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Abstract. Sentinel-1 C-band synthetic aperture radar (SAR)
images can be used to observe the drift of icebergs over
the Southern Ocean with around 1–3 d of temporal resolu-
tion and 10–40 m of spatial resolution. The Google Earth
Engine (GEE) cloud-based platform allows processing of a
large quantity of Sentinel-1 images, saving time and compu-
tational resources. In this study, we process Sentinel-1 data
via GEE to detect and track the drift of iceberg B43 during
its lifespan of 3 years (2017–2020) in the Southern Ocean.
First, to detect all candidate icebergs in Sentinel-1 images,
we employ an object-based image segmentation (simple non-
iterative clustering – SNIC) and a traditional backscatter
threshold method. Next, we automatically choose and trace
the location of the target iceberg by comparing the centroid
distance histograms (CDHs) of all detected icebergs in subse-
quent days with the CDH of the reference target iceberg. Us-
ing this approach, we successfully track iceberg B43 from the
Amundsen Sea to the Ross Sea and examine its changes in
area, speed, and direction. Three periods with sudden losses
of area (i.e., split-offs) coincide with periods of low sea ice
concentration, warm air temperature, and high waves. This
implies that these variables may be related to mechanisms
causing the split-off of the iceberg. Since the iceberg is gen-
erally surrounded by compacted sea ice, its drift correlates
in part with sea ice motion and wind velocity. Given that the
bulk of the iceberg is under water (∼ 30–60 m freeboard and
∼ 150–400 m thickness), its motion is predominantly driven
by the westward-flowing Antarctic Coastal Current, which
dominates the circulation of the region. Considering the com-
plexity of modeling icebergs, there is a demand for a large

iceberg database to better understand the behavior of ice-
bergs and their interactions with surrounding environments.
The semi-automated iceberg tracking based on the storage
capacity and computing power of GEE can be used for this
purpose.

1 Introduction

When a large ice mass breaks off from an ice shelf or glacier
into the ocean, it forms an iceberg. An iceberg has a lifes-
pan of several years or longer, and its area ranges from a few
square kilometers to thousands of square kilometers. Consid-
ering the majority of an iceberg is under water, iceberg drift is
a good indicator of ocean circulation (Collares et al., 2018).
Since the trajectories and speeds of icebergs also depend
on multiple and complex environmental variables (ocean, at-
mosphere, sea ice, etc.), icebergs provide important insights
for the interaction of these variables (Schodlok et al., 2006).
In addition, the formation and melting of icebergs influence
global climate (Romanov et al., 2008; Mackie et al., 2020),
ocean flux (Silva et al., 2006; Rackow et al., 2017; Starr et
al., 2021), sea ice production (Martin et al., 2007; Merino
et al., 2016), dissolved iron concentration (Lin et al., 2011;
De Jong et al., 2015), and ecosystems and biology (Wil-
son et al., 2016; Schwarz and Schodlok, 2009; Biddle et al.,
2015). Furthermore, icebergs can threaten ship navigation
(Lasserre, 2015). Therefore, detecting and tracking icebergs
is extremely important to understand the changing sea ice,
ocean, and atmosphere in the polar regions.
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Radar remote sensing, including scatterometer and syn-
thetic aperture radar (SAR), is an efficient tool for monitoring
both movements and area changes of icebergs. While mul-
tispectral images can be useful for observing icebergs, they
cannot be used during polar night or under cloudy conditions.
In contrast, SAR images can be used for analysis regardless
of the weather conditions or time of year (Han et al., 2019;
Mazur et al., 2017; Wesche and Dierking, 2012). In particu-
lar, although scatterometers facilitate daily position and mo-
tion observations of large icebergs with a coarse spatial res-
olution (Budge and Long, 2018; Stuart and Long, 2011a, b),
SAR instruments have a more significant advantage in pre-
cise observations of iceberg area changes due to their rel-
atively fine spatial resolution. Indeed, various SAR instru-
ments have been used for detecting or tracking icebergs in
the polar oceans including ERS-1 (Young et al., 1998; Willis
et al., 1996), ENVISAT (Li et al., 2018; Howell et al., 2004;
Mazur et al., 2017; Barbat et al., 2019, 2021), RADARSAT-
1 (Wesche and Dierking, 2015; Lane et al., 2002; Power et
al., 2001), RADARSAT-2 (Scheuchl et al., 2004; Denbina
and Collins, 2014), TerraSAR-X (Frost et al., 2016), and
Sentinel-1 (Lopez-Lopez et al., 2021; Moctezuma-Flores and
Parmiggiani, 2017; Heiselberg, 2020; Han et al., 2019).

Most of these SAR studies used the higher backscatter
contrast of icebergs to distinguish icebergs from the sur-
rounding sea ice or water (Mazur et al., 2017). In addition,
recently, instead of a traditional pixel-based approach, im-
age segmentation methods have become popular to reduce
the speckle degradation of SAR images and efficiently de-
tect icebergs (Lopez-Lopez et al., 2021; Mazur et al., 2017;
Barbat et al., 2019). Although the iceberg detection is com-
monly conducted automatically, the tracking is still usually
conducted by manually finding the images containing the
target iceberg (Moctezuma-Flores and Parmiggiani, 2017;
Parmiggiani et al., 2018; Li et al., 2018; Mazur et al., 2019),
which requires a lot of time and labor and so restricts the
number of processed images. Moreover, even if both detec-
tion and tracking processes are automatized, the overall pro-
cess requires downloading a large number of satellite images
(Barbat et al., 2021), which takes a long time and needs a
large storage capacity.

In this respect, Google Earth Engine (GEE), a cloud-
computing platform for geospatial analysis by Google (Gore-
lick et al., 2017), can be a promising tool to automatize the
detection and tracking of icebergs. GEE makes it possible
to process a large volume of geospatial data without down-
loading them onto local computers. Although various satel-
lite images are freely accessible via GEE in near real time,
Sentinel-1 comprises the only SAR data that have been pro-
vided by GEE as individual images in near real time. As
the constellation of the two twin satellites (Sentinel-1A/B),
Sentinel-1 has a remarkable temporal (< 2–3 d in the polar
regions) and spatial resolution (≤ 40 m) (Torres et al., 2012).
A number of studies have taken advantage of the unprece-
dented computing performance of GEE for the Sentinel-1

data processing: glacier margin mapping (Lea, 2018), glacier
lake mapping (Zhang et al., 2020), estimation of glacier sur-
face speed (Di Tullio et al., 2018), crop mapping (Mandal
et al., 2018; Singha et al., 2019; Jin et al., 2019), flood map-
ping (DeVries et al., 2020; Clement et al., 2018), and wetland
mapping (Mahdianpari et al., 2019, 2020). Despite the vari-
ety of applications of Sentinel-1 data in the GEE platform,
there have not yet been any published studies that leverage
GEE’s large data storage capabilities and computing power
for automated tracking of icebergs.

In this study, therefore, we track the drift of an iceberg
in the Southern Ocean by taking advantage of the Sentinel-
1 data and the GEE platform. Our target iceberg is ice-
berg B43, as designated by the National Ice Center (NIC,
https://usicecenter.gov/, last access: 5 October 2021), which
calved off from the Thwaites Glacier ice shelf in the Amund-
sen Sea in April 2017 (Fig. 1). This tabular iceberg had a rel-
atively large size (> 100 km2 in April 2017) and a distinctive
shape compared to surrounding icebergs. In a preliminary in-
vestigation based on manual downloading of Sentinel-1 im-
ages and visual interpretation before applying the tracking
method, we found that this iceberg drifted westward along
the coast from the Amundsen Sea to the Ross Sea with a rel-
atively stable flat-topped surface and eventually broke into
several pieces in the northern Ross Sea in March 2020. The
aim of this study is (1) to take advantage of the GEE cloud-
computing platform for its potential to track the drift and de-
cay of this iceberg from the Amundsen Sea to the Ross Sea
and (2) to assess the impact of major environmental factors
(e.g., ocean currents, winds, sea ice concentration, sea ice
drift, temperature) on changes in its movement and area. In
addition, we examine satellite altimeter data to estimate the
freeboard and thickness of this iceberg.

2 Data

2.1 Sentinel-1 SAR images

In this study, we use ESA’s Sentinel-1 C-band (center fre-
quency of 5.405 GHz, wavelength of 5.6 cm) SAR Ground
Range Detected (GRD) data in order to detect the location
and area of the target iceberg. This product has three differ-
ent spatial resolutions of 10, 25, or 40 m with different res-
olution modes, but all images are resampled to 40 m. Since
each Sentinel-1 satellite (Sentinel-1A/B) has a 12 d revisit
cycle, this makes the combination of Sentinel-1 A and B has
a revisit cycle of 6 d; benefiting from the high latitudes of
the Southern Ocean, we can acquire at least one Sentinel-1
image capturing the iceberg per 2–3 d (Torres et al., 2012).
We import and process these images via the GEE Code Ed-
itor (web-based integrated development environment (IDE)
for the GEE JavaScript API) and GEE Python API. Each
Sentinel-1 image scene is released from ESA after being
pre-processed with (1) thermal noise removal, (2) radiomet-
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Figure 1. (a) Antarctic region showing the two locations where ice-
berg B43 calved off in the Amundsen Sea – (1) 4 April 2017 –
and broke up in the Ross Sea – (2) 22 March 2020. (b) Sentinel-1
SAR image showing the ice conditions when B43 calved off at lo-
cation (1) and (c) Sentinel-1 SAR image showing the ice and ocean
conditions when B43 broke up, with ocean waves around at loca-
tion (2).

ric calibration, and (3) terrain correction (https://developers.
google.com/earth-engine/guides/sentinel1, last access: 5 Oc-
tober 2021). Of four available band combinations of the po-
larization products (VV, HH, VV+VH, and HH+HV), we
use only the HH band because most of the images con-
tain this band. In addition, we also use the angle band that
represents the interpolated viewing incidence angle at each
cell. During the automated tracking of the iceberg, a total of
433 images from April 2017 to March 2020 are used.

2.2 Satellite altimeter data

In order to estimate the freeboard and thickness of the ice-
berg, we use height measurements from two satellite altime-
ters: CryoSat-2 and ICESat-2.

CryoSat-2 employs Ku band radar (center frequency of
13.575 GHz) to measure surface heights with 400 m of along-
track footprint and 1.65 km of across-track footprint. It oper-
ates in SAR mode over sea ice and oceanographic areas and
in SAR interferometric (SIN) mode around ice sheet edges
and mountain glaciers (ESA, 2018). Since the target iceberg
floated in the ocean through sea ice and coastal areas, we

search for both Level 2 SAR and SIN products that over-
lapped with the iceberg from April 2017 to March 2020.

ICESat-2’s Advanced Topographic Laser Altimeter Sys-
tem (ATLAS) uses laser photons at 532 nm to retrieve sur-
face heights with 11 m of laser footprint and 0.7 m of spac-
ing (Magruder et al., 2020; Neumann et al., 2019). Trillions
of photons are emitted for each pulse, but the number of re-
turned photons is around seven photons for a typical snow-
covered surface (Neumann et al., 2019). ATLAS consists
of six multi-beams, each with three strong beams and three
weak beams, and the strong beams have 4 times greater en-
ergy than the weak beams (Neumann et al., 2019; Markus et
al., 2017). We search for ICESat-2 ATL03 geolocated pho-
ton products (release 003) (Neumann et al., 2020) that inter-
sected the iceberg during our study period.

2.3 Meteorological and sea ice motion data

We compare the drift speed, direction, and area changes of
the iceberg with meteorological data from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) ERA5
reanalysis model. We use the 2 m air temperature, sea ice
concentration (SIC), wind speed/direction, and wave height
from the ERA5 hourly product, which has a spatial resolu-
tion of about 0.25◦. This product is acquired from the Cli-
mate Data Store (https://cds.climate.copernicus.eu, last ac-
cess: 5 October 2021) of the Copernicus Climate Change
Service.

In addition, we acquire National Snow and Ice Data Cen-
ter (NSIDC) sea ice motion vector data (https://nsidc.org/
data/NSIDC-0116, last access: 5 October 2021) (Tschudi et
al., 2019). This dataset contains daily sea ice motion vec-
tors, which are derived from multiple data sources, includ-
ing AVHRR, AMSR-E, SMMR, SSMI, and SSMI/S sen-
sors; International Arctic Buoy Program (IABP) buoys (in
the Arctic only); and National Centers for Environmental
Prediction (NCEP) and National Center for Atmospheric
Research (NCAR) Reanalysis forecasts. These sea ice mo-
tions are projected to the 25 km EASE (Equal-Area Scalable
Earth) Grid.

3 Method

3.1 Iceberg detection

To detect the target iceberg from the Sentinel-1 images, we
employ a superpixel image segmentation method named sim-
ple non-iterative clustering (SNIC) (Achanta and Süsstrunk,
2017). This approach uses a similar concept to k-means-
based clustering (Simple Linear Iterative Clustering (SLIC)
algorithm; Achanta et al., 2012), but in contrast with SLIC,
SNIC enforces connectivity from the start. Since GEE pro-
vides this SNIC algorithm as a basic built-in function, we
use the SNIC function in the GEE environment. The object-
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Figure 2. An example of the segmentation result for different levels:
(a) original image (22 May 2019), (b) smoothed image by Gaus-
sian filter, (c) segmented image (seed= 40), (d) segmented image
(seed= 80), (e) backscatter ratio (= γ /α) image with segmented
result, and (f) segments identified as iceberg (blue polygon). Seg-
mentation and other processing shown in panels (c)–(f) are based
on the smoothed image in panel (b).

based segmentation processes of SNIC in this study are sum-
marized by the following steps.

(i) Apply Gaussian filter to the raw SAR image

The speckle effects of the original SAR images can introduce
errors (Fig. 2a). In particular, the image segmentation pro-
cess can misinterpret shaded areas associated with the ice-
berg surface topography as artificial iceberg boundaries and
split the iceberg into several pieces. To reduce this effect,
we first smooth images by applying a Gaussian filter kernel
within a 3-pixel radius (Fig. 2b).

(ii) Initialize superpixels

In the SNIC image segmentation, all image pixels should be
grouped into small clusters of connected pixels, which are
named superpixels. The centroids of superpixels, referred to
as seeds, are initialized with a given number of pixels cho-
sen a priori on a regular grid. The size of each segment is
determined by the seed value. A smaller seed value can dis-
tinguish small icebergs but takes a longer computation time
(Fig. 2c); a larger seed value cannot distinguish small ice-
bergs but can reduce computation time (Fig. 2d). As shown

in Fig. 2d, considering the size of the target iceberg, a seed
value of 80 (i.e., initial centroid is spaced by 80 pixel) is ad-
equate to detect the target iceberg B43.

(iii) Measure affinity to a centroid

The affinity of the j th pixel to the kth superpixel centroid is
calculated by using the distance between them (dj,k):

dj,k =

√∥∥Xj −Xk∥∥2

s
+

∥∥Cj −Ck∥∥2

m
, (1)

where Xj is a geocoordinate (latitude and longitude) of the
j th pixel, Xk is a geocoordinate of the kth superpixel cen-
troid, Cj is the HH band backscatter of the j th pixel, Ck is
the HH band backscatter of the kth superpixel centroid, and
s and m are the normalizing factors for spatial and backscat-
ter distance, respectively. If an image has N pixels andK su-
perpixels are expected, s in Eq. (1) should be set to

√
N/K .

A higher compactness factor m leads to more compacted
superpixels and poorer boundary adherence (Achanta and
Süsstrunk, 2017), and we set m equal to 1.

(iv) Evolution of centroid

Contrary to multiple iterations of SLIC (Achanta et al.,
2012), SNIC uses a priority queue to choose the next pixel
to be added to a cluster. The priority queue consists of mul-
tiple candidate pixels that are eight-connected to a currently
growing superpixel cluster. The pixel candidate that has the
smallest distance from a centroid is selected among these
pixel candidates, and the centroid value is updated online af-
ter a new pixel is added to that superpixel. This allows the
SNIC algorithm to complete the updating of centroids in a
single iteration with lower memory requirements. More de-
tails about the SNIC algorithm are provided in Achanta and
Süsstrunk (2017).

After completing the SNIC image segmentation, we de-
tect the segments of icebergs by applying the mean bright-
ness filter to all segments. Icebergs commonly show higher
backscatter intensity compared to the surrounding sea water
or sea ice (Silva and Bigg, 2005; Young et al., 1998; Mazur et
al., 2017; Wesche and Dierking, 2012). Based on the bright
backscatter of icebergs, we identify iceberg segments as the
segments satisfying the following equation (Mazur et al.,
2017):

γ >−0.2α, (2)

where γ is the backscatter of SAR images, and α is the in-
cidence angle of the SAR. When we employ this equation,
we can successfully distinguish the target iceberg from the
surrounding area (Fig. 2e and f).

3.2 Iceberg tracking

In order to automatically detect and track only the target ice-
berg among multiple icebergs, we adopt a feature extraction
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Figure 3. Flowchart illustrating the steps of the semi-automated procedure for iceberg detection and tracking. Details are provided in the text
(Sect. 3.2).

method based on the centroid distance function (Mingqiang
et al., 2008; Hasim et al., 2016; Arjun and Mirnalinee, 2015).
As described in Fig. 3, the semi-automated iceberg tracking
process consists of the following five steps. (1) We define
the target iceberg that will be tracked. We manually digitize
the polygon of the reference iceberg from a Sentinel-1 im-
age and calculate the distances from the iceberg centroid for
all iceberg pixels. We make a histogram of these centroid
distances for all pixels in the iceberg; this centroid distance
histogram (CDH) represents the area and shape of the ice-
berg. (2) We search for an available Sentinel-1 image of the
next day, within a 25 km radius from the reference iceberg in
the current image. If the image for the next day is not avail-
able, the search radius is extended by 25 km each day until

a Sentinel-1 image is found (Fig. 4a). (3) Once a Sentinel-
1 image is found, all candidate icebergs are detected by the
same processes as described in Sect. 3.1. (4) We calculate the
CDHs for all detected icebergs. (5) By comparing the simi-
larities of the CDHs between these icebergs and the reference
iceberg, we determine which iceberg is the target iceberg for
that day. The similarity of CDH between iceberg A and ref-
erence iceberg (r(A, ref)) is calculated by Eq. (3).

r(A, ref)=

1−

m∑
i=1
|NA(i)−Nref(i)|

m∑
i=1
Nref(i)

× 100 (%), (3)
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Figure 4. Tracking of the iceberg from 10 to 15 April 2020. (a) Location of detected iceberg and search radius for each day, and centroid
distance histograms (CDHs) of the target iceberg for (b) 10 April 2019, (c) 11 April 2019, (d) 12 April 2019, and (e) 15 April 2019.

where m is the bin size of the histogram, and NA(i) and
Nref(i) are the number of pixels in the ith bin for iceberg A
and reference iceberg, respectively. We select the iceberg
showing similarity greater than 80 % with the reference ice-
berg (Fig. 4b–e; see Appendix A). If multiple icebergs show
similarity above 80 % with the reference iceberg, we select
the iceberg with the highest similarity as the target iceberg.
Once the target iceberg is determined, the centroid of this
iceberg becomes the center of search radius for the next day
in the second step. However, if the target iceberg is not de-
tected, we return to the second step, expand the search radius,
and repeat the same steps until the target iceberg is detected
(Fig. 3).

It is worth noting that for some days, when a significant
mass of the iceberg breaks from the iceberg, the shape of the
iceberg changes considerably. In these cases, the initial CDH
would no longer be representative of the iceberg and a new
reference iceberg would have to be manually set. Three man-
ual reference adjustments are needed in this study, including
days 18 March 2018, 25 March 2019, and 17 January 2020.
In addition, if a Sentinel image is not found for more than
five successive days, the search radius becomes too large to
be processed in the limited memory of GEE. In that case,
we must manually find the next available Sentinel image and
day, and 40 such images are manually found in this study.
Thus, for processing the total of 433 images, 43 manual inter-
ventions (3 manual reference adjustments+ 40 manual im-
age search) are required (i.e., ∼ 90 % of the total processes
are automated). Because of this need of occasional human
intervention, we call our overall procedure a semi-automated
method.

3.3 Calculation of iceberg thickness

The freeboard of the iceberg (F ) is defined as the difference
between the heights of the iceberg body (H ) and the sea sur-
face heights (Hssh) by the following equation:

F =H −Hssh. (4)

For the CryoSat-2 data, we use the sea surface heights from
the Level 2 SAR and SIN products, and for the ICESat-
2 data, we use the sea surface heights from the ICESat-2
ATL10 sea ice freeboard products. We subtract these sea sur-
face heights from the height measurements of the iceberg.
Then the thickness of the iceberg (Z) can be roughly esti-
mated from the freeboard by using Eq. (5):

Z=
ρw

ρw − ρi
(F − δ)+ δ, (5)

where ρw and ρi are the density of water and ice, respectively,
and δ is the thickness correction of the upper firn layer. Here
we assume 1025 and 915 kg m−3 of seawater and ice density,
respectively (Griggs and Bamber, 2011; Chuter and Bam-
ber, 2015; Zhang et al., 2020), and 15 m of typical firn layer
correction (Griggs and Bamber, 2011; Lythe and Vaughan,
2001).

4 Results and discussion

4.1 Trajectory of the iceberg

The trajectory of iceberg B43 that resulted from the semi-
automated iceberg tracking is shown with solid colored cir-
cles in Fig. 5. The trajectory agrees well with that from
the NIC iceberg archive, which is reproduced with a black
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Figure 5. The trajectory of iceberg B43 from our semi-automated algorithm (solid colored circles) and that obtained from the NIC iceberg
archive (black dashed line). The circle colors indicate the calendar month. The six square brackets labeled (a) to (f) indicate track segments
selected to investigate associations with ice motions and winds.

dashed line in Fig. 5. In contrast to our semi-automated track-
ing procedure, the NIC trajectory is manually retrieved by ice
analysts every week using a combination of SAR, visible,
and infrared remote sensing images (https://usicecenter.gov/,
last access: 5 October 2021). As shown in Fig. 5, B43 drifted
from the Amundsen Sea in April 2017 into and through the
Ross Sea in March 2020. The trajectory shows that B43 ini-
tially drifted mainly toward the north and northwest un-
til about April 2018, then towards the west until Novem-
ber 2018, then towards the southwest until June 2019, and
finally towards the northwest until it broke off. This trajec-
tory agrees with the modeled trajectories of icebergs over the
Amundsen Sea to the Ross Sea area (Gladstone et al., 2001;
Merino et al., 2016; Rackow et al., 2017).

Figure 6 shows rose diagrams for iceberg velocity along
with fields of average sea ice concentration, average ice mo-
tion, and average wind velocity averaged for the six selected
periods shown in Fig. 5. Initially the iceberg moved relatively
slowly. From April 2017 to March 2018, a speed< 4 km d−1

was detected more than 90 % of the time, and similarly a
speed< 2 km d−1 was detected more than 75 % of the time.
The primary drift direction in this period was toward the west
or northwest (50 % of the time for April–October 2017 and
60 % of the time for November 2017–March 2018), but oc-
casionally it also drifted eastward or northeastward (40 %
of the time for April–October 2017 and 25 % of the time
for November 2017–March 2018). During this period, ice-
berg B43 was mostly surrounded by slow and compacted sea
ice (Fig. 6a and b).

As B43 moved away from the starting point, however, its
speed increased. From April 2018 to May 2019, the iceberg
mainly moved westward parallel to the coastline more than
90 % of the time, which is consistent with the westward sea
ice drift and wind velocity (Fig. 6c–e). During this journey
from the Amundsen Sea to the eastern Ross Sea, the drift
speed was faster than 4 km d−1 approximately 70 % of the

time and even greater than 8 km d−1 10 %–40 % of the time.
This increase in drift speed can mainly be attributed to the
faster sea ice movement in this region compared to the start-
ing point in the Amundsen Sea.

When B43 reached the Ross Sea (June 2019), it started to
drift more in a northwestward direction (Fig. 6e and f). From
April to October 2019 the iceberg drifted at its fastest speed
as it passed through an area with the fastest sea ice motion
(Fig. 6e). It is also noted that the directional change from
westward to northwestward during this period agrees with
the direction of sea ice movement and wind direction in this
region (Fig. 6e). It is generally known that sea ice starts to
move faster from this region because sea ice is thinner in the
Ross Sea compared to the Amundsen Sea, so sea ice is more
affected by wind forcing (DeLiberty et al., 2011). Although
the drift speed slightly decreased after November 2019, the
iceberg was still observed to drift at> 8 km d−1 around 30 %
of the time for the last 5 months (Fig. 6f). During the last
5 months, sea ice may have had less impact on the drift
of B43 because it was surrounded by thinner sea ice (De-
Liberty et al., 2011) or open water.

Figure 7 compares the drift speed and the direction of the
iceberg with SIC, wind velocity, and sea ice motion. Here we
merely focus on the qualitative comparison of the drift direc-
tion and speed with other climatological data. Considering
that this iceberg moved along with highly compacted sea ice
during most of its journey (SIC> 80 %, Fig. 7a), the move-
ment of the iceberg is likely to be related to the sea ice drift
and wind velocity (Lichey and Hellmer, 2001; Schodlok et
al., 2006). Wind velocity and ice motion generally show sim-
ilar variations for each other, and they both show substantial
correlation with the iceberg drift (Fig. 7b–e). However, the
impact of wind or sea ice drift on the iceberg drift could vary
depending on the season, location, SIC, and ocean current.

Although we do not directly analyze ocean current data
here due to the lack of reliability and availability of ocean
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Figure 6. Multipanel plots with left-to-right columns respectively indicating rose diagrams of iceberg velocity, average sea ice concentra-
tion (SIC), average ice motion velocity, and average wind vector velocity. The rows correspond to the six averaging periods selected in
Fig. 5: (a) April–October 2017, (b) November 2017–March 2018, (c) April–October 2018, (d) November 2018–March 2019, (e) April–
October 2019, and (f) November 2019–March 2020. The entire track of the iceberg is indicated in all the maps (gray solid circles) as well as
the track segments for each of the six periods (magenta solid circles).
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Figure 7. (a) Drift speed of the iceberg (black crosses), SIC (red solid line), and area changes (blue dashed line); (b) east–west velocity of
both the iceberg (black crosses) and the wind (green circles); (c) north–south velocity of both the iceberg (black crosses) and the wind (green
circles); (d) east–west velocity of both the iceberg (black crosses) and sea ice motion (magenta circles); (e) north–south velocity of both the
iceberg (black crosses) and sea ice motion (magenta circles). Gray shaded areas indicate the split-off events of the iceberg.

current data under high-concentration sea ice, ocean current
would account for a significant part of the iceberg drift be-
cause about 80 %–90 % of the iceberg is under the sea sur-
face. Hence, the westward drift of this iceberg mainly repre-
sents the sea current along the Amundsen Sea to the Ross
Sea. In the coastal regions of the Amundsen Sea and the
Ross Sea, the ocean circulation is dominated by the westward
Antarctic Coastal Current (ACoC), which is mainly driven
by wind stress and buoyancy (Whitworth et al., 1985; Orsi et
al., 1995; Mathiot et al., 2011; Kim et al., 2016; Stern et al.,
2016).

4.2 Area variations of the iceberg

The iceberg area is also retrieved by using our semi-
automated iceberg tracking method (Fig. 8a). We find three
noteworthy periods, all in summers or end of summers,
when large reductions of the iceberg area are observed:
(1) February–March 2018, (2) December 2018–March 2019,
and (3) December 2019–March 2020 (gray shaded areas in
Fig. 8). We observe that a significant portion of the ice-
berg split away from the main iceberg during these peri-
ods. Except for these summer months, the area of the ice-
berg remained relatively constant or decreased gradually
during the journey. Initially, from April 2017 to Febru-
ary 2018, the iceberg area remained at a nearly constant
value of 105–107 km2. The area then decreased rapidly to
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95 km2 around February–March 2018. From then onwards
the iceberg’s area decreased gradually, falling under 90 km2

around December 2018 to March 2019. The iceberg area
then remained nearly constant at about 84 km2 during April–
November 2019 until it started to decrease again and even-
tually broke down into several smaller pieces in Decem-
ber 2019–March 2020.

Although our iceberg tracking method extracts a good
monthly mean trend of the iceberg area, there are several
anomalous estimates of the individual area at a daily level
(Fig. 8a). One cause for this is due to the nearby small
icebergs. A number of small icebergs around the coastal
Amundsen Sea region are sometimes adjacent to iceberg B43
(Appendix A). In this case, our iceberg-detecting algorithm
recognizes them as a single iceberg body, which leads to
overestimation of the iceberg area. Second, although we as-
sume a high radar backscatter from the iceberg, this backscat-
ter can vary by sensor incidence angle, iceberg surface, and
sometimes weather conditions (Wesche and Dierking, 2012).
The variations in backscatter of the iceberg can cause uncer-
tainties in area estimation. In addition, if sea ice has a high
backscatter, the similar backscatter between sea ice and the
iceberg makes it difficult to distinguish the exact boundary
between them (Mazur et al., 2017). Finally, we need to con-
sider the spatial uncertainties introduced when SAR images
are projected into the map coordinates and are resampled into
40 m resolution.

We compare the area changes with the ancillary meteoro-
logical data (Fig. 8b–d). It is noted that three split-up events
occurred only in lower SIC areas and during higher air tem-
peratures (Fig. 8b and c). In higher SIC areas, the iceberg
remains relatively stable because it is surrounded by sea ice
(Stuart and Long, 2011b). However, when SIC decreases and
the iceberg is exposed to open water, the interaction between
waves and the iceberg can trigger the breakup of the ice-
berg (England et al., 2020; Scambos et al., 2008; Wagner
et al., 2014). Given that this breakup mechanism is some-
what related to the water temperature and waves (Wagner
et al., 2014), we deduce that SIC and temperature can have
substantial impacts on the breakup events. In particular, the
iceberg was completely broken into several small pieces in
March 2020, after being continually exposed to open water
since December 2019. There is a possibility that the rising
wave heights during this period accelerate the breakup event
(Fig. 8d) (MacAyeal et al., 2006). Nevertheless, considering
the complexity of the breakup mechanism, it is challenging
to clearly determine which factor most contributed to the en-
tire breakup of iceberg B43 in March 2020.

4.3 Freeboard and thickness of the iceberg

To estimate the freeboard and thickness of the iceberg, we
search for coincident CryoSat-2 and ICESat-2 tracks over-
lapping with the iceberg. We find one overlapping CryoSat-
2 track and four overlapping ICESat-2 tracks that can be

used to estimate the freeboard of the iceberg (Table 1). Al-
though there are time differences between the Sentinel-1 im-
ages and the altimeter measurements, we conclude that these
CryoSat-2/ICESat-2 tracks include the heights of the iceberg
by comparing the drift of the iceberg and the height mea-
surements. For example, Fig. 9 shows the Sentinel-1 image
on 31 March 2019 and the CryoSat-2 track on the same day.
Although the higher points of CryoSat-2 do not exactly cor-
respond to the iceberg in the Sentinel-1 image due to the time
differences between the two datasets (around 14 h), we can
assume that these higher points represent the surface of the
iceberg when the movement of the iceberg is considered. In
particular, in the Sentinel-1 image, we cannot see any poten-
tial 40 m height objects except the iceberg. Furthermore, near
the iceberg, the CryoSat-2 points are off the straight ground
track line, which indicates that there is an object different
from the surrounding sea ice or open water. Since the retrack-
ing algorithm of the CryoSat-2 SIN product may emphasize
a late-returned signal (Wingham et al., 2006), the radar signal
from the edge of the iceberg can be biased to the non-iceberg
area. Therefore, we assume that the heights represent the sur-
face heights for the iceberg, and the mean freeboard is 42.4 m
for this date (Table 1).

While CryoSat-2 has only one coincident track with the
iceberg, there are four coincident ICESat-2 tracks passing
through the iceberg (Table 1). Figure 10 shows an example
of the ICESat-2 ATL03 data on 29 November 2019 and the
Sentinel-1 image on the next day. Although they have time
differences of about 24 h, the heights of the ATL03 tracks
are likely to represent the heights of the iceberg at the time
of the Sentinel-1 image. It is interesting that ICESat-2 data
describe the surface height of the iceberg in more detail with
some ridges and valleys (Fig. 10). This is attributed to a bet-
ter spatial resolution of the ICESat-2 ATL03 product (11 m
of footprint spaced by 0.7 m in the along-track direction; Ma-
gruder et al., 2020) than the CryoSat-2 SAR or SIN product
(∼ 400 m of resolution in the along-track direction). In addi-
tion, the multiple tracks of ICESat-2 can be a considerable
advantage for examining the shape of the iceberg surface.

As shown in Table 1, the iceberg freeboard is estimated to
be greater than 50 m in November 2018 but less than 50 m
from then on. However, the limited number of height mea-
surements is not sufficient to help us to find a significant
trend of freeboard change. Moreover, since each track passed
through a different part of the iceberg, the heights also de-
pend on the sampling points where CryoSat-2 or ICESat-2
track were passing by. Nevertheless, we can safely deduce
that the freeboard of this iceberg was within 30–60 m during
the tracking period. This range of freeboard agrees with the
previous estimates for other large icebergs over the Antarctic
(Tournadre et al., 2015; Scambos et al., 2005; Romanov et
al., 2012; Han et al., 2019). As shown in Table 1, this level of
freeboard is equivalent to the iceberg thickness of 150–400 m
(Eq. 5). This implies that about 120–350 m of the iceberg
thickness (i.e., 80 %–90 % fraction of the total thickness) is
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Figure 8. (a) Temporal changes of the iceberg area from April 2017 to March 2020. Comparison of area changes of the iceberg (black line)
with (b) sea ice concentration (SIC) (red), (c) air temperature (green), and (d) maximum wave height (purple) from ERA5. Wave heights are
not calculated for unmarked periods because the high SIC effectively dampens waves. Gray shaded areas indicate the split-off events of the
iceberg.

Table 1. Freeboard and thickness of the iceberg estimated by ICESat-2 (IS2) and CryoSat-2 (CS2).

Date Data Latitude Longitude Freeboard Thickness
(m) (m)

13 Nov 2018 IS2 ATL03 −72.93 −127.58 52.59± 8.33 365± 78
24 Dec 2018 IS2 ATL03 −73.22 −131.70 37.21± 6.55 222± 61
31 Mar 2019 CS2 SIN −74.62 −144.98 42.40± 5.88 270± 55
29 Nov 2019 IS2 ATL03 −72.12 −172.64 34.70± 8.90 199± 83
7 Feb 2020 IS2 ATL03 −71.13 −174.87 42.19± 3.86 268± 36

below the water surface. Thus, considering the average thick-
ness (∼ 265 m), initial area (∼ 105 km2), and 15 m firn layer
of this iceberg, the melting of the entire iceberg body will
contribute to approximately 24 Gt of freshwater input into
the Southern Ocean. This amount of fresh water is equiva-
lent to about 1 % of the total annual freshwater flux in the
Southern Ocean (Hammond and Jones, 2016).

5 Conclusions

This study demonstrates for the first time the potential of
Google Earth Engine (GEE) for iceberg tracking in the
Southern Ocean using Sentinel-1 SAR images. It presents a
cloud-based computational method for tracking iceberg B43
from when it calved off the Amundsen Sea coast until it
broke up in the Ross Sea. First, iceberg B43 is detected by us-
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Figure 9. Freeboard measures from the CS2 SIN track on 31 March 2019, and Sentinel-1 image 14 h before. Considering the drift of the
iceberg between the image and the CS2 SIN track, the highest points (red dots) are the intercepted points on the iceberg by the CS2 SIN
track.

Figure 10. Freeboard measurements from ICESat-2 ATL03 tracks on 29 November 2019, and Sentinel-1 image on 30 November 2019 (about
24 h later).

ing a SNIC object-based image segmentation and backscat-
ter threshold algorithm. Then, the trajectory of this iceberg
is constructed by comparing its centroid distance histogram
with those of icebergs in subsequent images. Although man-

ual tracking is used for several dates due to memory limi-
tations of GEE and occasional large changes in the iceberg
shape, the method (with a ∼ 90 % automation) is successful
in tracking B43 for 3 years from April 2017 to March 2020.
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Factors affecting the decrease in the area of iceberg B43
over time are studied by comparison with contemporane-
ous changes in environmental variables from ERA5 reanal-
ysis data and NSIDC sea ice motion data. First, in terms
of SIC, we find that split-up events of the iceberg occurred
with lower SIC and higher exposure to open water condi-
tions. This suggests that wave action, as calculated in ERA 5,
played a role in triggering the breakup of the iceberg. Our
analysis suggests that higher water temperature and higher
wave heights can also accelerate this breakup mechanism. In
addition, we find that iceberg drift could be associated with
sea ice drift or wind velocity. The speed and direction of the
iceberg drift agrees with the variations of sea ice drift and
winds in the Amundsen Sea and Ross Sea regions. Given
that this iceberg was 150–350 m in thickness, with the ma-
jority of its volume underwater, the main contribution to the
westward drift of the iceberg is thought to be the westward
sea current (ACoC) from the coastal Amundsen Sea to the
Ross Sea.

Predicting the behavior of icebergs (e.g., trajectory, speed,
decay, and breakup) is a highly complex endeavor that de-
pends on many factors related to dynamic and thermody-
namic interactions between ocean currents, the atmosphere,
waves, sea ice, and bottom topography (Stern et al., 2016;
Rackow et al., 2017; Schodlok et al., 2006; Lichey and
Hellmer, 2001; Gladstone et al., 2001). Thus, developing,
validating, and calibrating models for predicting iceberg’s
variables would require a large and accurate iceberg database
containing the life history of many icebergs. The method pre-
sented here can be used for these purposes by taking advan-
tage of GEE’s large data storage capability and high comput-
ing power. Indeed, GEE allows us to process 433 Sentinel-
1 SAR images in the cloud, taking only 10–30 s to process
and analyze 1 d of data and only a few hours to process all
3 years. Moreover, since all image-processing tools are pro-
vided by GEE, this approach is able to save time, cost, and
resources as compared to a similar traditional tracking done
in a local computer. Therefore, iceberg tracking based on
Sentinel-1 images and the GEE platform would be an effi-
cient option for tracking a large number of icebergs in the
polar oceans.

To build a large database of icebergs using the GEE-based
iceberg tracking approach presented in this paper, however,
three key limitations would need to be overcome. First, in
terms of the image segmentation, although the SNIC algo-
rithm in GEE detects iceberg B43 successfully (Fig. 2), this
superpixel approach should be tuned for a further application
to small icebergs. In this study, the surface roughness and
shape of iceberg B43 have no significant impacts on the im-
age segmentation because the iceberg is large and superpixels
are also large (i.e., seed= 80). However, for detecting small
icebergs, the surface shapes of icebergs can have significant
impacts on the image segmentation and iceberg detection be-
cause the superpixels should be small. Therefore, further en-
hanced image segmentation process may be required for the

detection of small icebergs. Second, although the centroid
distance histogram (CDH)-based tracking approach success-
fully works for iceberg B43 thanks to the distinctive shape
and large size of the B43, this method has limitations in
tracking small icebergs that share similar shapes or areas. In-
deed, we attempted unsuccessfully to track the small pieces
of B43 when it broke up (Fig. 1c) because these pieces have
similar CDHs. On the other hand, we also note that our track-
ing method may have difficulty tracking icebergs that are too
large to be captured within a single Sentinel-1 scene. Third,
our tracking algorithm is not fully automated. In this study,
instead of defining the detected iceberg from the previous
day as the reference for the next-day tracking, we defined the
reference iceberg at the initial digitizing step and use this ref-
erence for all the following steps. Although this approach en-
ables us to avoid tracking errors caused by temporary anoma-
lies (e.g., impacts of surrounding small icebergs), it prevents
our algorithm from detecting sudden changes in the iceberg
shape or area. By overcoming these limitations, fully auto-
mated tracking of small icebergs would be possible, and a
large and accurate iceberg database would be constructed in
the future.

Appendix A: Variations of similarity values

In this study, we track the target iceberg that has> 80 % sim-
ilarity with the reference iceberg. This Appendix is for dis-
cussing how these similarity scores change and what factors
potentially affect the similarity scores. Figure A1 shows the
area of iceberg B43 and the similarity of CDH with the refer-
ence iceberg. The 80 % threshold of CDH similarity is appro-
priate for tracking this iceberg, but the similarity decreased
near the split-off events. Hence, if these split-off events re-
duce the similarity to < 80 %, it is necessary to newly define
the reference iceberg. Figure A2 shows the Sentinel-1 im-
ages for six low-similarity dates in Fig. A1b. In Fig. A2, we
observe three factors that are likely to lower the CDH similar-
ity between the target iceberg and reference iceberg: (1) sur-
rounding small icebergs (A–C and E in Fig. A2), (2) split-off
events (F in Fig. A2), and (3) uncertainty from the image seg-
mentation because of confusion between the shaded part of
the iceberg and the surrounding bright sea ice (B and D in
Fig. A2).
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Figure A1. (a) Area changes of the tracked iceberg B43 (same to Fig. 8a). Gray shaded areas indicate the split-off events of the iceberg.
(b) Variations of similarity values by time. Red vertical dashed lines indicate the timing of manual digitization to define the reference iceberg.
Green circles A–F indicate six distinctive low-similarity dates (< 85 % similarity).

Figure A2. Sentinel-1 SAR images and SNIC segmentation results for six low-similarity times A–F in Fig. A1.
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Code and data availability. Python code for GEE-based access to
Sentinel-1 data and semi-automated iceberg tracking is available at
https://doi.org/10.5281/zenodo.5550530 (Koo, 2021).
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