Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4727-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4727-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Semi-automated tracking of iceberg B43 using Sentinel-1 SAR images via Google Earth Engine
YoungHyun Koo
Center for Advanced Measurements in Extreme Environments, University of Texas at San Antonio, San Antonio, TX 78249, USA
Hongjie Xie
CORRESPONDING AUTHOR
Center for Advanced Measurements in Extreme Environments, University of Texas at San Antonio, San Antonio, TX 78249, USA
Stephen F. Ackley
Center for Advanced Measurements in Extreme Environments, University of Texas at San Antonio, San Antonio, TX 78249, USA
Alberto M. Mestas-Nuñez
Center for Advanced Measurements in Extreme Environments, University of Texas at San Antonio, San Antonio, TX 78249, USA
Grant J. Macdonald
Center for Advanced Measurements in Extreme Environments, University of Texas at San Antonio, San Antonio, TX 78249, USA
Chang-Uk Hyun
Department of Energy and Mineral Resources Engineering, Dong-A
University, Busan 49315, Republic of Korea
Related authors
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
EGUsphere, https://doi.org/10.5194/egusphere-2024-1620, https://doi.org/10.5194/egusphere-2024-1620, 2024
Short summary
Short summary
Calving, the breaking of ice bodies from the terminus of a glacier, plays an important role in the mass losses of Greenland ice sheets. However, calving parameters have been poorly understood because of the intensive computational demands of traditional numerical models. To address this issue and find the optimal calving parameter that best represents real observations, we develop deep-learning emulators based on graph neural network architectures.
Mukund Gupta, Heather Regan, Young Hyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
EGUsphere, https://doi.org/10.5194/egusphere-2024-1329, https://doi.org/10.5194/egusphere-2024-1329, 2024
Short summary
Short summary
The sea ice cover is composed of floes, whose shapes set the material properties of the pack. Here, we use a satellite product (ICESat-2) to investigate these floe shapes within the Weddell Sea. We find that floes tend to become smaller during the melt season, while their thickness distribution exhibits different behavior between the western and southern regions of the pack. These metrics will help calibrate models, and improve our understanding of sea ice physics across scales.
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
EGUsphere, https://doi.org/10.5194/egusphere-2024-1620, https://doi.org/10.5194/egusphere-2024-1620, 2024
Short summary
Short summary
Calving, the breaking of ice bodies from the terminus of a glacier, plays an important role in the mass losses of Greenland ice sheets. However, calving parameters have been poorly understood because of the intensive computational demands of traditional numerical models. To address this issue and find the optimal calving parameter that best represents real observations, we develop deep-learning emulators based on graph neural network architectures.
Mukund Gupta, Heather Regan, Young Hyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
EGUsphere, https://doi.org/10.5194/egusphere-2024-1329, https://doi.org/10.5194/egusphere-2024-1329, 2024
Short summary
Short summary
The sea ice cover is composed of floes, whose shapes set the material properties of the pack. Here, we use a satellite product (ICESat-2) to investigate these floe shapes within the Weddell Sea. We find that floes tend to become smaller during the melt season, while their thickness distribution exhibits different behavior between the western and southern regions of the pack. These metrics will help calibrate models, and improve our understanding of sea ice physics across scales.
Grant J. Macdonald, Stephen F. Ackley, Alberto M. Mestas-Nuñez, and Adrià Blanco-Cabanillas
The Cryosphere, 17, 457–476, https://doi.org/10.5194/tc-17-457-2023, https://doi.org/10.5194/tc-17-457-2023, 2023
Short summary
Short summary
Polynyas are key sites of sea ice production, biological activity, and carbon sequestration. The Amundsen Sea Polynya is of particular interest due to its size and location. By analyzing radar imagery and climate and sea ice data products, we evaluate variations in the dynamics, area, and ice production of the Amundsen Sea Polynya. In particular, we find the local seafloor topography and associated grounded icebergs play an important role in the polynya dynamics, influencing ice production.
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
Grant J. Macdonald, Stephen F. Ackley, and Alberto M. Mestas-Nuñez
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-250, https://doi.org/10.5194/tc-2021-250, 2021
Manuscript not accepted for further review
Short summary
Short summary
Polynyas are key sites of sea ice production, biological activity and carbon sequestration. The Amundsen Sea Polynya is of particular interest due to its size and location. By analyzing radar imagery and climate and sea ice data products we evaluate variations in the dynamics, area and ice production of the Amundsen Sea Polynya. In particular, we find the local sea floor topography and associated grounded icebergs play an important role in the polynyas dynamics, influencing ice production.
Lisa Thompson, Madison Smith, Jim Thomson, Sharon Stammerjohn, Steve Ackley, and Brice Loose
The Cryosphere, 14, 3329–3347, https://doi.org/10.5194/tc-14-3329-2020, https://doi.org/10.5194/tc-14-3329-2020, 2020
Short summary
Short summary
The offshore winds around Antarctica can reach hurricane strength and produce intense cooling, causing the surface ocean to form a slurry of seawater and ice crystals. For the first time, we observed a buildup of heat and salt in the surface ocean, caused by loose ice crystal formation. We conclude that up to 1 m of ice was formed per day by the intense cooling, suggesting that unconsolidated crystals may be an important part of the total freezing that happens around Antarctica.
Z. Yue, S. Gou, G. Michael, K. Di, H. Xie, H. Gong, and Y. Shao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W1, 205–211, https://doi.org/10.5194/isprs-archives-XLII-3-W1-205-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W1-205-2017, 2017
Chang-Qing Ke, Xiu-Cang Li, Hongjie Xie, Dong-Hui Ma, Xun Liu, and Cheng Kou
Hydrol. Earth Syst. Sci., 20, 755–770, https://doi.org/10.5194/hess-20-755-2016, https://doi.org/10.5194/hess-20-755-2016, 2016
Short summary
Short summary
The heavy snow years in China include 1955, 1957, 1964, and 2010, and light snow years include 1953, 1965, 1999, 2002, and 2009. The reduction in number of days with temperature below 0 °C and increase in mean air temperature are the main reasons for the delay of snow cover onset date and advance of snow cover end date. This explains why only 15 % of the stations show significant shortening of snow cover days and differ with the overall shortening of the snow period in the Northern Hemisphere.
N.-X. Geilfus, J.-L. Tison, S. F. Ackley, R. J. Galley, S. Rysgaard, L. A. Miller, and B. Delille
The Cryosphere, 8, 2395–2407, https://doi.org/10.5194/tc-8-2395-2014, https://doi.org/10.5194/tc-8-2395-2014, 2014
Short summary
Short summary
Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica (Oct. 2007), shows that physical and thermodynamic processes control the CO2 system in the ice. We show that each cooling/warming event was associated with an increase/decrease in the brine salinity, TA, TCO2, and in situ brine and bulk ice pCO2. Thicker snow covers reduced the amplitude of these changes. Both brine and bulk ice pCO2 were undersaturated, causing the sea ice to act as a sink for atmospheric CO2.
H. Xie, R. Lei, C. Ke, H. Wang, Z. Li, J. Zhao, and S. F. Ackley
The Cryosphere, 7, 1057–1072, https://doi.org/10.5194/tc-7-1057-2013, https://doi.org/10.5194/tc-7-1057-2013, 2013
W. Wang, T. Liang, X. Huang, Q. Feng, H. Xie, X. Liu, M. Chen, and X. Wang
Nat. Hazards Earth Syst. Sci., 13, 1411–1425, https://doi.org/10.5194/nhess-13-1411-2013, https://doi.org/10.5194/nhess-13-1411-2013, 2013
Related subject area
Discipline: Other | Subject: Remote Sensing
Land surface temperature trends derived from Landsat imagery in the Swiss Alps
Co-registration and residual correction of digital elevation models: a comparative study
Ice thickness and water level estimation for ice-covered lakes with satellite altimetry waveforms and backscattering coefficients
Mapping potential signs of gas emissions in ice of Lake Neyto, Yamal, Russia, using synthetic aperture radar and multispectral remote sensing data
Brief communication: Glacier run-off estimation using altimetry-derived basin volume change: case study at Humboldt Glacier, northwest Greenland
Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E and AMSR2
CryoSat Ice Baseline-D validation and evolutions
Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data
Deniz Tobias Gök, Dirk Scherler, and Hendrik Wulf
EGUsphere, https://doi.org/10.5194/egusphere-2024-1228, https://doi.org/10.5194/egusphere-2024-1228, 2024
Short summary
Short summary
We derived Landsat Collection 2 land surface temperature (LST) trends in the Swiss Alps using a harmonic model with linear trend. Validation with LST data from 119 high-altitude weather stations yielded robust results, but Landsat LST trends are biased due to unstable acquisition times. The bias varies with topographic slope and aspect. We discuss its origin and propose a simple correction method in relation to modeled changes in shortwave radiation.
Tao Li, Yuanlin Hu, Bin Liu, Liming Jiang, Hansheng Wang, and Xiang Shen
The Cryosphere, 17, 5299–5316, https://doi.org/10.5194/tc-17-5299-2023, https://doi.org/10.5194/tc-17-5299-2023, 2023
Short summary
Short summary
Raw DEMs are often misaligned with each other due to georeferencing errors, and a co-registration process is required before DEM differencing. We present a comparative analysis of the two classical DEM co-registration and three residual correction algorithms. The experimental results show that rotation and scale biases should be considered in DEM co-registration. The new non-parametric regression technique can eliminate the complex systematic errors, which existed in the co-registration results.
Xingdong Li, Di Long, Yanhong Cui, Tingxi Liu, Jing Lu, Mohamed A. Hamouda, and Mohamed M. Mohamed
The Cryosphere, 17, 349–369, https://doi.org/10.5194/tc-17-349-2023, https://doi.org/10.5194/tc-17-349-2023, 2023
Short summary
Short summary
This study blends advantages of altimetry backscattering coefficients and waveforms to estimate ice thickness for lakes without in situ data and provides an improved water level estimation for ice-covered lakes by jointly using different threshold retracking methods. Our results show that a logarithmic regression model is more adaptive in converting altimetry backscattering coefficients into ice thickness, and lake surface snow has differential impacts on different threshold retracking methods.
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021, https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
Laurence Gray
The Cryosphere, 15, 1005–1014, https://doi.org/10.5194/tc-15-1005-2021, https://doi.org/10.5194/tc-15-1005-2021, 2021
Short summary
Short summary
A total of 9 years of ice velocity and surface height data obtained from a variety of satellites are used to estimate the water run-off from the northern arm of the Humboldt Glacier in NW Greenland. This represents the first direct measurement of water run-off from a large Greenland glacier, and it complements the iceberg calving flux measurements also based on satellite data. This approach should help improve mass loss estimates for some large Greenland glaciers.
Lei Zheng, Chunxia Zhou, Tingjun Zhang, Qi Liang, and Kang Wang
The Cryosphere, 14, 3811–3827, https://doi.org/10.5194/tc-14-3811-2020, https://doi.org/10.5194/tc-14-3811-2020, 2020
Short summary
Short summary
Snowmelt plays a key role in mass and energy balance in polar regions. In this study, we report on the spatial and temporal variations in the surface snowmelt over the Antarctic sea ice and ice sheet (pan-Antarctic region) based on AMSR-E and AMSR2. Melt detection on sea ice is improved by excluding the effect of open water. The decline in surface snowmelt on the Antarctic ice sheet was very likely linked with the enhanced summer Southern Annular Mode.
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Short summary
This manuscript aims to describe the evolutions which have been implemented in the new CryoSat Ice processing chain Baseline-D and the validation activities carried out in different domains such as sea ice, land ice and hydrology.
This new CryoSat processing Baseline-D will maximise the uptake and use of CryoSat data by scientific users since it offers improved capability for monitoring the complex and multiscale changes over the cryosphere.
Vasiliy Tikhonov, Ilya Khvostov, Andrey Romanov, and Evgeniy Sharkov
The Cryosphere, 12, 2727–2740, https://doi.org/10.5194/tc-12-2727-2018, https://doi.org/10.5194/tc-12-2727-2018, 2018
Short summary
Short summary
The paper presents a theoretical analysis of seasonal brightness temperature variations at a number of large freshwater lakes retrieved from data of the Soil Moisture and Ocean Salinity satellite. Three distinct seasonal time regions corresponding to different phenological phases of the lake surfaces, complete ice cover, ice melt and deterioration, and open water, were revealed. The paper demonstrates the possibility of determining the beginning of ice cover deterioration from satellite data.
Cited articles
Achanta, R. and Süsstrunk, S.: Superpixels and polygons using simple
non-iterative clustering, Proc. – 30th IEEE Conf. Comput. Vis. Pattern
Recognition, CVPR 2017, January 2017, 4895–4904,
https://doi.org/10.1109/CVPR.2017.520, 2017.
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk,
S.: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, IEEE
T. Pattern Anal. Mach. Intel., 34, 2274–2282, https://doi.org/10.1109/TPAMI.2012.120, 2012.
Arjun, P. and Mirnalinee, T. T.: Affine invariant compact centroid distance
shape descriptor for image retrieval, Appl. Math. Sci., 9, 2325–2335,
https://doi.org/10.12988/ams.2015.53214, 2015.
Barbat, M. M., Wesche, C., Werhli, A. V., and Mata, M. M.: An adaptive machine learning approach to improve automatic iceberg detection from SAR
images, ISPRS J. Photogram. Remote Sens., 156, 247–259,
https://doi.org/10.1016/j.isprsjprs.2019.08.015, 2019.
Barbat, M. M., Rackow, T., Wesche, C., Hellmer, H. H., and Mata, M. M.:
Automated iceberg tracking with a machine learning approach applied to SAR
imagery: A Weddell sea case study, ISPRS J. Photogram. Remote Sens., 172,
189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006, 2021.
Biddle, L. C., Kaiser, J., Heywood, K. J., Thompson, A. F., and Jenkins, A.:
Ocean glider observations of iceberg-enhanced biological production in the
northwestern Weddell Sea, Geophys. Res. Lett., 42, 459–465,
https://doi.org/10.1002/2014GL062850, 2015.
Budge, J. S. and Long, D. G.: A Comprehensive Database for Antarctic Iceberg
Tracking Using Scatterometer Data, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 11, 434–442, https://doi.org/10.1109/JSTARS.2017.2784186, 2018.
Chuter, S. J. and Bamber, J. L.: Antarctic ice shelf thickness from CryoSat-2 radar altimetry, Geophys. Res. Lett., 42, 10721–10729, https://doi.org/10.1002/2015GL066515, 2015.
Clement, M. A., Kilsby, C. G., and Moore, P.: Multi-temporal synthetic aperture radar flood mapping using change detection, J. Flood Risk Manage.,
11, 152–168, https://doi.org/10.1111/jfr3.12303, 2018.
Collares, L. L., Mata, M. M., Kerr, R., Arigony-Neto, J., and Barbat, M. M.:
Iceberg drift and ocean circulation in the northwestern Weddell Sea,
Antarctica, Deep-Sea Res. Pt. II, 149, 10–24, https://doi.org/10.1016/j.dsr2.2018.02.014, 2018.
De Jong, J. T. M., Stammerjohn, S. E., Ackley, S. F., Tison, J. L., Mattielli, N., and Schoemann, V.: Sources and fluxes of dissolved iron in
the Bellingshausen Sea (West Antarctica): The importance of sea ice, icebergs and the continental margin, Mar. Chem., 177, 518–535,
https://doi.org/10.1016/j.marchem.2015.08.004, 2015.
DeLiberty, T. L., Geiger, C. A., Ackley, S. F., Worby, A. P., and Van Woert,
M. L.: Estimating the annual cycle of sea-ice thickness and volume in the Ross Sea, Deep-Sea Res. Pt. II, 58, 1250–1260, https://doi.org/10.1016/j.dsr2.2010.12.005, 2011.
Denbina, M. and Collins, M. J.: Iceberg detection using simulated dual-polarized Radarsat Constellation data, Can. J. Remote Sens., 40,
165–178, https://doi.org/10.1080/07038992.2014.945517, 2014.
DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J. W., and Lang, M.
W.: Rapid and robust monitoring of flood events using Sentinel-1 and Landsat
data on the Google Earth Engine, Remote Sens. Environ., 240, 111664,
https://doi.org/10.1016/j.rse.2020.111664, 2020.
Di Tullio, M., Nocchi, F., Camplani, A., Emanuelli, N., Nascetti, A., and
Crespi, M.: Copernicus big data and google earth engine for glacier surface
velocity field monitoring: Feasibility demonstration on san rafael and san
quintin glaciers, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. –
ISPRS Arch., 42, 289–294, https://doi.org/10.5194/isprs-archives-XLII-3-289-2018, 2018.
England, M. R., Wagner, T. J. W., and Eisenman, I.: Modeling the breakup of
tabular icebergs, Sci. Adv., 6, 1–9, https://doi.org/10.1126/sciadv.abd1273, 2020.
ESA: CryoSat-2 Product Handbook, available at: https://earth.esa.int/eogateway/documents/20142/37627/CryoSat%20Baseline-D%20Product%20Handbook?text=cryosat-2+data+handbook
(last access: 5 October 2021), 2018.
Frost, A., Ressel, R., and Lehner, S.: Automated Iceberg Detection Using
High-Resolution X-Band SAR Images, Can. J. Remote Sens., 42, 354–366,
https://doi.org/10.1080/07038992.2016.1177451, 2016.
Gladstone, R. M., Bigg, G. R., and Nicholls, K. W.: Iceberg trajectory
modeling and meltwater injection in the Southern Ocean, J. Geophys. Res.-Oceans, 106, 19903–19915, https://doi.org/10.1029/2000jc000347, 2001.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Griggs, J. A. and Bamber, J. L.: Antarctic ice-shelf thickness from satellite radar altimetry, J. Glaciol., 57, 485–498, https://doi.org/10.3189/002214311796905659, 2011.
Hammond, M. D. and Jones, D. C.: Freshwater flux from ice sheet melting and
iceberg calving in the Southern Ocean, Geosci. Data J., 3, 60–62,
https://doi.org/10.1002/gdj3.43, 2016.
Han, H., Lee, S., Kim, J. I., Kim, S. H., and Kim, H. C.: Changes in a giant
iceberg created from the collapse of the Larsen C Ice Shelf, Antarctic Peninsula, derived from Sentinel-1 and CryoSat-2 data, Remote Sens., 11,
1–14, https://doi.org/10.3390/rs11040404, 2019.
Hasim, A., Herdiyeni, Y., and Douady, S.: Leaf Shape Recognition using
Centroid Contour Distance, IOP Conf. Ser. Earth Environ. Sci., 31,
012002, https://doi.org/10.1088/1755-1315/31/1/012002, 2016.
Heiselberg, H.: Ship-iceberg detection & classification in sentinel-1 SAR
images, TransNav, 14, 235–241, https://doi.org/10.12716/1001.14.01.30, 2020.
Howell, C., Youden, J., Lane, K., Power, D., Randell, C., and Flett, D.:
Iceberg and ship discrimination with ENVISAT multi-polarization ASAR, Int.
Geosci. Remote Sens. Symp., 1, 113–116, https://doi.org/10.1109/igarss.2004.1368958, 2004.
Jin, Z., Azzari, G., You, C., Di Tommaso, S., Aston, S., Burke, M., and Lobell, D. B.: Smallholder maize area and yield mapping at national scales
with Google Earth Engine, Remote Sens. Environ., 228, 115–128,
https://doi.org/10.1016/j.rse.2019.04.016, 2019.
Kim, C. S., Kim, T. W., Cho, K. H., Ha, H. K., Lee, S. H., Kim, H. C., and
Lee, J. H.: Variability of the Antarctic Coastal Current in the Amundsen
Sea, Estuar. Coast. Shelf Sci., 181, 123–133, https://doi.org/10.1016/j.ecss.2016.08.004, 2016.
Koo, Y.: GEE-based tracking of iceberg B43 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5550530, 2021.
Lane, K., Power, D., Chakraborty, I., Youden, J., Randell, C., McClintock,
J., and Flett, D.: RADARSAT-1 synthetic aperture radar iceberg detection
performance ADRO-2 A223, Int. Geosci. Remote Sens. Symp., 4, 2273–2275,
https://doi.org/10.1109/igarss.2002.1026516, 2002.
Lasserre, F.: Simulations of shipping along Arctic routes: Comparison,
analysis and economic perspectives, Polar Rec. (Gr. Brit.), 51, 239–259,
https://doi.org/10.1017/S0032247413000958, 2015.
Lea, J. M.: The Google Earth Engine Digitisation Tool (GEEDiT) and the
Margin change Quantification Tool (MaQiT) – Simple tools for the rapid mapping and quantification of changing Earth surface margins, Earth Surf. Dynam., 6, 551–561, https://doi.org/10.5194/esurf-6-551-2018, 2018.
Li, T., Shokr, M., Liu, Y., Cheng, X., Li, T., Wang, F., and Hui, F.: Monitoring the tabular icebergs C28A and C28B calved from the Mertz Ice Tongue using radar remote sensing data, Remote Sens. Environ., 216, 615–625, https://doi.org/10.1016/j.rse.2018.07.028, 2018.
Lichey, C. and Hellmer, H. H.: Modeling giant-iceberg drift under the influence of sea ice in the Weddell Sea, Antarctica, J. Glaciol., 47, 452–460, https://doi.org/10.3189/172756501781832133, 2001.
Lin, H., Rauschenberg, S., Hexel, C. R., Shaw, T. J., and Twining, B. S.:
Free-drifting icebergs as sources of iron to the Weddell Sea, Deep-Sea Res.
Pt. II, 58, 1392–1406, https://doi.org/10.1016/j.dsr2.2010.11.020, 2011.
Lopez-Lopez, L., Parmiggiani, F., Moctezuma-Flores, M., and Guerrieri, L.:
On the detection and long-term path visualisation of a-68 iceberg, Remote
Sens., 13, 1–13, https://doi.org/10.3390/rs13030460, 2021.
Lythe, M. B. and Vaughan, D. G.: BEDMAP: A new ice thickness and subglacial
topographic model of Antarctica, J. Geophys. Res.-Solid, 106, 11335–11351, https://doi.org/10.1029/2000jb900449, 2001.
MacAyeal, D. R., Okal, E. A., Aster, R. C., Bassis, J. N., Brunt, K. M.,
Cathles, L. Mac, Drucker, R., Flicker, H. A., Kim, Y. J., Martin, S., Okal,
M. H., Sergienko, O. V., Sponsler, M. P., and Thom, J. E.: Transoceanic wave
propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere, Geophys. Res. Lett., 33, L17502, https://doi.org/10.1029/2006GL027235, 2006.
Mackie, S., Smith, I. J., Ridley, J. K., Stevens, D. P., and Langhorne, P. J.: Climate response to increasing antarctic iceberg and ice shelf melt, J.
Climate, 33, 8917–8938, https://doi.org/10.1175/JCLI-D-19-0881.1, 2020.
Magruder, L. A., Brunt, K. M., and Alonzo, M.: Early icesat-2 on-orbit
geolocation validation using ground-based corner cube retro-reflectors, Remote Sens., 12, 1–21, https://doi.org/10.3390/rs12213653, 2020.
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., and Gill, E.: The first wetland inventory map of newfoundland at a spatial resolution
of 10 m using sentinel-1 and sentinel-2 data on the Google Earth Engine
cloud computing platform, Remote Sens., 11, 43, https://doi.org/10.3390/rs11010043, 2019.
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Homayouni, S.,
Gill, E., DeLancey, E. R., and Bourgeau-Chavez, L.: Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial
Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth
Engine Cloud Computing Platform, Can. J. Remote Sens., 46, 15–33,
https://doi.org/10.1080/07038992.2019.1711366, 2020.
Mandal, D., Kumar, V., Bhattacharya, A., Rao, Y. S., Siqueira, P., and Bera,
S.: Sen4Rice: A processing chain for differentiating early and late transplanted rice using time-series sentinel-1 SAR data with google earth
engine, IEEE Geosci. Remote Sens. Lett., 15, 1947–1951,
https://doi.org/10.1109/LGRS.2018.2865816, 2018.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., Popescu, S., Shum, C. K., Schutz, B. E., Smith, B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation
Satellite-2 (ICESat-2): Science requirements, concept, and implementation,
Remote Sens. Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Martin, S., Drucker, R. S., and Kwok, R.: The areas and ice production of
the western and central Ross Sea polynyas, 1992–2002, and their relation to
the B-15 and C-19 iceberg events of 2000 and 2002, J. Mar. Syst., 68, 201–214, https://doi.org/10.1016/j.jmarsys.2006.11.008, 2007.
Mathiot, P., Goosse, H., Fichefet, T., Barnier, B., and Gallée, H.:
Modelling the seasonal variability of the Antarctic Slope Current, Ocean
Sci., 7, 455–470, https://doi.org/10.5194/os-7-455-2011, 2011.
Mazur, A. K., Wåhlin, A. K., and Krężel, A.: An object-based SAR
image iceberg detection algorithm applied to the Amundsen Sea, Remote Sens.
Environ., 189, 67–83, https://doi.org/10.1016/j.rse.2016.11.013, 2017.
Mazur, A. K., Wåhlin, A. K., and Kalén, O.: The life cycle of small-to medium-sized icebergs in the Amundsen sea embayment, Polar Res., 38, 1–17, https://doi.org/10.33265/polar.v38.3313, 2019.
Merino, N., Le Sommer, J., Durand, G., Jourdain, N. C., Madec, G., Mathiot,
P., and Tournadre, J.: Antarctic icebergs melt over the Southern Ocean:
Climatology and impact on sea ice, Ocean Model., 104, 99–110,
https://doi.org/10.1016/j.ocemod.2016.05.001, 2016.
Mingqiang, Y., Kidiyo, K., and Joseph, R.: A Survey of Shape Feature Extraction Techniques, in: Pattern Recognition Techniques, Technology and Applications, IntechOpen, London, UK, https://doi.org/10.5772/6237, 2008.
Moctezuma-Flores, M. and Parmiggiani, F.: Tracking of the iceberg created by
the Nansen Ice Shelf collapse, Int. J. Remote Sens., 38, 1224–1234,
https://doi.org/10.1080/01431161.2016.1275054, 2017.
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., Hancock, D. W., Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J., Luthcke, S. B., Magruder, L., Pennington, T. A., Ramos-Izquierdo, L., Rebold, T., Skoog, J., and Thomas, T. C.: The Ice, Cloud, and Land Elevation Satellite – 2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System, Remote Sens. Environ., 233, 111325, https://doi.org/10.1016/j.rse.2019.111325, 2019.
Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck, K., Gibbons, A., Lee, J., Luthcke, S. B., and Rebold, T.: ATLAS/ICESat-2 L2A
Global Geolocated Photon Data, Version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/ATLAS/ATL03.003, 2020.
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Parmiggiani, F., Moctezuma-Flores, M., Guerrieri, L., and Battagliere, M. L.: Sar analysis of the larsen-c a-68 iceberg displacements, Int. J. Remote Sens., 39, 5850–5858, https://doi.org/10.1080/01431161.2018.1508921, 2018.
Power, D., Youden, J., Lane, K., Randell, C., and Flett, D.: Iceberg detection capabilities of radarsat synthetic aperture radar, Can. J. Remote
Sens., 27, 476–486, https://doi.org/10.1080/07038992.2001.10854888, 2001.
Rackow, T., Wesche, C., Timmermann, R., Hellmer, H. H., Juricke, S., and Jung, T.: A simulation of small to giant Antarctic iceberg evolution:
Differential impact on climatology estimates, J. Geophys. Res.-Oceans, 122,
3170–3190, https://doi.org/10.1002/2016JC012513, 2017.
Romanov, Y. A., Romanova, N. A., and Romanov, P.: Distribution of icebergs
in the Atlantic and Indian ocean sectors of the Antarctic region and its
possible links with ENSO, Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2007GL031685, 2008.
Romanov, Y. A., Romanova, N. A., and Romanov, P.: Shape and size of Antarctic icebergs derived from ship observation data, Antarct. Sci., 24, 77–87, https://doi.org/10.1017/S0954102011000538, 2012.
Scambos, T., Sergienko, O., Sargent, A., MacAyeal, D., and Fastook, J.:
ICESat profiles of tabular iceberg margins and iceberg breakup at low latitudes, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL023802, 2005.
Scambos, T., Ross, R., Bauer, R., Yermolin, Y., Skvarca, P., Long, D.,
Bohlander, J., and Haran, T.: Calving and ice-shelf break-up processes
investigated by proxy: Antarctic tabular iceberg evolution during northward
drift, J. Glaciol., 54, 579–591, https://doi.org/10.3189/002214308786570836, 2008.
Scheuchl, B., Flett, D., Caves, R., and Cumming, I.: Potential of RADARSAT-2
data for operational sea ice monitoring, Can. J. Remote Sens., 30, 448–461,
https://doi.org/10.5589/m04-011, 2004.
Schodlok, M. P., Hellmer, H. H., Rohardt, G., and Fahrbach, E.: Weddell Sea
iceberg drift: Five years of observations, J. Geophys. Res.-Oceans, 111, 1–14, https://doi.org/10.1029/2004JC002661, 2006.
Schwarz, J. N. and Schodlok, M. P.: Impact of drifting icebergs on surface
phytoplankton biomass in the Southern Ocean: Ocean colour remote sensing and
in situ iceberg tracking, Deep-Sea Res. Pt. I, 56, 1727–1741, https://doi.org/10.1016/j.dsr.2009.05.003, 2009.
Silva, T. A. M. and Bigg, G. R.: Computer-based identification and tracking
of Antarctic icebergs in SAR images, Remote Sens. Environ., 94, 287–297,
https://doi.org/10.1016/j.rse.2004.10.002, 2005.
Silva, T. A. M., Bigg, G. R., and Nicholls, K. W.: Contribution of giant
icebergs to the Southern Ocean freshwater flux, J. Geophys. Res.-Oceans, 111, 1–8, https://doi.org/10.1029/2004JC002843, 2006.
Singha, M., Dong, J., Zhang, G., and Xiao, X.: High resolution paddy rice
maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data,
Sci. Data, 6, 1–10, https://doi.org/10.1038/s41597-019-0036-3, 2019.
Starr, A., Hall, I. R., Barker, S., Rackow, T., Zhang, X., Hemming, S. R.,
van der Lubbe, H. J. L., Knorr, G., Berke, M. A., Bigg, G. R., Cartagena-Sierra, A., Jiménez-Espejo, F. J., Gong, X., Gruetzner, J.,
Lathika, N., LeVay, L. J., Robinson, R. S., Ziegler, M., Brentegani, L.,
Caley, T., Charles, C. D., Coenen, J. J., Crespin, J. G., Franzese, A. M.,
Han, X., Hines, S. K. V., Jimenez Espejo, F. J., Just, J., Koutsodendris,
A., Kubota, K., Norris, R. D., dos Santos, T. P., Rolison, J. M., Simon, M.
H., Tangunan, D., van der Lubbe, H. J. L., Yamane, M., and Zhang, H.: Antarctic icebergs reorganize ocean circulation during Pleistocene glacials,
Nature, 589, 236–241, https://doi.org/10.1038/s41586-020-03094-7, 2021.
Stern, A. A., Adcroft, A., and Sergienko, O.: The effects of Antarctic iceberg calving-size distribution in a global climate model, J. Geophys.
Res.-Oceans, 121, 5773–5788, https://doi.org/10.1002/2016JC011835, 2016.
Stuart, K. M. and Long, D. G.: Iceberg size and orientation estimation using
SeaWinds, Cold Reg. Sci. Technol., 69, 39–51, https://doi.org/10.1016/j.coldregions.2011.07.006, 2011a.
Stuart, K. M. and Long, D. G.: Tracking large tabular icebergs using the
SeaWinds Ku-band microwave scatterometer, Deep-Sea Res. Pt. II, 58, 1285–1300, https://doi.org/10.1016/j.dsr2.2010.11.004, 2011b.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B. Ö., Floury, N., Brown, M., Traver, I. N., Deghaye,
P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci,
R., Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission,
Remote Sens. Environ., 120, 9–24, https://doi.org/10.1016/j.rse.2011.05.028, 2012.
Tournadre, J., Bouhier, N., Girard-Ardhuin, F., and Rémy, F.: Large icebergs characteristics from altimeter waveforms analysis, J. Geophys. Res.-Oceans, 120, 1954–1974, https://doi.org/10.1002/2014JC010502, 2015.
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.:
Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4,
NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, USA, https://doi.org/10.5067/INAWUWO7QH7B, 2019.
Wagner, T. J. W., Wadhams, P., Bates, R., Elosegui, P., Stern, A., Vella, D., Abrahamsen, E. P., Crawford, A., and Nicholls, K. W.: The “footloose” mechanism: Iceberg decay from hydrostatic stresses, Geophys. Res. Lett., 41,
5522–5529, https://doi.org/10.1002/2014GL060832, 2014.
Wesche, C. and Dierking, W.: Iceberg signatures and detection in SAR images
in two test regions of the Weddell Sea, Antarctica, J. Glaciol., 58, 325–339, https://doi.org/10.3189/2012J0G11J020, 2012.
Wesche, C. and Dierking, W.: Near-coastal circum-Antarctic iceberg size distributions determined from Synthetic Aperture Radar images, Remote Sens.
Environ., 156, 561–569, https://doi.org/10.1016/j.rse.2014.10.025, 2015.
Whitworth III, T., Orsi, A. H., Kim, S.-J., Nowlin Jr., W. D., and Locarnini, R. A.: Water Masses and Mixing Near the Antarctic Slope Front, in: Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, American Geophysical Union, 1–27, Washington, D.C., USA,
https://doi.org/10.1029/AR075p0001, January 1985.
Willis, C. J., Macklin, J. T., Partington, K. C., Teleki, K. A., Rees, W. G., and Rees, W. G.: Iceberg detection using ers-1 synthetic aperture radar, Int. J. Remote Sens., 17, 1777–1795, https://doi.org/10.1080/01431169608948739, 1996.
Wilson, K. J., Turney, C. S. M., Fogwill, C. J., and Blair, E.: The impact of the giant iceberg B09B on population size and breeding success of Adélie penguins in Commonwealth Bay, Antarctica, Antarct. Sci., 28, 1–7, https://doi.org/10.1017/S0954102015000644, 2016.
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos,
C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D. W.: CryoSat: A mission to determine the fluctuations in Earth's land and
marine ice fields, Adv. Space Res., 37, 841–871, https://doi.org/10.1016/j.asr.2005.07.027, 2006.
Young, N. W., Turner, D., Hyland, G., and Williams, R. N.: Near-coastal
iceberg distributions in East Antarctica, 50–145∘ E, Ann. Glaciol., 27, 68–74, https://doi.org/10.3189/1998aog27-1-68-74, 1998.
Zhang, M., Chen, F., Tian, B., Liang, D., and Yang, A.: High-frequency glacial lake mapping using time series of sentinel-1A/1B sar imagery: An
assessment for the southeastern tibetan plateau, Int. J. Environ. Res. Publ. Health, 17, 1072, https://doi.org/10.3390/ijerph17031072, 2020.
Short summary
This study demonstrates for the first time the potential of Google Earth Engine (GEE) cloud-computing platform and Sentinel-1 synthetic aperture radar (SAR) images for semi-automated tracking of area changes and movements of iceberg B43. Our novel GEE-based iceberg tracking can be used to construct a large iceberg database for a better understanding of the behavior of icebergs and their interactions with surrounding environments.
This study demonstrates for the first time the potential of Google Earth Engine (GEE)...