Articles | Volume 15, issue 10
The Cryosphere, 15, 4727–4744, 2021
https://doi.org/10.5194/tc-15-4727-2021
The Cryosphere, 15, 4727–4744, 2021
https://doi.org/10.5194/tc-15-4727-2021

Research article 07 Oct 2021

Research article | 07 Oct 2021

Semi-automated tracking of iceberg B43 using Sentinel-1 SAR images via Google Earth Engine

YoungHyun Koo et al.

Related authors

Evolution of the Amundsen Sea Polynya, Antarctica, 2016–2021
Grant J. Macdonald, Stephen F. Ackley, and Alberto M. Mestas-Nuñez
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-250,https://doi.org/10.5194/tc-2021-250, 2021
Preprint under review for TC
Short summary
Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica
Lisa Thompson, Madison Smith, Jim Thomson, Sharon Stammerjohn, Steve Ackley, and Brice Loose
The Cryosphere, 14, 3329–3347, https://doi.org/10.5194/tc-14-3329-2020,https://doi.org/10.5194/tc-14-3329-2020, 2020
Short summary
AN INVESTIGATION OF THE HYPOTHESES FOR FORMATION OF THE PLATY-RIDGED-POLYGONIZED TERRAIN IN ELYSIUM PLANITIA, MARS
Z. Yue, S. Gou, G. Michael, K. Di, H. Xie, H. Gong, and Y. Shao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W1, 205–211, https://doi.org/10.5194/isprs-archives-XLII-3-W1-205-2017,https://doi.org/10.5194/isprs-archives-XLII-3-W1-205-2017, 2017
Variability in snow cover phenology in China from 1952 to 2010
Chang-Qing Ke, Xiu-Cang Li, Hongjie Xie, Dong-Hui Ma, Xun Liu, and Cheng Kou
Hydrol. Earth Syst. Sci., 20, 755–770, https://doi.org/10.5194/hess-20-755-2016,https://doi.org/10.5194/hess-20-755-2016, 2016
Short summary
Summer sea ice characteristics and morphology in the Pacific Arctic sector as observed during the CHINARE 2010 cruise
H. Xie, R. Lei, C. Ke, H. Wang, Z. Li, J. Zhao, and S. F. Ackley
The Cryosphere, 7, 1057–1072, https://doi.org/10.5194/tc-7-1057-2013,https://doi.org/10.5194/tc-7-1057-2013, 2013

Related subject area

Discipline: Other | Subject: Remote Sensing
Mapping potential signs of gas emissions in ice of Lake Neyto, Yamal, Russia, using synthetic aperture radar and multispectral remote sensing data
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021,https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Brief communication: Glacier run-off estimation using altimetry-derived basin volume change: case study at Humboldt Glacier, northwest Greenland
Laurence Gray
The Cryosphere, 15, 1005–1014, https://doi.org/10.5194/tc-15-1005-2021,https://doi.org/10.5194/tc-15-1005-2021, 2021
Short summary
Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E and AMSR2
Lei Zheng, Chunxia Zhou, Tingjun Zhang, Qi Liang, and Kang Wang
The Cryosphere, 14, 3811–3827, https://doi.org/10.5194/tc-14-3811-2020,https://doi.org/10.5194/tc-14-3811-2020, 2020
Short summary
CryoSat Ice Baseline-D validation and evolutions
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020,https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data
Vasiliy Tikhonov, Ilya Khvostov, Andrey Romanov, and Evgeniy Sharkov
The Cryosphere, 12, 2727–2740, https://doi.org/10.5194/tc-12-2727-2018,https://doi.org/10.5194/tc-12-2727-2018, 2018
Short summary

Cited articles

Achanta, R. and Süsstrunk, S.: Superpixels and polygons using simple non-iterative clustering, Proc. – 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, January 2017, 4895–4904, https://doi.org/10.1109/CVPR.2017.520, 2017. 
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S.: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, IEEE T. Pattern Anal. Mach. Intel., 34, 2274–2282, https://doi.org/10.1109/TPAMI.2012.120, 2012. 
Arjun, P. and Mirnalinee, T. T.: Affine invariant compact centroid distance shape descriptor for image retrieval, Appl. Math. Sci., 9, 2325–2335, https://doi.org/10.12988/ams.2015.53214, 2015. 
Barbat, M. M., Wesche, C., Werhli, A. V., and Mata, M. M.: An adaptive machine learning approach to improve automatic iceberg detection from SAR images, ISPRS J. Photogram. Remote Sens., 156, 247–259, https://doi.org/10.1016/j.isprsjprs.2019.08.015, 2019. 
Barbat, M. M., Rackow, T., Wesche, C., Hellmer, H. H., and Mata, M. M.: Automated iceberg tracking with a machine learning approach applied to SAR imagery: A Weddell sea case study, ISPRS J. Photogram. Remote Sens., 172, 189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006, 2021. 
Download
Short summary
This study demonstrates for the first time the potential of Google Earth Engine (GEE) cloud-computing platform and Sentinel-1 synthetic aperture radar (SAR) images for semi-automated tracking of area changes and movements of iceberg B43. Our novel GEE-based iceberg tracking can be used to construct a large iceberg database for a better understanding of the behavior of icebergs and their interactions with surrounding environments.