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Supplementary Materials

S1 In situ measurements

Fig. S1 Schematic of sub-debris melt rate and ice cliff backwasting rate measurements.

Fig. S2 High-resolution orthoimage with medial moraines delineated. WorldView image from 13 July 2009 (catalog ID:
1020010008B20800) is shown in both panels. a) Image with medial moraines delineated and labeled. b) Image with medial 
moraines delineated, labeled, and with elevation contours from 2013. 69 % of debris thickness measurements are from 
medial moraines 5-7. A trail up the east side of the glacier allowed easy access to medial moraines 1, 2, and 3. More data is 
collected there than on the west side of the glacier. Note the light color debris in medial moraine 9, which is debris in excess
of ~1 m thick.
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Fig. S3 Map of the general study area with in situ measurement locations. a) Locations of sub-debris melt rate 
measurements. Map of the study area with contours derived from 2013. b)  Locations where ice cliff backwasting was 
measured. The ice extents are derived from WV imagery and aerial photos. The ‘dead’ ice portion of the debris-covered 
tongue is shown in light grey. It is defined by areas that only have measured daily mean surface velocities above 5 cm d-1 
(Armstrong et al., 2016). This definition coincides with the definition of ‘dead’ ice from Rickman and Rosenkrans (1997). 
c) Location of air temperature poles and internal debris temperature profiles. The letters label the air temperature poles: 
Upper weather station (UWS); Middle weather station (MWS); Lower weather station (LWS). 
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S1.1 Sub-debris melt rates

We measured sub-debris melt at 74 locations (Fig. S3). Sub-debris melt ( ˙bdebris ) was measured by removing the debris 
and measuring ice surface lowering (Fig. S1). 

Fig. S4 Error in debris thickness measurements plotted with sub-debris melt. Error bars for debris thickness represent 
changes upon repeated measurement. An exponential fit is shown here though we do not use this curve fit elsewhere.

Because melt measurements were made over different time periods we corrected each measurement to represent the full 
measurement period between 18 June and 16 August 2011. A degree-day factor for sub-debris melt DDFdebris  was 
therefore calculated for each sub-debris melt measurement: 

DDFdebris=

∑
i=1

n

ḃdebris

∑
i=1

n

T ✛
Δ t

   (S1)

where T✛ is the positive degree-days defined as the mean daily air temperature when above 0° C and Δt is one day (e.g., 
Hock, 2003). Air temperatures did not drop below freezing during the study period. We use hourly air temperature data 
from the Gates Glacier and May Creek meteorological stations to estimate the T✛ at each site. Gates Glacier meteorological 
station is located at 1240 m a.s.l. and May Creek meteorological station is located 15 km to the southwest of McCarthy at 
490 m a.s.l. (Figure 1, main text). The average period between measurements was 24 days, the minimum was 8 days, and 
the maximum was 56 days. Sub-debris melt rates presented in the main paper have had this correction applied, but 
ultimately this correction exceptionally small. The correction has a negligible effect on the curve fit applied to the 
distributed estimates of melt, but we correct for the measurement period nonetheless (Fig. S5).
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Fig. S5 Difference between measured melt rates and expected melt rates (those corrected to the full study period) 
with debris thickness. The root mean squared difference between the measured and expected melt rates is 0.5 [cm d-1].

Fig. S6 Comparison between Kennicott (61.5° N) sub-debris melt rates and other glaciers at similar latitudes. 
Isfallsglaciären (67.9° N; Østrem, 1959), Kaskawalsh Glacier (60.8° N; Loomis, 1970), Spire Glacier (66.4° N; Crump et 
al., 2017).

Measured sub-debris melt rates follow the typical shape of Østrem’s curve from other glaciers at similar latitudes (Fig. S6). 
But sub-debris melt rates are higher for debris thicknesses greater than 15 cm, than on other debris-covered glaciers at 
similar latitudes. This discrepancy could be explained by the variability of air temperature within the study area: we 
measured sub-debris melt across a 250 meter elevation range, and most melt measurements under thick debris were derived 
from the lowest portion of the study area. This difference could also reflect the proportion of fine material making up the 
thicker debris cover downglacier (e.g., Owen et al., 2003). Juen et al. (2013) demonstrated that increasing the proportion of 
fine material in debris covers increases water retention, ultimately increasing debris thermal conductivity and hence melt 
rates.
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S1.2 Ice cliff backwasting rates

Fig. S7 Pattern of ice cliff backwasting as it varies with elevation. a) Measured ice cliff backwasting over different time 
intervals.  b) Ice cliff backwasting corrected to the full measurement period using the individual degree-day factor for each 
ice cliff using equation S1 but for backwasting instead of sub-debris melt. Note the minor effect of the correction. The mean
of these data is 7.05 cm d-1 and the standard deviation is 2.46 cm d-1. c) Expected backwasting boxplots in 50 meter 
elevation bins. Outliers are represented as +’s.
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Fig. S8 Ice cliff backwasting rate as it varies with elevation and medial moraine. a) Medial moraine #9 is the medial 
moraine furthest to the west in the study area and 1 is the eastern most medial moraine at the end of Root Glacier. Note that 
no backwasting measurements were made on medial moraine 2. There are not clear trends in backwasting rate with medial 
moraine. b) Ice cliff backwasting rates with error bars based on a measurement uncertainty of ±20 cm per distance 
measurement.
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S1.3 Mean ice cliff slopes
In establishing the uncertainty in our distributed melt estimates we need to determine the plausible uncertainty in mean ice 
cliff slope across the study area. In order to estimate this uncertainty we compiled all studies that present a measured mean 
ice cliff slope (for the population of ice cliffs analyzed in the specific study).

Table S1 Compilation of mean ice cliff slopes for the respective population

Glacier Name Region Reference Mean ice cliff slope

Changri Nup Himalaya, Nepal Brun et al., 2018 47.4º

Lirung Himalaya, Nepal Brun et al., 2016 45º

Langtang Himalaya, Nepal Kraaijenbrink et al., 2016 44.6º

Khumbu Himalaya, Nepal Watson et al., 2017 59º

Koxkar Tien Shan, China Han et al., 2010 46.4º

Miage European Alps, Italy Reid and Brock, 2014 50.7º

Kennicott Wrangell Mtns, Alaska This study 48º

* the mean of mean ice cliffs slopes including the Kennicott data is 48.7º with a standard deviation of 4.7º

S1.4 Near-surface air temperature
Boundary layer conditions differ between debris-free and debris-covered glaciers (e.g., Brock et al., 2010). This is primarily
due to differences in surface temperature between debris-free and debris-covered glacier surfaces. During the melt season, 
debris-free surface temperatures are typically near the melting point. But debris surface temperatures vary strongly with 
debris thickness and surface topography (e.g., Shaw et al., 2016). 

We installed three air temperature poles (Fig. 2; at 513, 600, and 704 m a.s.l.) to document the interplay between debris, air 
temperature, and surface melt across the study area. Air temperatures were measured hourly between July 21 and August 9, 
using iButton thermistors in standard HOBO radiation shields. Poles were partially drilled into the ice and then debris 30 cm
thick was accumulated around the pole in a 1 meter radius. Thermistors were initially placed 1.8 m above the debris surface.
Thermistors were moved back to their original elevation above the debris surface in the middle of station deployment. The 
maximum deviation of thermistors from the original height above the surface was 14 cm. The thermistors have a 
measurement uncertainty of 0.5 °C based on ice bath calibration. We refer to the individual temperature poles as the Lower, 
Middle, and Upper weather stations (LWS, MWS, UWS). Unperturbed debris thicknesses averaged 2 cm at the UWS, 10 cm 
at the MWS, and 22 cm at the LWS. The UWS and MWS were placed in areas with lower surface relief while the LWS was 
located near the base of a topographic bulge.

Fig. S9 shows data from the LWS as well as near-surface air temperature lapse rates. Lapse rates between LWS and MWS 
were extremely steep, up to -74 C km-1, with a mean lapse rate of -25 C km-1 over the measurement period (Table S2). Lapse
rates were more shallow between the MWS and UWS, with a mean of -7.3 C km-1, more typical of lapse rates above debris 
cover (-7.5 C km-1, Mihalcea et al., 2006; -8.0 and -6.7 C km-1, Brock et al., 2010; -5 to -7.8 C km-1, Steiner and Pellicciotti, 
2016). 
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Fig. S9 Air temperature and near-surface air temperatures lapse rate within the study area. a) Screen-level air 
temperature data from Lower weather station (LWS), Middle weather station (MWS), and incoming shortwave radiation data
from the May Creek meteorological station. b) Lapse rate between LWS and MWS with May Creek shortwave radiation. c) 
Screen-level air temperature from MWS, Upper weather station (UWS), and incoming shortwave radiation data recorded 
from May Creek meteorological station. d) Lapse rate between MWS and UWS with May Creek shortwave radiation.

Table S2. Near-surface air-temperature lapse rates within the study area

Near-surface air 
temperature lapse rate  
[C km-1]

Mean 
[C km-1]

1 St. dev.
 [C km-1]

Day
 [C km-1]

Night
 [C km-1]

Estimated debris 
surface temperature 
difference 
on clear-sky day [C]

Lower-Middle -25.2 12.8 -30.0 -22.8 24

Middle-Upper -7.30 10.4 -13.7 -3.90 2

Lower-Upper -15.4 8.50 -21.1 -7.20 26

May Creek – 
Gates Glacier

-5.59 3.98 -8.95 -3.85 -

*Lower, Middle, and Upper air temperature poles are on the glacier, May Creek and Gates Glacier stations are off-glacier.
**Estimated debris surface temperatures based on clear sky days using a Fluke Infrared Thermometer.

The study area is spanned by off-ice meteorological stations, which are typically used for estimating melt on glacier 
surfaces (Figure 1, main text). For comparison, lapse rates calculated between these off-ice meteorological stations were a 
more typical -5.6 C km-1 (e.g., Minder et al., 2010).

Lapse rates tended to be steeper during the afternoon and evening than the night and morning (Table S2 and Fig. S9). An 
observation similar to those of Fujita and Sakai (2000) and Steiner and Pellicciotti (2016) on Lirung Glacier, Nepal and 
Brock et al. (2010) and Shaw et al. (2016) on Miage Glacier, Italy. The steepest lapse rates occurred between 5 and 7 pm. 
Steep lapse rates in the afternoon and evening are likely caused by higher debris surface temperatures, and convective 
heating at lower elevations. The daily-lapse rate cycle was amplified on clear-sky days (Fig. S9; e.g., day-of-the-year 
(DOY) 203 and 204 compared to DOY 212-215).
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Variable, steep lapse rates occurred on clear-sky days, while lapse rates were less variable and shallower on cooler, cloudy 
days. Amplified debris surface temperatures, as well as a decreased sky-view (see Steiner and Pellicciotti, 2016) at LWS 
may explain the extreme temperature differences between LWS and MWS. UWS and MWS are more likely to be influenced 
by cold-air drainage from up valley. Because debris is thicker at LWS debris surface temperatures will also tend to be 
higher. These extreme air temperature differences highlight the need for further study of the relationship between debris, 
surface temperature, and air temperature variations on debris-covered glaciers.

On sunny days, a steep air temperature lapse rate is observed above the debris. The extreme lapse rates observed in the 
lower portion of the study area are likely caused by feedbacks related to debris thickness. On clear days, high direct solar 
radiation fluxes increase debris surface temperatures for debris thicker than ~20 cm much more than for thinner debris. 
Debris thicknesses at LWS are in the range where debris surface temperatures rapidly increase with debris thickness. In 
contrast, at MWS and UWS, debris thicknesses were only 10 and 2 cm, respectively. This suggests that strong gradients in 
air temperature may be related to feedbacks between debris thickness and surface temperature. The steep lapse rates could 
also be related the large areas of exposed ice above the debris-covered tongue. The upper stations are more likely to be 
affected by descending katabatic winds. Air temperatures at the LWS may also be affected by the local debris-covered 
topography (e.g., Shaw et al., 2016).

S1.5 Debris thermal properties
In order to constrain debris thermal properties, thermistors were placed within the debris at ten sites. At each site, three to 
four iButton thermistors were placed in vertical profile within the debris. All profiles were paired with nearby ablation stake
measurements. Temperature was measured every 30 minutes and each profile was in debris for at least one week, allowing 
for an assumption of a linear temperature gradient through the debris (e.g., Conway and Rasmussen, 2000; Fig. S10). 
Thermistors were placed in debris between 8 and 46 cm thick, in four medial moraines composed of distinct lithological 
combinations. The debris cover is composed of sedimentary and volcanic rocks, including: andesite, pyroclastics, dacite, 
limestone, greenstone, and shale (MacKevett, 1972; MacKevett and Smith, 1972). We estimated debris conductivity using 
simultaneous measurements of sub-debris melt, internal debris temperature, and debris thickness (e.g., Nakawo and Young, 
1981, 1982; Kayastha et al., 2000; Mihalcea et al., 2006). The heat flux (Qm) is proportional to the effective thermal 
conductivity (Ke) of the debris for a given temperature gradient, which is set largely by surface temperature (Ts) due to the 
nearly constant 0° C summertime temperature of melting ice (Ti):

Qm=K e

(T s−T i)

hdebris

,  (S2)

where hdebris is debris thickness. The modifier effective is used to emphasize that heat is also transferred by advection of air 
and water (e.g., Juen et al., 2013). The sub-debris melt rate (per unit area) is related to the energy available for ablation (Qm) 

through:

 Qm=L fρi a , (S3)

where Lf is the latent heat of fusion of ice (334 x 103 J kg-1), ρi is the density of ice (900 kg m-3), and a is the sub-debris melt 
rate (m d-1). We estimated mean debris surface temperatures at each site by linearly extrapolating mean internal debris 
temperatures. Using Eq. (S2 and S3), we then calculate Ke for each temperature profile over the entire duration of the 
temperature measurements (Fig. S11).
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Fig. S10 Debris internal temperatures as they vary in time. The elevation where each profile was located is shown in 
the title. The uncertainty of each temperature measurement is ±0.5 deg. C. Uncertainties associated with the measurement 
of thermistor depth are shown in Fig. S12.

Debris thermal conductivity ranged from 0.525 to 2.16 W (m C)-1 with a mean of 1.06 W (m C)-1 (Figs. S11 and S12). Our 
estimates broadly agree with the range of previous direct measurements of Ke from debris-covered glaciers (0.85 to 2.6 W 
(m C)-1; Nakawo and Young, 1982; Conway and Rasmussen, 2000; Juen et al., 2013). The measurements are also within the
range of Ke estimated from physical constants (0.47 to 1.97 W (m C)-1; Nicholson and Benn, 2006). 

Debris thickness appears to be a primary control of debris conductivity, even though the thermistor profiles were placed in 
debris composed of distinct lithological mixes. Perhaps the increase in thermal properties with debris thickness reflects a 
decrease in porosity as debris thickens. Thicker debris covers tend to have increased fine material at depth (e.g., Owen et al.,
2003), which tends to reduce porosity. If little air convection occurs in the pores of the thinner, higher porosity debris then 
the bulk Ke would be greatly reduced due to the low thermal conductivity of air relative to rock (as described by Juen et al., 
2013).
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Fig. S11 Thermal conductivity of the debris cover. Effective thermal conductivity (Ke) as it varies with debris 
thickness. Estimates are based on internal debris temperatures and sub-debris melt measurements over at least a week.

Fig. S12 Thermal conductivity of the debris cover with error bars based on thermistor measurement uncertainty and
debris thickness uncertainty.

S1.6 Bare-ice melt rates extrapolated across the study area
For reference we also estimate the bare-ice melt rate through the study area for the summer of 2011, in the hypothetical case
that no debris was present on the glacier. We calculate the bare-ice degree-day factor from several ablation stakes in bare-
ice in the northeastern portion of the study area. We calculate the degree-day factor for ice (e.g., Hock, 2003) DDFice using 
measured bare-ice ablation ( ḃice ) and air temperatures interpolated across the glacier:

DDFice=

∑
i=1

n

ḃ ice

∑
i=1

n

T ✛
Δ t

.           (S4)

where T✛ is the positive degree-days defined as the mean daily air temperature when above 0° C and Δt is one day. Air 
temperatures did not drop below freezing during the study period. We use hourly air temperature data from the Gates 
Glacier and May Creek meteorological stations to estimate the T✛ at each measurement location. We do not use air 
temperature measurements from the glacier surface because they are not necessarily representative of the ~1 km of the 
atmosphere above the glacier (e.g., Ohmura, 2001), our near-surface air temperature measurements do not span the full 
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study period. Our intention is to show what bare-ice melt rate we might expect if surface debris did not perturb boundary 
layer air temperature. For all these reasons off-glacier meteorological stations are better for estimating hypothetical bare-ice 
melt rates within the study area. On-glacier positive degree-days were calculated based on off-glacier meteorological 
stations. The mean bare-ice degree-day factor was then used to calculate bare-ice melt rates across the study area.

S2 Automatic ice cliff detection

Table S3 Optimal image processing parameters for ice cliff delineation in the July 2009 WorldView scene, as determined 
by a Monte Carlo method. 

Adaptive binary 
threshold
(ABT)

Min brightness 
[DN*]

Max brightness 
[DN]

Window size [px] Brightness 
offset [DN]

Opening kernel 
size [px]

20 42 267 52 3

Sobel edge 
detection 
(SED)

Min brightness 
[DN]

Max brightness 
[DN]

Threshold gradient 
[DN px-1]

Opening 
kernel size 
[px]

32 55 22 4

*DN = digital number, a 0-255 representation of relative radiance of each pixel.

Fig. S13 Parameter optimization for a) adaptive binary threshold (ABT) and b) sobel edge detection (SED) ice cliff 
detection algorithms. On each plot, every point represents algorithm ice cliff detection error averaged across twelve 
manually digitized zones. The horizontal axes show true positives (i.e., automated and hand-digitized ice cliffs agree) and 
vertical axes show false positives (i.e., automated method predicts ice cliff where none exists). Perfect algorithm 
performance would plot on the origin. The coordinates for our chosen parameter sets provide an estimate of the error 
associated with the method. Note the differing axis limits on the horizontal and vertical axes. Markers are colored by 
Euclidean distance from the origin.
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S3 Additional distributed melt estimates

For all explorations in the main text and supplementary materials the summer 2011 melt rate is not maximized in the zone 
of maximum thinning (ZMT) (Table S4). Below we show how distributed melt estimates vary depending on the debris 
thickness assumed for medial moraine #9; we show more extreme uncertainty bounds for the best case shown in the main 
text; 3) we apply a linear backwasting rate, that varies with elevation; 4) we apply linear curve fits through the debris 
thickness from each medial moraine; and 5) we apply a single sigmoidal curve fit through all applicable debris thickness 
data.  

Table S4. Comparison of addition uncertainty cases

Case % contribution of 
ice cliffs in the 
study area 

Factor increase in 
melt ( ice cliff + 
sub-debris) to 
match hypothetical
bare ice rates in 
ZMT

Piecewise w/ center 
sigmoid (best case)

26 (20 , 40 ) 2.48 (4.4, 1.6)

hdebris  in medial moraine 
#9 reduced by 50% (best 
case)

25 (19, 39) 2.46 (4.3, 1.6)

Elevation dependent 
backwasting (best case)

25.4 (19, 37) 2.4 (4.4, 1.6)

Piecewise-individual 
moraines linear fit

29 (19, 39) 2.35 (4.2, 1.6)

Single sigmoidal curve fit 
across all medials

24 (11, 50) 2.58 (6.5, 1.2)

* (best case) means that in this case all parameters and assumptions are the same for the ‘best case’ except for the change 
indicated in the table.

**Extreme bounds are in the parentheses.

S3.1 Distributed debris thicknesses based on elevation and medial moraine

S3.1.1 ‘Best case’ in main text (Piecewise sigmoidal and linear curve fits)

In the main text we extrapolate debris thickness across the 9 medial moraines in a piecewise fashion (Fig. S14). For the 5 
central medial moraines we apply the elevation dependent sigmoidal curve fit to all debris-designated pixels across these 5 
medial moraines (Fig. 5). For medial moraines with debris thicknesses that do not show a sigmoidal debris thickness-melt 
relationship we apply linear curve-fit:

hdebris=m∗z+n ,  (S5)

where m is the slope, z is the elevation, and n is the y-intercept. 

For medial moraine #9 on the far western portion of the glacier, where access was difficult, we apply a uniform debris 
thickness across the medial moraine area (Fig. S14). Some debris thickness measurements were made at the very lowest 
portion of the medial moraine but they are not representative of the upper part of the moraine. North and west of the study 
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area debris thicknesses greater than 1 m were observed on medial moraine 9 in a portion of the glacier of similar character 
to the light colored debris presented in Fig. S2. This medial moraine also shows no ice cliffs in its upper reaches within the 
study area (Fig. S2). We set the mean debris thickness to 20 cm and and the interquartile range to 20 cm.

For the five central medial moraines debris thickness uncertainties are based on the interquartile range as it varies in 50 m 
elevation bins. For the other medial moraines, the uncertainty is based on the interquartile range for all debris thickness 
measurements made within the medial moraine. Note that we anecdotally saw similar debris thicknesses between medial 
moraine # 8 and the other central 4 medial moraines. For this reason we include it with the other central medial moraines.

The ‘best case’ distributed melt rate estimates are presented in Figure 12 of the main text. We also present uncertainty 
estimates with ±2-sigma bounds applied to backwasting rate, mean ice cliff slope, and sub-debris melt (Fig. S15). In this 
case for the sub-debris + ice cliff melt 99.996% of estimates are inside of the red band in Figure S15.

Our approach assumes that small-scale debris thickness variability has a negligible effect on area-averaged melt rates, 
despite the non-linear debris-melt rate relationship. Including small-scale variability in debris thickness cannot decrease the 
effective debris thickness (therefore increasing local melt) below the minimum in situ measured debris thickness in any 
given elevation band. We see from Figure 5 that the minimum measured debris thicknesses are much larger in the ZMT than
immediately above the ZMT.  Small-scale variability in debris thickness therefore cannot to lead to a peak in melt rates in 
the ZMT. It is also highly likely that the range of plausible effects from small-scale debris variability lie within extreme 
sensitivity tests as described in this and sections 4.4, and S3.1, further suggesting that this assumption is unlikely to affect 
our conclusions.

14



Fig. S14 Debris thickness measurements for each medial moraine in the study area.  Shaded brown areas are off glacier
such that the white in the figure indicates that the medial moraine exists at that elevation. For moraine # 9 the light area has 
very thick debris likely over 1 m thick. A survey found that debris was greater than 1 m just above the study area. We assign
a most likely debris thickness to this moraine of 20 ±10 cm for the base case, shown in the main text. We test this 
assumptions’ affect on the uncertainty estimates below. The middle five panels are used for the sigmoidal curve fit shown in
the main paper. The red lines in the panels near the glacier margin show the linear curve fits applied to those medial 
moraines. Note that the lower two panels are on Root Glacier, where it joins Kennicott Glacier. Because of its accessibility 
from the glacier margin measurements were also taken from these medial moraines.
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Fig. S15 The best distributed melt rate estimate with ±2 st. dev. bounds applied to backwasting rate, mean ice cliff 
slope, and sub-debris melt. a) For the sub-debris melt estimates, 96.8 % of estimates are within the grey band. For sub-
debris + ice cliff melt 99.996% of estimates are inside of the red band. b) The percent contribution of ice cliffs to mass loss 
(sub-debris + ice cliff) with elevation. The red band contains the extreme range of melt contributions from ice cliffs. c) The 
fractional area of ice cliffs. 
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S3.1.2 Exploring the mean thickness of moraine #9 in the ‘best case’

Here, we explore reducing the assumed mean debris thickness in medial moraine  #9 by 50%. The mean debris thickness
applied is 10 cm instead of 20 cm as it is in the best case. The uncertainty bounds use debris thicknesses of 5 and 15 cm as
compared to 10 and 30 cm uncertainties for the ‘best case.’ The difference between this case and the original ‘best case’ is
small (Table S3).

Fig. S16 The best distributed melt rate estimate with the debris thickness medial moraine #9 halved.  ±1 st. dev. 
bounds are applied to backwasting rate, mean ice cliff slope, and sub-debris melt. The red bad contains an extreme range of 
sub-debris plus ice cliff melt based on compounding parameter choices such that 98.4 % of estimates lie within it (see 
section 2.3.1). 84.1% of estimates for sub-debris melt are within the grey shaded band. b) The percent contribution of ice 
cliffs to mass loss (sub-debris + ice cliff) with elevation. The red band contains the extreme range of melt contributions 
from ice cliffs. c) The fractional area of ice cliffs. 
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S3.1.3 Allowing ice cliff backwasting rates to vary with elevation in the ‘best case’

Here, we apply a linearly varying ice cliff backwasting rate with elevation. We apply the best fit linear curve through the
median values of ice cliff backwasting rate in Fig. S7c. For this curve fit, the y-intercept is 13.94 cm d -1 and slope -0.0123
cm (d m)-1. For the ice cliff backwasting uncertainty we perturbed the linear fit ±1 standard deviations of 2.46 cm d-1. Except
for  the  change in  how ice  cliff  backwasting  is  represented  all  other  parameters  are  the  same as  the  ‘best  case.’  The
difference between this case and the original ‘best case’ is small (Table S3) and melt is not maximized in the ZMT.

Fig. S17 The best distributed melt rate estimate with ice cliff backwasting rates that vary with elevation. ±1 st. dev. 
bounds are applied to backwasting rate, mean ice cliff slope, and sub-debris melt. The red bad contains an extreme range of 
sub-debris plus ice cliff melt based on compounding parameter choices such that 98.4 % of estimates lie within it (see 
section 2.3.1). 84.1% of estimates for sub-debris melt are within the grey shaded band. b) The percent contribution of ice 
cliffs to mass loss (sub-debris + ice cliff) with elevation. The red band contains the extreme range of melt contributions 
from ice cliffs. c) The fractional area of ice cliffs. 
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S3.2 Linear curve fits applied to each medial moraine individually
For completeness, we also explore the effect of applying a linear curve fit through debris thickness measurements for each 
medial moraine individually. The most likely outcome for this is shown in Figure S18. 

As for the case above: For medial moraine #9 on the far western portion of the glacier, where access was difficult we apply 
a uniform debris thickness across the medial moraines (20±10 cm; Fig. S14). Uncertainty bounds were not made in this case
as linear curve fits through the interquartile range bounds produce negative debris thicknesses. The difference between this 
case and the original ‘best case’ is small (Table S3) and melt is not maximized in the ZMT.

Fig. S18 Distributed melt estimates if a linear curve fit is applied to each individual medial moraine. 
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S3.3 A single, sigmoidal debris thickness-elevation curve across all medial moraines

We also explore the application of a single, sigmoidal debris thickness-elevation curve across all nine medial moraines. 
Note that the estimates presented in this section of the supplementary materials produce the highest sub-debris melt rates of 
any of the cases explored. But the area-averaged melt rates are still not maximized within the zone of maximum thinning 
(ZMT), nor do they approach what bare ice melt rates that are expected to be at a similar elevation, even in the extreme 
uncertainty case. 

We apply a sigmoidal curve fit because it best matches the pattern of debris thickness with elevation using a root mean 
squared error (RMSE) metric (Fig. S19). This curve fit was produced using the median debris thickness from 50 m elevation
bins producing an RMSE of 0.9 cm. The sigmoidal shape is able to represent the clear changes in slope of the median debris
thickness (in 50 m bins) with elevation, while a linear curve fit is unable to capture this effect. The best fit linear curve 
produces an RMSE to the median debris thickness in 50 m elevation bins of 1.9 cm, twice as high as the sigmoidal curve fit.

Fig. S19 Pattern of debris thickness with elevation across all medial moraines with sigmoidal and linear fits through 
the data. a) In situ debris thickness measurements with curve fits. With the sigmoidal curve fit to the 25% (grey), median 
(black), and 75% (grey) quartile debris thickness in 50 m bins. The points plotted are the mean debris thicknesses. The red 
line is the best linear fit.  b) Debris thickness boxplots in 50 meter elevation bins. Outliers are represented as +’s. The 
median measured debris thickness shows a non-linear shape when binned with elevation. For that reason we use a debris 
thickness curve fit that is also non-linear. 
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Fig. S20 The distributed melt rate estimate with a single sigmoidal curve fit applied across all medial moraines ±1 st. 
Dev. bounds are applied to a uniform backwasting rate, the mean ice cliff slope, and the sub-debris melt. The red bad 
contains an extreme range of sub-debris plus ice cliff melt based on compounding parameter choices such that 98.4 % of 
estimates lie within it (see section 2.3.1). 84.1% of estimates for sub-debris melt are within the grey shaded band. b) The 
percent contribution of ice cliffs to mass loss (sub-debris + ice cliff) with elevation. The red band contains the extreme 
range of melt contributions from ice cliffs. c) The fractional area of ice cliffs.
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S4 Expansion of debris on Kennicott Glacier surface

Fig. S21 Imagery of the Kennicott Glacier from 1957, 1978, and 2009, showing changes in the glacier surface through
time. The arrows show the zone of maximum thinning (ZMT) between 1957 and 2004. The ZMT has been continuously 
debris covered since at least 1957. a) Aerial photo from July 29 1957 (courtesy of the USGS). b) Aerial photo from 25 
August 1978 (courtesy of the USGS). The darkening of the glacier surface on the western portion of the glacier in the 1978 
image may represent an increase in ice cliffs or a change in illumination angle. c) WorldView image from 13 July 2009 
(catalog ID: 1020010008B20800) . Note the expansion of debris upglacier in time, especially in the western and central 
parts of the study area.
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