Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-1907-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/tc-15-1907-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping potential signs of gas emissions in ice of Lake Neyto, Yamal, Russia, using synthetic aperture radar and multispectral remote sensing data
b.geos, Korneuburg, Austria
Austrian Polar Research Institute, Vienna, Austria
Department of Geoinformatics – Z_GIS, DK GIScience, Paris Lodron University of Salzburg, Salzburg, Austria
Annett Bartsch
b.geos, Korneuburg, Austria
Austrian Polar Research Institute, Vienna, Austria
Department of Geoinformatics – Z_GIS, DK GIScience, Paris Lodron University of Salzburg, Salzburg, Austria
Yury A. Dvornikov
Department of Landscape Design and Sustainable Ecosystems, Agrarian-Technological Institute, Peoples’ Friendship University of Russia, Moscow, Russia
Alexei V. Kouraev
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
Department of Geology and Geography, Tomsk State University, Tomsk, Russia
Related authors
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023, https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Short summary
Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. In extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record. Retrieval is most robust in the tundra biome, where records can be used to identify extremes and the results can be applied to impact studies at regional scale.
Kseniia Ivanova, Anna-Maria Virkkala, Victor Brovkin, Tobias Stacke, Barbara Widhalm, Annett Bartsch, Carolina Voigt, Oliver Sonnentag, and Mathias Göckede
EGUsphere, https://doi.org/10.5194/egusphere-2025-3968, https://doi.org/10.5194/egusphere-2025-3968, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We measured over 13,000 methane fluxes at a site in the Canadian Arctic and linked them with drone and free satellite images. We tested four machine-learning methods and two map scales. Metre-scale maps captured small wet and dry features that strongly affect methane release, while coarser maps blurred them. Different models shifted the monthly methane estimate. This helps choose the right data and tools to map methane, design monitoring networks, and check climate models.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Valeria Briones, Hélène Genet, Elchin E. Jafarov, Brendan M. Rogers, Jennifer D. Watts, Anna-Maria Virkkala, Annett Bartsch, Benjamin C. Maglio, Joshua Rady, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-226, https://doi.org/10.5194/essd-2025-226, 2025
Manuscript not accepted for further review
Short summary
Short summary
Arctic warming is causing permafrost to thaw, affecting ecosystems and climate. Since land cover, especially vegetation, shapes how permafrost responds, accurate maps are crucial. Using machine learning, we combined existing global and regional datasets to create a hybrid detailed 1-km map of Arctic-Boreal land cover, improving the representation of forests, shrubs, and wetlands across the circumpolar.
Annett Bartsch, Rodrigue Tanguy, Helena Bergstedt, Clemens von Baeckmann, Hans Tømmervik, Marc Macias-Fauria, Juha Lemmentiynen, Kimmo Rautiainen, Chiara Gruber, and Bruce C. Forbes
EGUsphere, https://doi.org/10.5194/egusphere-2025-1358, https://doi.org/10.5194/egusphere-2025-1358, 2025
Short summary
Short summary
We identified similarities between sea ice dynamics and conditions on land across the Arctic. Significant correlations north of 60°N was more common for snow water equivalent and permafrost ground temperature than for the vegetation parameters. Changes across all the different parameters could be specifically determined for Eastern Siberia. The results provide a baseline for future studies on common drivers of essential climate parameters and causative effects across the Arctic.
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2025-1052, https://doi.org/10.5194/egusphere-2025-1052, 2025
Short summary
Short summary
Permafrost soils store vast amounts of organic carbon, key to understanding climate change. This study uses machine learning and combines existing data with new field data to create detailed regional maps of soil carbon and nitrogen stocks for the Yukon coastal plain. The results show how soil properties vary across the landscape highlighting the importance of data selection for accurate predictions. These findings improve carbon storage estimates and may aid regional carbon budget assessments.
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025, https://doi.org/10.5194/tc-19-1103-2025, 2025
Short summary
Short summary
Mapping soil moisture in Arctic permafrost regions is crucial for various activities, but it is challenging with typical satellite methods due to the landscape's diversity. Seasonal freezing and thawing cause the ground to periodically rise and subside. Our research demonstrates that this seasonal ground settlement, measured with Sentinel-1 satellite data, is larger in areas with wetter soils. This method helps to monitor permafrost degradation.
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
The Cryosphere, 19, 459–483, https://doi.org/10.5194/tc-19-459-2025, https://doi.org/10.5194/tc-19-459-2025, 2025
Short summary
Short summary
We developed a robust freeze–thaw detection approach, applying a constant threshold to Copernicus Sentinel-1 data that is suitable for tundra regions. All global, coarser-resolution products, tested with the resulting benchmarking dataset, are of value for freeze–thaw retrieval, although differences were found depending on the seasons, particularly during the spring and autumn transition.
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
The Cryosphere, 18, 4703–4722, https://doi.org/10.5194/tc-18-4703-2024, https://doi.org/10.5194/tc-18-4703-2024, 2024
Short summary
Short summary
Lakes are common features in Arctic permafrost areas. Land cover change following their drainage needs to be monitored since it has implications for ecology and the carbon cycle. Satellite data are key in this context. We compared a common vegetation index approach with a novel land-cover-monitoring scheme. Land cover information provides specific information on wetland features. We also showed that the bioclimatic gradients play a significant role after drainage within the first 10 years.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023, https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Short summary
Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. In extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record. Retrieval is most robust in the tundra biome, where records can be used to identify extremes and the results can be applied to impact studies at regional scale.
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
Alexei V. Kouraev, Elena A. Zakharova, Andrey G. Kostianoy, Mikhail N. Shimaraev, Lev V. Desinov, Evgeny A. Petrov, Nicholas M. J. Hall, Frédérique Rémy, and Andrey Ya. Suknev
The Cryosphere, 15, 4501–4516, https://doi.org/10.5194/tc-15-4501-2021, https://doi.org/10.5194/tc-15-4501-2021, 2021
Short summary
Short summary
Giant ice rings are a beautiful and puzzling natural phenomenon. Our data show that ice rings are generated by lens-like warm eddies below the ice. We use multi-satellite data to analyse lake ice cover in the presence of eddies in April 2020 in southern Baikal. Unusual changes in ice colour may be explained by the competing influences of atmosphere above and the warm eddy below the ice. Tracking ice floes also helps to estimate eddy currents and their influence on the upper water layer.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021, https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
Short summary
Antarctica consists mostly of frozen water, and it makes the continent sensitive to warming due to enhancing a transition/exchange of water from solid (ice and snow) to liquid (lakes and rivers) form. Therefore, it is important to know how fast water is exchanged in the Antarctic lakes. The study gives first estimates of scales for water exchange for five lakes located in the Larsemann Hills oasis. Two methods are suggested to evaluate the timescale for the lakes depending on their type.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Alexander Savvichev, Igor Rusanov, Yury Dvornikov, Vitaly Kadnikov, Anna Kallistova, Elena Veslopolova, Antonina Chetverova, Marina Leibman, Pavel A. Sigalevich, Nikolay Pimenov, Nikolai Ravin, and Artem Khomutov
Biogeosciences, 18, 2791–2807, https://doi.org/10.5194/bg-18-2791-2021, https://doi.org/10.5194/bg-18-2791-2021, 2021
Short summary
Short summary
Microbial processes of the methane cycle were studied in four lakes of the central part of the Yamal Peninsula in an area of continuous permafrost: two large, deep lakes and two small and shallow ones. It was found that only small, shallow lakes contributed significantly to the overall diffusive methane emissions from the water surface during the warm summer season. The water column of large, deep lakes on Yamal acted as a microbial filter preventing methane emissions into the atmosphere.
Cited articles
Antonova, S., Duguay, C. R., Kääb, A., Heim, B., Langer, M., Westermann, S.,
and Boike, J.: Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena
River Delta Using TerraSAR-X Backscatter and Coherence Time Series, Remote
Sensing, 8, 903, https://doi.org/10.3390/rs8110903, 2016. a
Atwood, D. K., Gunn, G. E., Roussi, C., Wu, J., Duguay, C., and Sarabandi, K.:
Microwave Backscatter From Arctic Lake Ice and Polarimetric
Implications, IEEE Transactions on Geoscience and Remote Sensing, 53,
5972–5982, https://doi.org/10.1109/TGRS.2015.2429917, 2015. a, b, c
Anonymous: Interactive comment on “Mapping potential signs of gas emissions
in ice of lake Neyto, Yamal,Russia using synthetic aperture radar and
multispectral remote sensing data” by Georg Pointner et al., The Cryosphere
Discuss., https://doi.org/10.5194/tc-2020-226-RC2, 2020. a
Bartsch, A., Pointner, G., Leibman, M. O., Dvornikov, Y. A., Khomutov, A. V.,
and Trofaier, A. M.: Circumpolar Mapping of Ground-Fast Lake Ice,
Front. Earth Sci., 5, 12, https://doi.org/10.3389/feart.2017.00012, 2017. a
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from
lakes: Dependence of lake characteristics, two regional assessments, and a
global estimate, Global Biogeochem. Cy., 18, GB4009,
https://doi.org/10.1029/2004GB002238, 2004. a
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast,
A.: Freshwater Methane Emissions Offset the Continental Carbon Sink, Science,
331, 50–50, https://doi.org/10.1126/science.1196808, 2011. a
Bogoyavlensky, V. I., Sizov, O. S., Bogoyavlensky, I. V., and Nikonov, R. A.:
Technologies for Remote Detection and Monitoring of the Earth
Degassing in the Arctic: Yamal Peninsula, Neito Lake, Arctic:
Ecology and Economy, 2, 83–93, https://doi.org/10.25283/2223-4594-2018-2-83-93, 2018 (in
Russian). a, b, c, d, e, f, g, h, i
Bogoyavlensky, V. I., Bogoyavlensky, I. V., Kargina, T. N., Nikonov, R. A., and
Sizov, O. S.: Earth degassing in the Artic: remote and field studies of the
thermokarst lakes gas eruption, Arctic: Ecology and Economy, 2, 31–47,
https://doi.org/10.25283/2223-4594-2019-2-31-47, 2019a (in Russian). a, b, c, d, e, f, g, h
Bogoyavlensky, V. I., Sizov, O., Bogoyavlensky, I., Nikonov, R., and Kargina,
T.: Earth Degassing in the Arctic: Comprehensive Studies of the Distribution
of Frost Mounds and Thermokarst Lakes with Gas Blowout Craters on the Yamal
Peninsula, Arctic: Ecology and Economy, 4, 52–68,
https://doi.org/10.25283/2223-4594-2019-4-52-68, 2019b (in Russian). a, b
Bogoyavlensky, V. I., Sizov, O., Mazharov, A., Bogoyavlensky, I., Nikonov, R.,
Kishankov, A., and Kargina, T.: Earth degassing in the Arctic: remote and
field studies of the Seyakha catastrophic gas blowout on the Yamal Peninsula,
Arctic: Ecology and Economy, 1, 88–105,
https://doi.org/10.25283/2223-4594-2019-1-88-105, 2019c (in Russian). a, b
Chicco, D. and Jurman, G.: The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation, BMC genomics, 21, 6, https://doi.org/10.1186/s12864-019-6413-7, 2020. a, b
Cohen, J.: A Coefficient of Agreement for Nominal Scales, Educ. Psychol. Meas., 20, 37–46, https://doi.org/10.1177/001316446002000104,
1960. a, b
Dice, L. R.: Measures of the amount of ecologic association between species,
Ecology, 26, 297–302, https://doi.org/10.2307/1932409, 1945. a
Drusch, M., Bello, U. D., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F.,
Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical
High-Resolution Mission for GMES Operational Services, Remote
Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012. a
Duguay, C. R. and Lafleur, P. M.: Determining depth and ice thickness of
shallow sub-Arctic lakes using space-borne optical and SAR data,
Int. J. Remote Sens., 24, 475–489,
https://doi.org/10.1080/01431160304992, 2003. a
Duguay, C. R. and Pietroniro, A.: Ice Characteristics and Processes, and Remote Sensing of Frozen Rivers and Lakes, in: Remote Sensing in Northern Hydrology:
Measuring Environmental Change, Washington DC American Geophysical
Union Geophysical Monograph Series, 163, 63–90, https://doi.org/10.1029/GM163, 2005. a, b, c
Duguay, C. R., Pultz, T. J., Lafleur, P. M., and Drai, D.:
RADARSAT backscatter characteristics of ice growing on
shallow sub-Arctic lakes, Churchill, Manitoba, Canada, Hydrol.
Process., 16, 1631–1644, https://doi.org/10.1002/hyp.1026, 2002. a, b, c
Dvornikov, Y. A., Leibman, M. O., Khomutov, A. V., Kizyakov, A. I., Semenov,
P., Bussmann, I., Babkin, E. M., Heim, B., Portnov, A., Babkina, E. A.,
Streletskaya, I. D., Chetverova, A. A., Kozachek, A., and Meyer, H.:
Gas-emission craters of the Yamal and Gydan peninsulas: A proposed mechanism
for lake genesis and development of permafrost landscapes, Permafrost
Perigl., 30, 146–162, https://doi.org/10.1002/ppp.2014, 2019. a, b, c
ECMWF (European Centre for Medium-Range Weather Forecasts): Copernicus Climate Change Service (C3S) Climate Data Store, available at: https://cds.climate.copernicus.eu, last access: 19 January 2021. a
Edelstein, K., Alabyan, A., Gorin, S., and Popryadukhin, A.: Hydrological And
Hydrochemical Features Of The Largest Lakes Of The Yamal Peninsula,
Proceedings of the Karelian Research Centre of the Russian Academy of
Sciences, 10, 3–16, https://doi.org/10.17076/lim571, in Russian, 2017. a, b, c
Engram, M., Arp, C. D., Jones, B. M., Ajadi, O. A., and Meyer, F. J.: Analyzing
floating and bedfast lake ice regimes across Arctic Alaska using 25 years of
space-borne SAR imagery, Remote Sens. Environ., 209, 660–676,
https://doi.org/10.1016/j.rse.2018.02.022, 2018. a
Galaziy, G. I.: Baikal in questions and answers, Eastern-Siberian Publishing, Irkutsk,
p. 380, 1987 (in Russian). a
Grunblatt, J. and Atwood, D.: Mapping lakes for winter liquid water
availability using SAR on the North Slope of Alaska,
Int. J. Appl. Earth Obs., 27,
63–69, https://doi.org/10.1016/j.jag.2013.05.006, 2014. a
Gunn, G. E., Duguay, C. R., Atwood, D. K., King, J., and Toose, P.: Observing
Scattering Mechanisms of Bubbled Freshwater Lake Ice Using Polarimetric
RADARSAT-2 (C-Band) and UW-Scat (X- and Ku-Bands), IEEE T.
Geosci. Remote Sens., 56, 2887–2903,
https://doi.org/10.1109/TGRS.2017.2786158, 2018. a, b
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A.,
Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers,
D., Simmons, A., Soci, C., and Dee, D., and Thépaut, J.-N.: ERA5 hourly data
on single levels from 1979 to present, Copernicus Climate Change Service
(C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2018. a, b, c, d, e, f
Hoekstra, P. and Delaney, A.: Dielectric properties of soils at UHF and
microwave frequencies, J. Geophys. Res., 79,
1699–1708, https://doi.org/10.1029/JB079i011p01699, 1974. a
Jeffries, M. O., Morris, K., Weeks, W. F., and Wakabayashi, H.: Structural
and stratigraphie features and ERS 1 synthetic aperture radar
backscatter characteristics of ice growing on shallow lakes in NW
Alaska, winter 1991–1992, J. Geophys. Res.-Oceans, 99,
22459–22471, https://doi.org/10.1029/94JC01479, 1994. a
Kankaku, Y., Suzuki, S., and Osawa, Y.: ALOS-2 mission and development status,
in: 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS,
2396–2399, IEEE, https://doi.org/10.1109/IGARSS.2013.6723302, 2013. a, b, c
Kazantsev, V. S., Krivenok, L. A., and Cherbunina, M. Y.: Methane emissions
from thermokarst lakes in the southern tundra of Western Siberia, Geography,
Environment, Sustainability, 11, 58–73,
https://doi.org/10.24057/2071-9388-2018-11-1-58-73, 2018. a
Kazantsev, V. S., Krivenok, L. A., and Dvornikov, Y. A.: Preliminary data on
the methane emission from lake seeps of the Western Siberia permafrost zone,
IOP Conference Series: Earth and Environmental Science, 606, 012022,
https://doi.org/10.1088/1755-1315/606/1/012022, 2020. a, b, c
Kizyakov, A., Zimin, M., Sonyushkin, A., Dvornikov, Y., Khomutov, A., and
Leibman, M.: Comparison of Gas Emission Crater Geomorphodynamics on Yamal and
Gydan Peninsulas (Russia), Based on Repeat Very-High-Resolution Stereopairs,
Remote Sensing, 9, 1023, https://doi.org/10.3390/rs9101023, 2017. a
Kizyakov, A., Leibman, M., Zimin, M., Sonyushkin, A., Dvornikov, Y., Khomutov,
A., Dhont, D., Cauquil, E., Pushkarev, V., and Stanilovskaya, Y.: Gas
Emission Craters and Mound-Predecessors in the North of West Siberia,
Similarities and Differences, Remote Sensing, 12, 2182, https://doi.org/10.3390/rs12142182,
2020. a
Kouraev, A. V., Zakharova, E. A., Rémy, F., Kostianoy, A. G., Shimaraev,
M. N., Hall, N. M. J., and Suknev, Ya. A.: Giant ice rings on lakes Baikal
and Hovsgol: Inventory, associated water structure and potential formation
mechanism, Limnol. Oceanogr., 61, 1001–1014,
https://doi.org/10.1002/lno.10268, 2016. a
Kouraev, A. V., Zakharova, E. A., Rémy, F., Kostianoy, A. G., Shimaraev,
M. N., Hall, N. M. J., Zdorovennov, R. E., and Suknev, A. Y.: Giant ice rings
on lakes and field observations of lens-like eddies in the Middle Baikal
(2016–2017), Limnol. Oceanogr., 64, 2738–2754,
https://doi.org/10.1002/lno.11338, 2019. a
Landis, J. R. and Koch, G. G.: The Measurement of Observer Agreement for
Categorical Data, Biometrics, 33, 159–174, https://doi.org/10.2307/2529310, 1977. a, b
Lee, J.-S., Wen, J.-H., Ainsworth, T. L., Chen, K.-S., and Chen, A. J.:
Improved Sigma Filter for Speckle Filtering of SAR Imagery, IEEE T. Geosci. Remote Sens., 47, 202–213,
https://doi.org/10.1109/TGRS.2008.2002881, 2008. a
Leibman, M., Kizyakov, A., Plekhanov, A., and Streletskaya, I.: New permafrost
feature: deep crater in Central Yamal, West Siberia, Russia as a response to
local climate fluctuations, Geography, Environment, Sustainability, 7,
68–80, https://doi.org/10.24057/2071-9388-2014-7-4-68-79, 2014. a
Lindgren, P. R., Grosse, G., Walter Anthony, K. M., and Meyer, F. J.: Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high-resolution optical aerial imagery, Biogeosciences, 13, 27–44, https://doi.org/10.5194/bg-13-27-2016, 2016. a
Lindgren, P. R., Grosse, G., Meyer, F. J., and Walter Anthony, K. M.: An
Object-Based Classification Method to Detect Methane Ebullition Bubbles in
Early Winter Lake Ice, Remote Sensing, 11, 822, https://doi.org/10.3390/rs11070822, 2019. a
Matthews, B. W.: Comparison of the predicted and observed secondary structure
of T4 phage lysozyme, Biochimica et Biophysica Acta (BBA)-Protein Structure,
405, 442–451, https://doi.org/10.1016/0005-2795(75)90109-9, 1975. a
Meissner, T. and Wentz, F. J.: The complex dielectric constant of pure and
sea water from microwave satellite observations, IEEE T.
Geosci. Remote Sens., 42, 1836–1849,
https://doi.org/10.1109/TGRS.2004.831888, 2004. a
Mätzler, C. and Wegmüller, U.: Dielectric properties of freshwater ice at
microwave frequencies, J. Physics D, 20, 1623–1630,
https://doi.org/10.1088/0022-3727/20/12/013, 1987. a, b
Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.: Methane on the
Rise–Again, Science, 343, 493–495, https://doi.org/10.1126/science.1247828, 2014. a
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D.,
Michel, S. E., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P., Brownlow,
R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones, A. E.,
Levin, I., Manning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H., Warwick,
N. J., and White, J. W. C.: Very Strong Atmospheric Methane Growth in the
4 Years 2014–2017: Implications for the Paris Agreement, Global
Biogeochem. Cy., 33, 318–342, https://doi.org/10.1029/2018GB006009, 2019. a
Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G.,
Heim, B., Hugelius, G., Irrgang, A., Kääb, A., Kroisleitner, C., Matthes,
H., Nitze, I., Pellet, C., Seifert, F., Strozzi, T., Wegmüller, U.,
Wieczorek, M., and Wiesmann, A.: ESA Permafrost Climate Change
Initiative (Permafrost_cci): Permafrost Ground Temperature for the
Northern Hemisphere, v2.0, Centre for Environmental Data Analysis,
https://doi.org/10.5285/6ebcb73158b14cd5a321b7c0bc6ed393, 2020. a
Otsu, N.: A Threshold Selection Method from Gray-Level Histograms, IEEE
T. Syst. Man Cyb., 9, 62–66,
https://doi.org/10.1109/TSMC.1979.4310076, 1979. a
Padwick, C., Deskevich, M., Pacifici, F., and Smallwood, S.: WorldView-2
pan-sharpening, in: Proceedings of the ASPRS 2010 Annual Conference, San
Diego, CA, USA, vol. 2630, available at:
https://www.semanticscholar.org/paper/WORLDVIEW-2-PAN-SHARPENING-Padwick-Scientist/cef54a1a117157ab3ec336ff83acc62eaafdd3c2 (last access: 14 April 2021),
2010. a
Petrov, E. A.: The Baikal seal, ECOS, Ulan-Ude, p. 176, 2009 (in Russian). a
PGC (Polar Geospatial Center): ArcticDEM – Polar Geospatial Center, available at: https://www.pgc.umn.edu/data/arcticdem, last access: 19 January 2021. a
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey,
S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier,
M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, Michael, J.,
Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P.,
Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.:
ArcticDEM, Harvard Dataverse, https://doi.org/10.7910/DVN/OHHUKH, 2018. a
Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao,F., Hipple, J. D., Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee, Z. P., Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R. H., and Zhu, Z.: Landsat-8: Science and product vision for terrestrial global change
research, Remote Sens. Environ., 145, 154–172,
https://doi.org/10.1016/j.rse.2014.02.001, 2014. a, b
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope, G., Dlugokencky, E. J., Englund Michel, S., Arling, V. A., Vaughn, B. H., White, J. W. C., and Tans, P. P.: Upward revision of global fossil fuel methane emissions based
on isotope database, Nature, 538, 88–91, https://doi.org/10.1038/nature19797, 2016. a
Serco and GAEL Systems consortium: Copernicus Open Access Hub, available at: https://scihub.copernicus.eu/dhus, last access: 19 January 2021. a
Sørensen, T.: A method of establishing groups of equal amplitude in plant
sociology based on similarity of species content and its application to
analyses of the vegetation on Danish commons, available at:
http://www.royalacademy.dk/Publications/High/295_S%F8rensen, Thorvald.pdf (last access: 14 April 2021),
1948. a
Surdu, C. M., Duguay, C. R., Brown, L. C., and Fernández Prieto, D.: Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis, The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014, 2014. a
Surdu, C. M., Duguay, C. R., Pour, H. K., and Brown, L. C.: Ice Freeze-up
and Break-up Detection of Shallow Lakes in Northern Alaska with
Spaceborne SAR, Remote Sensing, 7, 6133–6159,
https://doi.org/10.3390/rs70506133, 2015. a
Turetsky, M. R., Abbott, B. W., Jones, M. C., Walter Anthony, K., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon
release through abrupt permafrost thaw, Nat. Geosci., 13, 138–143,
https://doi.org/10.1038/s41561-019-0526-0, 2020. a
Updike, T. and Comp, C.: Radiometric use of WorldView-2 imagery, Technical
Note, 1–17, available at:
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/104/Radiometric_Use_of_WorldView-2_Imagery.pdf (last access: 14 April 2021),
2010. a
USGS (United States Geological Survey): EarthExplorer, available at: https://earthexplorer.usgs.gov, last access: 19 January 2021. a
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E., Yu, T., and the scikit-image
contributors: scikit-image: image processing in Python, PeerJ, 2, e453,
https://doi.org/10.7717/peerj.453, 2014. a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wakabayashi, H., Weeks, W. F., and Jeffries, M. O.: A C-band
backscatter model for lake ice in Alaska, in: Proceedings of IGARSS '93 –
IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, Vol. 3,
1264–1266, https://doi.org/10.1109/IGARSS.1993.322103, IEEE (Institute of Electrical and Electronics Engineers), Piscataway, NJ, USA,
1993. a
Walter, K. M.: Methane emissions from lakes in northeast Siberia and Alaska,
PhD thesis, available at: http://hdl.handle.net/11122/8900 (last access: 14 April 2021), 2006. a
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin, F. S.:
Methane bubbling from Siberian thaw lakes as a positive feedback to
climate warming, Nature, 443, 71–75, https://doi.org/10.1038/nature05040, 2006. a, b
Walter Anthony, K. M., Vas, D. A., Brosius, L., Chapin, F. S., Zimov, S. A.,
and Zhuang, Q.: Estimating methane emissions from northern lakes using
ice-bubble surveys, Limnol. Oceanogr.: Methods, 8, 592–609,
https://doi.org/10.4319/lom.2010.8.0592, 2010. a
Wik, M., Crill, P. M., Bastviken, D., Danielsson, Å., and Norbäck, E.:
Bubbles trapped in arctic lake ice: Potential implications for methane
emissions, J. Geophys. Res.-Biogeo., 116, G03044,
https://doi.org/10.1029/2011JG001761, 2011. a
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.:
Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99–105, https://doi.org/10.1038/ngeo2578, 2016. a
Woodhouse, I. H.: Introduction to microwave remote sensing, CRC press, Boca Raton,
https://doi.org/10.1201/9781315272573, 2005. a
Yen, J.-C., Chang, F.-J., and Chang, S.: A new criterion for automatic
multilevel thresholding, IEEE T. Image Process., 4, 370–378,
https://doi.org/10.1109/83.366472, 1995. a
Zhang, L., Shi, J., Zhang, Z., and Zhao, K.: The estimation of dielectric
constant of frozen soil-water mixture at microwave bands, in: IGARSS 2003.
2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, Proceedings
(IEEE Cat. No.03CH37477), Vol. 4, 2903–2905,
https://doi.org/10.1109/IGARSS.2003.1294626, IEEE (Institute of Electrical and Electronics Engineers), Piscataway, NJ, USA, 2003. a, b
Zuhlke, M., Fomferra, N., Brockmann, C., Peters, M., Veci, L., Malik, J., and
Regner, P.: SNAP (sentinel application platform) and the ESA sentinel 3
toolbox, in: Sentinel-3 for Science Workshop, Vol. 734, available at:
https://ui.adsabs.harvard.edu/abs/2015ESASP.734E..21Z/abstract (last access: 14 April 2021),
2015. a
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
This study presents strong new indications that regions of anomalously low backscatter in C-band...