Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-265-2021
https://doi.org/10.5194/tc-15-265-2021
Research article
 | 
19 Jan 2021
Research article |  | 19 Jan 2021

Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates

Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri

Related authors

Alpine hillslope failure in the western US: insights from the Chaos Canyon landslide, Rocky Mountain National Park, USA
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023,https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Modeling the spatially distributed nature of subglacial sediment transport and erosion
Ian Delaney, Leif Anderson, and Frédéric Herman
Earth Surf. Dynam., 11, 663–680, https://doi.org/10.5194/esurf-11-663-2023,https://doi.org/10.5194/esurf-11-663-2023, 2023
Short summary
High-resolution debris-cover mapping using UAV-derived thermal imagery: limits and opportunities
Deniz Tobias Gök, Dirk Scherler, and Leif Stefan Anderson
The Cryosphere, 17, 1165–1184, https://doi.org/10.5194/tc-17-1165-2023,https://doi.org/10.5194/tc-17-1165-2023, 2023
Short summary
Debris cover and the thinning of Kennicott Glacier, Alaska, Part C: feedbacks between melt, ice dynamics, and surface processes
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-178,https://doi.org/10.5194/tc-2019-178, 2019
Preprint withdrawn
Short summary
Debris cover and the thinning of Kennicott Glacier, Alaska, Part A:in situ mass balance measurements
Leif S. Anderson, Robert S. Anderson, Pascal Buri, and William H. Armstrong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-174,https://doi.org/10.5194/tc-2019-174, 2019
Preprint withdrawn
Short summary

Related subject area

Discipline: Glaciers | Subject: Alpine Glaciers
Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024,https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023,https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques
Ritu Anilkumar, Rishikesh Bharti, Dibyajyoti Chutia, and Shiv Prasad Aggarwal
The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023,https://doi.org/10.5194/tc-17-2811-2023, 2023
Short summary
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023,https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Brief communication: Non-linear sensitivity of glacier mass balance to climate attested by temperature-index models
Christian Vincent and Emmanuel Thibert
The Cryosphere, 17, 1989–1995, https://doi.org/10.5194/tc-17-1989-2023,https://doi.org/10.5194/tc-17-1989-2023, 2023
Short summary

Cited articles

Agarwal, V., Bolch, T., Syed, T. H., Pieczonka, T., Strozzi, T., and Nagaich, R.: Area and mass changes of Siachen Glacier (East Karakoram), J. Glaciol., 63, 148–163, https://doi.org/10.1017/jog.2016.127, 2017. 
Anderson, L. S.: Glacier response to climate change: modeling the effects of weather and debris-cover, Dissertation, Geological Sciences, University of Colorado, Boulder, December, available at: https://scholar.colorado.edu/geol_gradetds/90 (last access: 15 November 2019), 2014. 
Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: response to steady debris deposition, The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, 2016. 
Anderson, L. S. and Anderson, R. S.: Debris thickness patterns on debris-covered glaciers, Geomorphology, 311, 1–12, https://doi.org/10.1016/j.geomorph.2018.03.014, 2018. 
Anderson, L. S., Armstrong, W. H., Anderson, R. S., and Buri, P.: Measurements and datasets from the debris-covered tongue of Kennicott Glacier, Alaska (Version 1.0.0), Zenodo, https://doi.org/10.5281/zenodo.4118672, 2020. 
Download
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.