohammed, A. A.: Transient and Transition Factors in Modeling
Permafrost Thaw and Groundwater Flow, Groundwater, 58, 258–268,
https://doi.org/10.1111/gwat.12903, 2020. a
Li, D.-s., Wen, Z., Cheng, Q.-g., Xing, A.-g., Zhang, M.-l., and Li, A.-y.:
Thermal dynamics of the permafrost active layer under increased precipitation
at the Qinghai-Tibet Plateau, J. Mt. Sci., 16,
309–322, https://doi.org/10.1007/s11629-018-5153-5, 2019. a
Loranty, M. M., Abbott, B. W., Blok, D., Douglas, T. A., Epstein, H. E., Forbes, B. C., Jones, B. M., Kholodov, A. L., Kropp, H., Malhotra, A., Mamet, S. D., Myers-Smith, I. H., Natali, S. M., O'Donnell, J. A., Phoenix, G. K., Rocha, A. V., Sonnentag, O., Tape, K. D., and Walker, D. A.: Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions, Biogeosciences, 15, 5287–5313, https://doi.org/10.5194/bg-15-5287-2018, 2018. a
Luo, D., Jin, H., Bense, V. F., Jin, X., and Li, X.: Hydrothermal processes of
near-surface warm permafrost in response to strong precipitation events in
the Headwater Area of the Yellow River, Tibetan Plateau,
Geoderma, 376, 114531, https://doi.org/10.1016/j.geoderma.2020.114531, 2020. a
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the carbon cycle in the Arctic to climate change, Ecol. Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009. a
McKenzie, J. M. and Voss, C. I.: Permafrost thaw in a nested groundwater-flow
system, Hydrogeol. J., 21, 299–316, 2013. a
McKenzie, J. M., Kurylyk, B. L., Walvoord, M. A., Bense, V. F., Fortier, D., Spence, C., and Grenier, C.: Invited perspective: What lies beneath a changing Arctic?, The Cryosphere, 15, 479–484, https://doi.org/10.5194/tc-15-479-2021, 2021. a
Mekonnen, Z. A., Riley, W. J., Grant, R. F., and Romanovsky, V. E.: Changes in
precipitation and air temperature contribute comparably to permafrost
degradation in a warmer climate, Environ. Res. Lett., 16,
024008, https://doi.org/10.1088/1748-9326/abc444, 2021. a
Norwegian Centre for Climate Services: Observasjoner og værstatistikk, available at: https://seklima.met.no/observations/, last access: September 2021. a
Painter, S. L.: Three-phase numerical model of water migration in partially
frozen geological media: model formulation, validation, and applications,
Computat. Geosci., 15, 69–85, https://doi.org/10.1007/s10596-010-9197-z, 2011. a, b
Painter, S. L. and Karra, S.: Constitutive Model for Unfrozen Water
Content in Subfreezing Unsaturated Soils, Vadose Zone J., 13,
vzj2013.04.0071, https://doi.org/10.2136/vzj2013.04.0071, 2014. a
Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R.,
Moulton, J. D., Svyatskiy, D., and Wilson, C. J.: Integrated
surface/subsurface permafrost thermal hydrology: Model formulation and
proof-of-concept simulations, Water Resour. Res., 52, 6062–6077,
https://doi.org/10.1002/2015WR018427, 2016. a, b, c
Pannetier, R. and Frampton, A.: Air warming trends linked to permafrost warming
in the sub-Arctic catchment of Tarfala, Sweden, Polar Res., 35,
28978, https://doi.org/10.3402/polar.v35.28978, 2016. a
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey,
S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier,
M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M.,
Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P.,
Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.:
ArcticDEM, https://doi.org/10.7910/dvn/ohhukh, Harvard Dataverse [data set], 2018. a
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and Marchenko,
S.: Recent advances in permafrost modelling,
Permafrost. Periglac., 19, 137–156, https://doi.org/10.1002/ppp.615, 2008. a
Schuh, C., Frampton, A., and Christiansen, H. H.: Soil moisture redistribution and its effect on inter-annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard, The Cryosphere, 11, 635–651, https://doi.org/10.5194/tc-11-635-2017, 2017. a, b, c, d
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali,
S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat,
C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback,
Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015. a
Shojae Ghias, M., Therrien, R., Molson, J., and Lemieux, J.-M.: Numerical
simulations of shallow groundwater flow and heat transport in continuous
permafrost setting under impact of climate warming, Can. Geotech. J., 56, 436–448, https://doi.org/10.1139/cgj-2017-0182, 2019. a
Sjöberg, Y., Coon, E., K. Sannel, A. B., Pannetier, R., Harp, D., Frampton,
A., Painter, S. L., and Lyon, S. W.: Thermal effects of groundwater flow
through subarctic fens: A case study based on field observations and
numerical modeling, Water Resour. Res., 52, 1591–1606,
https://doi.org/10.1002/2015WR017571, 2016. a, b
Sjöberg, Y., Jan, A., Painter, S. L., Coon, E. T., Carey, M. P., O'Donnell,
J. A., and Koch, J. C.: Permafrost Promotes Shallow Groundwater Flow
and Warmer Headwater Streams, Water Resour. Res., 57, e2020WR027463,
https://doi.org/10.1029/2020WR027463, 2021. a
Strand, S. M., Christiansen, H. H., Johansson, M., Åkerman, J., and Humlum,
O.: Active layer thickening and controls on interannual variability in the
Nordic Arctic compared to the circum‐Arctic, Permafrost Periglac., 32, 47–58, https://doi.org/10.1002/ppp.2088, 2020. a, b
The University Centre in Svalbard: UNIS Weather stations and CTD stations, The University Centre in Svalbard [data set], available at: https://www.unis.no/resources/weather-stations/, last access: March 2020. a
Veuille, S., Fortier, D., Verpaelst, M., and Grandmont, K.: Heat Advection in
the Active Layer of Permafrost: Physical Modelling to Quantify
the Impact of Subsurface Flow on Soil Thawing, in: GéoQuébec
2015 Proceedings of the 68th Canadian Geotechnical Conference and the
7th Canadian Permafrost Conference, p. 9, Québec City, Québec, 2015. a
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic Impacts of Thawing
Permafrost – A Review, Vadose Zone J., 15, 1–20,
https://doi.org/10.2136/vzj2016.01.0010, 2016.
a
Wen, Z., Niu, F., Yu, Q., Wang, D., Feng, W., and Zheng, J.: The role of
rainfall in the thermal-moisture dynamics of the active layer at Beiluhe of
Qinghai-Tibetan plateau, Environ. Earth Sci., 71, 1195–1204,
https://doi.org/10.1007/s12665-013-2523-8, 2014. a, b, c
Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmüller, B., and Krinner, G.: Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3, Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016, 2016. a
Wu, Q. and Zhang, T.: Recent permafrost warming on the Qinghai-Tibetan
Plateau, J. Geophys. Res., 113, D13 108,
https://doi.org/10.1029/2007JD009539, 2008. a, b
Zhang, T., Osterkamp, T. E., and Stamnes, K.: Effects of Climate on the
Active Layer and Permafrost on the North Slope of Alaska,
U.S.A., Permafrost. Periglac., 8, 45–67, 1997. a
Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., and Brown, J.:
Statistics and characteristics of permafrost and ground‐ice distribution in
the Northern Hemisphere, Polar Geography, 23, 132–154,
https://doi.org/10.1080/10889379909377670, 1999. a
Zhu, X., Wu, T., Li, R., Xie, C., Hu, G., Qin, Y., Wang, W., Hao, J., Yang, S.,
Ni, J., and Yang, C.: Impacts of Summer Extreme Precipitation Events
on the Hydrothermal Dynamics of the Active Layer in the Tanggula
Permafrost Region on the Qinghai-Tibetan Plateau: Impacts of
Precipitation on Active Layer, J. Geophys. Res.-Atmos., 122, 11549–11567, https://doi.org/10.1002/2017JD026736, 2017. a
Short summary
To investigate the effect of groundwater flow on the active layer on slopes in permafrost landscapes, we conducted several modeling experiments. We find that groundwater moving downslope in the subsurface causes areas uphill to be warmer than downhill. This effect is explained by differences in heat capacity, conductivity, and infiltration. Therefore, in a changing climate, higher soil moisture could have a cooling effect on the active layer and attenuate warming from higher air temperatures.
To investigate the effect of groundwater flow on the active layer on slopes in permafrost...