Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-3813-2021
https://doi.org/10.5194/tc-15-3813-2021
Research article
 | 
18 Aug 2021
Research article |  | 18 Aug 2021

Synoptic control on snow avalanche activity in central Spitsbergen

Holt Hancock, Jordy Hendrikx, Markus Eckerstorfer, and Siiri Wickström

Related authors

Quantifying seasonal cornice dynamics using a terrestrial laser scanner in Svalbard, Norway
Holt Hancock, Markus Eckerstorfer, Alexander Prokop, and Jordy Hendrikx
Nat. Hazards Earth Syst. Sci., 20, 603–623, https://doi.org/10.5194/nhess-20-603-2020,https://doi.org/10.5194/nhess-20-603-2020, 2020
Short summary

Related subject area

Discipline: Snow | Subject: Atmospheric Interactions
On the energy budget of a low-Arctic snowpack
Georg Lackner, Florent Domine, Daniel F. Nadeau, Annie-Claude Parent, François Anctil, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 16, 127–142, https://doi.org/10.5194/tc-16-127-2022,https://doi.org/10.5194/tc-16-127-2022, 2022
Short summary
The role of sublimation as a driver of climate signals in the water isotope content of surface snow: laboratory and field experimental results
Abigail G. Hughes, Sonja Wahl, Tyler R. Jones, Alexandra Zuhr, Maria Hörhold, James W. C. White, and Hans Christian Steen-Larsen
The Cryosphere, 15, 4949–4974, https://doi.org/10.5194/tc-15-4949-2021,https://doi.org/10.5194/tc-15-4949-2021, 2021
Short summary
Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy
Thorsten Bartels-Rausch, Xiangrui Kong, Fabrizio Orlando, Luca Artiglia, Astrid Waldner, Thomas Huthwelker, and Markus Ammann
The Cryosphere, 15, 2001–2020, https://doi.org/10.5194/tc-15-2001-2021,https://doi.org/10.5194/tc-15-2001-2021, 2021
Short summary
Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020,https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Systematic bias of Tibetan Plateau snow cover in subseasonal-to-seasonal models
Wenkai Li, Shuzhen Hu, Pang-Chi Hsu, Weidong Guo, and Jiangfeng Wei
The Cryosphere, 14, 3565–3579, https://doi.org/10.5194/tc-14-3565-2020,https://doi.org/10.5194/tc-14-3565-2020, 2020
Short summary

Cited articles

Ballesteros-Cánovas, J. A., Trappmann, D., Madrigal-González, J., Eckert, N., and Stoffel, M.: Climate warming enhances snow avalanche risk in the Western Himalayas, P. Natl. Acad. Sci. USA, 115, 3410–3415, https://doi.org/10.1073/pnas.1716913115, 2018. 
Bednorz, E. and Fortuniak, K.: The occurrence of coreless winters in central Spitsbergen and their synoptic conditions, Polar Res., 30, 12218 , https://doi.org/10.3402/polar.v30i0.12218, 2011. 
Bednorz, E. and Kolendowicz, L.: Summer mean daily air temperature extremes in Central Spitsbergen, Theor. Appl. Climatol., 113, 471–479, 2013. 
Bednorz, E., Kaczmarek, D., and Dudlik, P.: Atmospheric conditions governing anomalies of the summer and winter cloudiness in Spitsbergen, Theor. Appl. Climatol., 123, 1–10, https://doi.org/10.1007/s00704-014-1326-5, 2016. 
Download
Short summary
We investigate how snow avalanche activity in central Spitsbergen, Svalbard, is broadly controlled by atmospheric circulation. Avalanche activity in this region is generally associated with atmospheric circulation conducive to increased precipitation, wind speeds, and air temperatures near Svalbard during winter storms. Our results help place avalanche activity on Spitsbergen in the wider context of Arctic environmental change and provide a foundation for improved avalanche forecasting here.