Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4727-2021
https://doi.org/10.5194/tc-15-4727-2021
Research article
 | 
07 Oct 2021
Research article |  | 07 Oct 2021

Semi-automated tracking of iceberg B43 using Sentinel-1 SAR images via Google Earth Engine

YoungHyun Koo, Hongjie Xie, Stephen F. Ackley, Alberto M. Mestas-Nuñez, Grant J. Macdonald, and Chang-Uk Hyun

Related authors

Calibrating calving parameterizations using graph neural network emulators: Application to Helheim Glacier, East Greenland
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
EGUsphere, https://doi.org/10.5194/egusphere-2024-1620,https://doi.org/10.5194/egusphere-2024-1620, 2024
Short summary
Inferring the seasonality of sea ice floes in the Weddell Sea using ICESat-2
Mukund Gupta, Heather Regan, Young Hyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
EGUsphere, https://doi.org/10.5194/egusphere-2024-1329,https://doi.org/10.5194/egusphere-2024-1329, 2024
Short summary

Related subject area

Discipline: Other | Subject: Remote Sensing
Land surface temperature trends derived from Landsat imagery in the Swiss Alps
Deniz Tobias Gök, Dirk Scherler, and Hendrik Wulf
The Cryosphere, 18, 5259–5276, https://doi.org/10.5194/tc-18-5259-2024,https://doi.org/10.5194/tc-18-5259-2024, 2024
Short summary
Co-registration and residual correction of digital elevation models: a comparative study
Tao Li, Yuanlin Hu, Bin Liu, Liming Jiang, Hansheng Wang, and Xiang Shen
The Cryosphere, 17, 5299–5316, https://doi.org/10.5194/tc-17-5299-2023,https://doi.org/10.5194/tc-17-5299-2023, 2023
Short summary
Ice thickness and water level estimation for ice-covered lakes with satellite altimetry waveforms and backscattering coefficients
Xingdong Li, Di Long, Yanhong Cui, Tingxi Liu, Jing Lu, Mohamed A. Hamouda, and Mohamed M. Mohamed
The Cryosphere, 17, 349–369, https://doi.org/10.5194/tc-17-349-2023,https://doi.org/10.5194/tc-17-349-2023, 2023
Short summary
Mapping potential signs of gas emissions in ice of Lake Neyto, Yamal, Russia, using synthetic aperture radar and multispectral remote sensing data
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021,https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Brief communication: Glacier run-off estimation using altimetry-derived basin volume change: case study at Humboldt Glacier, northwest Greenland
Laurence Gray
The Cryosphere, 15, 1005–1014, https://doi.org/10.5194/tc-15-1005-2021,https://doi.org/10.5194/tc-15-1005-2021, 2021
Short summary

Cited articles

Achanta, R. and Süsstrunk, S.: Superpixels and polygons using simple non-iterative clustering, Proc. – 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, January 2017, 4895–4904, https://doi.org/10.1109/CVPR.2017.520, 2017. 
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S.: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, IEEE T. Pattern Anal. Mach. Intel., 34, 2274–2282, https://doi.org/10.1109/TPAMI.2012.120, 2012. 
Arjun, P. and Mirnalinee, T. T.: Affine invariant compact centroid distance shape descriptor for image retrieval, Appl. Math. Sci., 9, 2325–2335, https://doi.org/10.12988/ams.2015.53214, 2015. 
Barbat, M. M., Wesche, C., Werhli, A. V., and Mata, M. M.: An adaptive machine learning approach to improve automatic iceberg detection from SAR images, ISPRS J. Photogram. Remote Sens., 156, 247–259, https://doi.org/10.1016/j.isprsjprs.2019.08.015, 2019. 
Barbat, M. M., Rackow, T., Wesche, C., Hellmer, H. H., and Mata, M. M.: Automated iceberg tracking with a machine learning approach applied to SAR imagery: A Weddell sea case study, ISPRS J. Photogram. Remote Sens., 172, 189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006, 2021. 
Download
Short summary
This study demonstrates for the first time the potential of Google Earth Engine (GEE) cloud-computing platform and Sentinel-1 synthetic aperture radar (SAR) images for semi-automated tracking of area changes and movements of iceberg B43. Our novel GEE-based iceberg tracking can be used to construct a large iceberg database for a better understanding of the behavior of icebergs and their interactions with surrounding environments.