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Abstract. Regions of anomalously low backscatter in C-
band synthetic aperture radar (SAR) imagery of lake ice of
Lake Neyto in northwestern Siberia have been suggested to
be caused by emissions of gas (methane from hydrocarbon
reservoirs) through the lake’s sediments. However, to assess
this connection, only analyses of data from boreholes in the
vicinity of Lake Neyto and visual comparisons to medium-
resolution optical imagery have been provided due to a lack
of in situ observations of the lake ice itself. These obser-
vations are impeded due to accessibility and safety issues.
Geospatial analyses and innovative combinations of satel-
lite data sources are therefore proposed to advance our un-
derstanding of this phenomenon. In this study, we assess
the nature of the backscatter anomalies in Sentinel-1 C-band
SAR images in combination with very high resolution (VHR)
WorldView-2 optical imagery. We present methods to au-
tomatically map backscatter anomaly regions from the C-
band SAR data (40 m pixel spacing) and holes in lake ice
from the VHR data (0.5 m pixel spacing) and examine their
spatial relationships. The reliability of the SAR method is
evaluated through comparison between different acquisition
modes. The results show that the majority of mapped holes
(71 %) in the VHR data are clearly related to anomalies in
SAR imagery acquired a few days earlier, and similarities to
SAR imagery acquired more than a month before are evident,

supporting the hypothesis that anomalies may be related to
gas emissions. Further, a significant expansion of backscat-
ter anomaly regions in spring is documented and quantified
in all analysed years 2015 to 2019. Our study suggests that
the backscatter anomalies might be caused by lake ice sub-
sidence and consequent flooding through the holes over the
ice top leading to wetting and/or slushing of the snow around
the holes, which might also explain outcomes of polarimet-
ric analyses of auxiliary L-band Advanced Land Observing
Satellite (ALOS) Phased Array type L-band Synthetic Aper-
ture Radar-2 (PALSAR-2) data. C-band SAR data are con-
sidered to be valuable for the identification of lakes showing
similar phenomena across larger areas in the Arctic in future
studies.

1 Introduction

Lakes and ponds are common features of the Arctic con-
tinuous permafrost zone and play an important role in the
carbon cycle (e.g. Walter Anthony et al., 2012; Wik et al.,
2016). Methane (CH4) is a powerful greenhouse gas, and the
global trend of its atmospheric concentration has shown sig-
nificant changes over the last few decades. The concentra-
tion increased significantly until 1998 and from 2007 until
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today, while between 1999 and 2006, it remained nearly con-
stant (Nisbet et al., 2014). To date, the factors and dominant
sources of emissions driving these changes are not fully un-
derstood (e.g. Nisbet et al., 2019; Schwietzke et al., 2016).
CH4 produced by microorganisms in the sediments of Arc-
tic lakes can escape to the atmosphere through upward bub-
bling (ebullition) in the water column and contributes signif-
icantly to the total global methane emissions (e.g. Bastviken
et al., 2011, 2004). In addition to that, geologic methane ac-
cumulated in sub-surface hydrocarbon reservoirs, previously
sealed by permafrost or glaciers that act as a cryosphere cap,
can also seep into the atmosphere through lake sediments and
the water column in the case of open taliks under big lakes
and rivers in the continuous permafrost zone or in regions of
glacial retreat (Walter Anthony et al., 2012).

Global climate models may currently underestimate car-
bon emissions from permafrost environments significantly
and cannot account for methane ebullition from geologi-
cal lake seeps (Turetsky et al., 2020). Gas-emission-related
phenomena can pose serious threats to humans, e.g. people
working in the gas industry or local indigenous people. The
Yamal-Nenets are reindeer herders that travel across the Ya-
mal Peninsula in Western Siberia and frequently cross frozen
lakes in winter. Patches of thin ice, caused by emissions of
natural gas, may be present on some of these lakes (e.g.
Bogoyavlensky et al., 2016, 2019a). In June 2017, a pow-
erful explosion from a gas-inflated mound that formed un-
der a riverbed near Seyakha on the Yamal Peninsula, which
has been documented by Bogoyavlensky et al. (2019c), scat-
tered debris over a radius of a few hundred metres. Under-
standing where different forms of gas release happen may be
favourable for identifying areas of increased risk for humans.

Walter Anthony et al. (2012) use two main terms for types
of methane seeps in lake sediments: superficial seeps and
subcap seeps. The former refers to seepage of ecosystem
methane that is continuously formed and released without
storage over geological timescales. Subcap seeps are in con-
trast characterised by the release of 14C-depleted methane
that has been previously sealed by the cryosphere cap. Possi-
ble origins of subcap methane are microbial, thermogenic or
mixed microbial–thermogenic processes within sedimentary
basins, including conventional natural gas reservoirs, coal
beds, buried organics associated with glacial sequences and
potentially methane hydrates. Walter Anthony et al. (2012)
identified locations of subcap and strong superficial seeps
during aerial and ground surveys in Alaska and Greenland
as open holes (so-called hotspots) in winter lake ice. Among
other factors, flux rates and sizes of the holes in lake ice were
used by the authors to distinguish superficial seeps from sub-
cap seeps. Subcap methane flux rates are significantly higher
than those of superficial seeps, and the areas of open holes
were reported to be significantly larger for subcap seeps
(up to 300 m2) when compared to superficial seeps (0.01–
0.3 m2). The authors identified more than 150 000 holes in

lake ice associated with subcap seeps along boundaries of
permafrost thaw and glacial retreat in Alaska and Greenland.

Similar holes or zones of very thin ice in spring lake ice
attributed to subcap gas emissions have been described for
lakes on the Yamal Peninsula in northwestern Siberia, Rus-
sia, by Bogoyavlensky et al. (2019a, 2016). Numerous crater-
like depressions on the bottom of a large number of lakes
have also been identified and attributed to gas emissions (Bo-
goyavlensky et al., 2019a, b, c, 2016). However, Dvornikov
et al. (2019) provide alternative explanations for the origin
of these crater-like depressions, such as the degradation of
tabular ground ice or the existence of former river valleys in
the case of channel-like depressions and suggest that multi-
ple origins are plausible.

The Yamal Peninsula is known for its abundant gas re-
serves stored in numerous gas fields scattered all over the
peninsula (e.g. Bogoyavlensky et al., 2019b) and other phe-
nomena associated with the release of pressurised gas, such
as a number of gas emission craters (GECs) that have been
discovered and described in recent years (e.g. Bogoyavlen-
sky et al., 2016; Dvornikov et al., 2019; Kizyakov et al.,
2020, 2017; Leibman et al., 2014). Many studies concerning
mapping and characterising superficial seeps in lake ice are
available for Alaskan and Swedish lakes (e.g. Lindgren et al.,
2019, 2016; Walter et al., 2006; Wik et al., 2011). Apart from
the study by Walter Anthony et al. (2012) mentioned above,
recent studies concerning signs of subcap seepage in lake ice
(Bogoyavlensky et al., 2019a, 2018, 2016) have focused on
lakes on the Yamal Peninsula.

Promising in this context are space-borne synthetic aper-
ture radar (SAR) data. SAR has proven to be very useful
for the monitoring of lake ice phenology (e.g. Duguay and
Pietroniro, 2005; Surdu et al., 2015). Several studies have
successfully used SAR data to distinguish between ground-
fast (ice that has frozen to the lakebed) and floating (e.g.
Bartsch et al., 2017; Duguay and Lafleur, 2003; Engram
et al., 2018; Grunblatt and Atwood, 2014; Surdu et al., 2014)
lake ice. In C-band SAR images, low backscatter is observed
from ground-fast lake ice and high backscatter is usually ob-
served from floating lake ice (Duguay and Pietroniro, 2005).
The magnitude of the reported differences between backscat-
ter from ground-fast and floating lake ice varies across stud-
ies and depends on radar frequency, polarisation, incidence
angle and geographic region (Antonova et al., 2016). Lake
ice is nearly transparent for the radar signal. Low radar return
is observed from ground-fast lake ice due to low dielectric
contrast between ice and the lake sediments (Duguay et al.,
2002). On the other hand, strong reflection of the radar sig-
nal occurs at the ice–water interface of floating lake ice be-
cause of high dielectric contrast between ice and liquid water
(Duguay et al., 2002; Engram et al., 2013). The dielectric
contrast is determined by differences in the complex-valued
relative permittivity ε, which in general depends on the radar
frequency and temperature. The real part ε′ of ice is approx-
imately 3.17 and nearly independent of radar frequency and
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temperature (Mätzler and Wegmüller, 1987). The imaginary
part ε′′ is below 10−3 for pure and impure freshwater ice at
C- and L-band frequencies (Mätzler and Wegmüller, 1987).
Meissner and Wentz (2004) provide a detailed list of ε values
of water at various frequencies and temperatures. At 1.7 GHz
and 25 ◦C, ε′ is 78 and ε′′ is 6. At 5.35 GHz and 25 ◦C, ε′

is 73 and ε′′ is 19. At 5 GHz and −4 ◦C, ε′ is 65 and ε′′

is 38. ε of frozen soil largely depends on the temperature
and on the water, clay, silt and sand content (Zhang et al.,
2003). At 10 GHz, ε′ ranges approximately from 3.2 to 8 and
ε′′ from 0.1 to 2 (Hoekstra and Delaney, 1974). Little sen-
sitivity of ε of frozen soil to the radar frequency between
1.4 and 10.6 GHz is suggested by estimates in Zhang et al.
(2003). The reported values were chosen since they were
most representative of the SAR data (C- and L-band) used
in this study. The dominant mechanism for high backscat-
ter from floating lake ice observed by SAR sensors has long
been described to be double-bounce scattering from the ice–
water interface and columnar bubbles trapped within the ice
(e.g. Duguay et al., 2002; Jeffries et al., 1994; Wakabayashi
et al., 1993). More recent studies, however, provide strong
evidence that the dominant mechanism is direct backscatter-
ing from a rough ice–water interface (Atwood et al., 2015;
Engram et al., 2020, 2013; Gunn et al., 2018). Engram et al.
(2020) showed a significant correlation between whole-lake
methane emissions and whole-lake L-band backscatter from
ice-covered Alaskan lakes in the case of superficial seeps (see
Sect. 6 for details).

For Lake Neyto on the Yamal Peninsula, regions charac-
terised by low C-band backscatter that very likely belong to
the floating ice regime have been identified (Bogoyavlensky
et al., 2018; Pointner et al., 2019). Based on the analysis of
data of boreholes in the vicinity of Lake Neyto, Bogoyavlen-
sky et al. (2018) described a gas field that stretches out un-
der Lake Neyto. They showed Sentinel-1 scenes acquired in
different years, compared them visually to optical Sentinel-2
scenes, and suggested that backscatter anomalies are related
to zones of very thin or no ice which resulted from gas bub-
ble inclusions within the ice. Pointner et al. (2019) also sug-
gested that the regions of low backscatter may be a result of
up-welling gas released through the sediments, which might
lead to local thinning of the ice or that eddies might cause a
local thinning of the ice layer, which is similar to the cause
of ice rings on lakes Baikal, Hövsgöl and Teletskoye reported
by Kouraev et al. (2019, 2016).

In this study, we demonstrate a connection between po-
tential signs of gas emissions in SAR and optical very high
resolution (VHR) imagery of Lake Neyto for the first time.
We provide a direct link between the locations of clusters
of low backscatter from Sentinel-1 SAR data and poten-
tial seep sites that we could identify as open holes in lake
ice in a single VHR WorldView-2 image. Similar holes in
VHR imagery were described and shown in detail for Lake
Otkrytie, located approximately 60 km to the east of Lake
Neyto, by Bogoyavlensky et al. (2019a). We present meth-

ods to map the backscatter anomalies from Sentinel-1 SAR
imagery and the holes from WorldView-2 data with state-of-
the-art image processing techniques and compare their lo-
cations spatially. Further, we provide time series of classi-
fied area of anomalies, quantify the expansion over time and
discuss the use of other remote sensing data that could help
to advance the understanding of the mechanisms involved.
In this regard, investigations of Advanced Land Observing
Satellite (ALOS) Phased Array type L-band Synthetic Aper-
ture Radar-2 (PALSAR-2) fully polarised L-band SAR data
were carried out, which could reveal the dominant scattering
mechanisms of backscatter from anomaly regions and regu-
lar floating lake ice.

2 Study site

Lake Neyto (other title – Neyto-Malto), 70.073◦ N,
70.350◦ E, is located in the central part of the Yamal Penin-
sula, ca. 80 km away from the closest settlement of Seyakha
and about 80 km away from the Bovanenkovo gas field. The
lake has the second-largest area (214 km2) in Yamal after
Lake Yarroto-1. The length of the shoreline is about 60 km,
and the lake measures approximately 17.8 km in the south–
north direction and 16.5 km from west to east. The lake is rel-
atively shallow, reaching 17 m at the northwest corner, but the
average depth does not exceed 3 m, which results in a signifi-
cant mixing of water masses during summer (Edelstein et al.,
2017). Wide shelf areas of up to 800 m can be found within
the lake, whereas at the deepest part, several depressions with
diameters up to 500–800 m are documented (Edelstein et al.,
2017). Lake shores are mostly cliffs up to 25 m high, some-
times with tabular ground ice exposures. The ground temper-
ature at 2 m depth in the surroundings of the lake is approxi-
mately −1.5 ◦C (Obu et al., 2020). Snow depth (liquid water
equivalent) from ERA5 reanalysis data generally increases
gradually in winter and spring until melt onset and has typi-
cally ranged between 15 and 20 cm at its maximum in recent
years (Hersbach et al., 2018).

Figure 1 shows the location of Lake Neyto in the
Arctic and a comparison between Sentinel-1 Extra Wide
(EW) swath horizontal–horizontal (HH)-polarised imagery,
a Sentinel-2 true-colour composite and a subset of a
WorldView-2 true-colour composite for Lake Neyto in
May 2016, where all images were acquired within 6 d. The
mentioned anomalies of low backscatter surrounded by re-
gions of much higher backscatter in regions of assumed float-
ing lake ice (based on the bathymetric map of Lake Neyto by
Edelstein et al., 2017, and expectable maximum ice thick-
ness of 1.5 to 2 m for lakes in Yamal; Bogoyavlensky et al.,
2018) can be seen in Fig. 1b. Figure 1c shows a Sentinel-2
image acquired 5 d later. Strong similarities to the Sentinel-1
image can be identified easily. Locations of clusters of low
backscatter in the SAR imagery apparently resemble regions
where the snow has melted earlier than in other regions in
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Table 1. Years of Sentinel-1 EW data and associated numbers of
images and average temporal gaps.

Year Number of Average
images temporal gap

2015 29 4 d 7 h
2016 88 1 d 13 h
2017 112 1 d 7 h
2018 52 2 d 23 h
2019 41 3 d 14 h

the optical image. Figure 1d shows a detail (marked by the
red rectangle in Fig. 1b and c) of a WorldView-2 acquisition
taken 1 d after the Sentinel-2 acquisition. Dark spots on white
regions are visible that we interpret as open holes surrounded
by regions of bright ice, slush or snow. A similarity to open
holes in ice associated with gas emissions described by Bo-
goyavlensky et al. (2019a) and Walter Anthony et al. (2012)
is apparent, and such holes can be found over wider regions
of Lake Neyto in the WorldView-2 image.

3 Data

3.1 Sentinel-1 synthetic aperture radar data

The two polar-orbiting satellites Sentinel-1A and Sentinel-
1B are part of the European Union’s (EU) Copernicus pro-
gramme. They were launched into orbit in April 2014 and
in April 2016. The identical SAR sensor on both satellites,
called C-SAR, can be operated in different acquisition and
polarisation modes at a centre frequency of 5.405 GHz. The
acquisition modes differ from each other in terms of spatial
resolution and swath width. Data can be acquired in either
single co-polarised or dual co-polarised plus cross-polarised
channels (European Space Agency, 2012).

The default operating mode over land is the Interferomet-
ric Wide (IW) swath mode with vertical–vertical (VV) and
vertical–horizontal (VH) dual-polarised acquisitions (Eu-
ropean Space Agency, 2012). However, acquisitions over
Lake Neyto are most frequently taken in Extra Wide (EW)
swath mode with horizontal–horizontal (HH) and horizontal–
vertical (HV) dual polarisation. EW data are acquired at
larger swath widths compared to IW data, but IW data have
a finer spatial resolution than EW data. Commonly used
pixel spacing after the pre-processing steps is 40 m in EW
mode and 10 m in IW mode. The number of EW acquisitions
over Lake Neyto is significantly larger (Pointner and Bartsch,
2020), and no acquisitions in IW mode were taken in 2016.
Hence, the primary SAR data for our analyses were Sentinel-
1 EW data with both HH and HV polarisation channels. Ta-
ble 1 shows the years of data, the number of Sentinel-1 EW
images and the average temporal gap between the image ac-
quisitions in the years concerned.

We used IW data for validation purposes and visual com-
parisons. A validation was carried out that compared classi-
fied anomalies from EW images and IW images that were
acquired on consecutive dates (for details see Sect. 4.3). The
local acquisition dates and times (LT) of these validation data
are shown in Table 2.

Lists of the used scenes including the mean projected
local incidence angle over the lake, acquisition times
in local time and coordinated universal time (UTC),
and an indicator showing if the scenes were assembled
due to slicing (see Sect. 4.1.1) are provided in the Sup-
plement (Tables S1–S4) to this article in CSV format.
“S1__scene_metadata_list_Sentinel1_EW_main.csv”
contains a list of the main Sentinel-1 EW data (342
scenes) used in this study. “S2__scene_metadata_list_ Sen-
tinel1_EW_lake_masks.csv” and “S3__scene_metadata_
list_Sentinel1_EW_shelf_masks.csv” contain lists of
the Sentinel-1 EW data used for calculating lake
masks (5 scenes) and shelf masks (5 scenes), re-
spectively (see Sect. 4.2.1 for details). “S4__scene_
metadata_list_Sentinel1_IW.csv” contains a list of all
Sentinel-1 IW data used for the validation (10 scenes).
“S5__scene_metadata_list_other_sensors.csv” contains a
similar list for the other satellite data (4 scenes in total)
used in this study, which are described in the following
paragraphs.

3.2 WorldView-2 very high resolution optical data

The WorldView-2 satellite was launched in October 2009 and
is operated by Maxar Technologies (formerly DigitalGlobe).
It was the first commercial satellite to collect data at a very
high spatial resolution in eight spectral bands. WorldView-2
data include a panchromatic band covering the wavelength
range from 450 to 800 nm. The spatial resolution is 1.84 m
for the multispectral bands and 0.46 m for the panchromatic
band (Padwick et al., 2010). For this study, 100 km2 of or-
thorectified WorldView-2 imagery (eight multispectral bands
plus one panchromatic band) from 22 May 2016 covering ap-
proximately half of the surface area of Lake Neyto was avail-
able.

3.3 ALOS PALSAR-2 fully polarised SAR data

The PALSAR-2 sensor on board the Advanced Land Ob-
serving Satellite-2 (ALOS-2) is the successor to the PAL-
SAR instrument on ALOS and operates at slightly vary-
ing centre frequencies of between 1.237 and 1.279 GHz
(Kankaku et al., 2013). ALOS-2 was launched in May 2014
and is operated by the Japan Aerospace Exploration Agency
(JAXA). Similarly to Sentinel-1, PALSAR-2 can be op-
erated in different imaging modes with varying ground
resolutions and swath widths, but it is able to acquire
data in single-polarisation (HH, HV, VH or VV), dual-
polarisation (HH+HV or VV+VH) and full-polarisation
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Figure 1. Location of Lake Neyto and visual comparison of potential signs of gas emissions in satellite data. (a) Location of Lake Neyto
in the Arctic. (b) Backscatter anomalies are visible as clusters of low backscatter surrounded by regions of much higher backscatter in a
Sentinel-1 EW HH-polarised acquisition from 16 May 2016. (c) Regions where snow seems to have melted earlier that appear similar to the
regions of backscatter anomalies in the Sentinel-1 image can be seen in a Sentinel-2 true-colour composite from 21 May 2016. (d) Zoomed-in
view of a WorldView-2 true-colour composite from 22 May 2016, where holes in the ice are visible as dark spots surrounded by very bright
ice. The red rectangle in (b) and (c) indicates the region of the zoomed-in view in (d). Coordinate reference system (CRS): (a) WGS 84 /
Arctic Polar Stereographic, (b)–(d) WGS 84 / UTM zone 42N.

Table 2. Local acquisition dates and times of pairs of Sentinel-1 EW and IW scenes used for validation.

S1 EW local acquisition date and time S1 IW local acquisition date and time

22 May 2017, 07:02:36 LT 23 May 2017, 06:53:47 LT
29 January 2018, 07:02:39 LT 30 January 2018, 06:53:51 LT
10 February 2018, 07:02:39 LT 11 February 2018, 06:53:51 LT
24 February 2018, 06:46:13 LT 23 February 2018, 06:53:51 LT
6 March 2018, 07:02:39 LT 7 March 2018, 06:53:51 LT
30 March 2018, 07:02:40 LT 31 March 2018, 06:53:51 LT
23 April 2018, 07:02:40 LT 24 April 2018, 06:53:52 LT
19 May 2018, 06:46:16 LT 18 May 2018, 06:53:53 LT
31 May 2018, 06:46:16 LT 30 May 2018, 06:53:54 LT
24 May 2019, 07:02:48 LT 25 May 2019, 06:54:00 LT

(HH+HV+VH+VV) modes (Kankaku et al., 2013). In
this study, we used an ALOS PALSAR-2 fully (quad-
)polarised scene in High-Sensitive Stripmap mode from
18 April 2015, which was acquired at a swath width of 50 km
and a ground resolution of approximately 6 m (Kankaku
et al., 2013) for polarimetric analyses to infer possible scat-
tering mechanisms for anomaly regions and regular floating
lake ice.

3.4 Sentinel-2 medium resolution optical data

Sentinel-2A and Sentinel-2B are also part of the EU’s Coper-
nicus programme and were launched into orbit in June 2015
and March 2017, respectively. The two satellites carry an
identical multispectral instrument which acquires data in 12
spectral bands in the optical, near-infrared and short-wave
infrared range (Drusch et al., 2012). The spatial resolution
varies between bands and is 10, 20 or 60 m. The red, green
and blue bands have a spatial resolution of 10 m. In this study,
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Sentinel-2 true-colour composites based on the 10 m resolu-
tion bands were used for visual interpretations.

3.5 Landsat 8 brightness temperature and surface
reflectance

Landsat 8 is the latest satellite of the Landsat satellite series
that have been continuously providing multispectral data of
the earth’s land surface since 1972. Landsat 8 was launched
in February 2013 and carries the Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS) instruments.
OLI acquires data in eight spectral bands in the optical, near-
infrared and short-wave infrared range at a 30 m spatial res-
olution and in one panchromatic band at a 15 m spatial reso-
lution (Roy et al., 2014). TIRS collects data in two spectral
bands in the thermal infrared range at a 100 m spatial resolu-
tion (Roy et al., 2014). We used a true-colour composite of
surface reflectance and the band-10 brightness temperature
of a Landsat 8 scene of Lake Neyto acquired on 6 April 2015
for visual comparisons to the SAR data.

3.6 ERA5 2 m air temperature

ERA5 is the fifth generation of European Centre for
Medium-Range Weather Forecasts (ECMWF) global cli-
mate and weather reanalysis. Reanalysis uses combined
model data and observations on a global scale to de-
rive a complete and consistent dataset (Hersbach et al.,
2018). The ERA5 product of hourly data on single levels
from 1979 to the present contains hourly estimates for
a variety of atmospheric, ocean-wave and land-surface
parameters on a regular latitude–longitude grid of 0.25◦

(Hersbach et al., 2018). In this study, we used the “2 m
temperature” variable, which represents near-surface air
temperature, for a comparison to the temporal dynamics
of the backscatter anomalies. The 2 m temperature data
for the nearest grid point to Lake Neyto (70◦ N, 70.25◦ E)
were therefore aggregated to daily minima and max-
ima using the cdstoolbox.geo.extract_point
and cdstoolbox.climate.daily_min and
cdstoolbox.climate.daily_max methods of
the Python application programming interface (API) of the
Copernicus Climate Change Service (C3S) Climate Data
Store (CDS). The data were subsequently downloaded and
converted to degrees Celsius.

4 Methods

4.1 Pre-processing of satellite data

4.1.1 Pre-processing of Sentinel-1 SAR data

The majority of pre-processing steps for Sentinel-1 EW
and IW data were conducted with the graph processing
tool (gpt) of the Sentinel Application Platform (SNAP)

Table 3. Polynomial coefficients used for the incidence angle nor-
malisation with respect to the sensor mode and polarisation.

a b c

EW HH 0.0067 −0.6784 1.7417
EW HV 0.0026 −0.3976 −16.2692
IW VV 0.0123 −1.1955 12.2970
IW VH 0.0148 −1.4496 10.1781

toolbox (Zuhlke et al., 2015). Some products have been
sliced directly over the lake. In these cases, the slice-
assembly operator was applied to those products in the
gpt as the first processing step. Products to which this
operator was applied are indicated in Tables S1–S4. In
the following, the applied operators within the gpt were
subsetting, radiometric calibration, thermal noise removal
and terrain correction using the ArcticDEM version 3.0
(Porter et al., 2018). The well-known-text (WKT) rep-
resentation of the subset extent in World Geodetic Sys-
tem 84 (WGS 84) geographical coordinates is POLYGON
((69.2277 69.7650, 70.9744 69.7650, 70.9744 70.3610,
69.2277 70.3610, 69.2277 69.7650, 69.2277 69.7650)). Af-
ter these steps, the data were converted to decibels (dB) and
incidence angle normalisation was performed. The incidence
angle normalisation methodology used here is described in
Pointner et al. (2019) and uses empirically derived normal-
isation functions in the form of second-degree polynomials
to normalise backscatter in decibels to a common reference
incidence angle of 30◦. The normalisation function can be
written as

σ 0
norm(θ) [dB] = a · θ2

+ b · θ + c, (1)

where σ 0
norm(θ) is the normalisation function; θ is the local

projected incidence angle; and a, b and c are the polynomial
coefficients. The polynomial coefficients in Eq. (1) used for
the incidence angle normalisation with respect to the sensor
mode and polarisation are given in Table 3.

Based on these coefficients, the final normalisation to the
reference incidence angle of 30◦ was applied using (Pointner
et al., 2019)

σ 0(30)= σ 0(θ)− (σ 0
norm(θ)− σ

0
norm(30)), (2)

where σ 0(30) is the backscatter coefficient normalised to
30◦, σ 0(θ) is the backscatter coefficient before normalisa-
tion, σ 0

norm(θ) is the value of the normalisation function at
the incidence angle concerned and σ 0

norm(30) is the value of
the normalisation function at 30◦.

All steps were applied to both polarisation channels (HH
and HV for EW mode, VV and VH for IW mode). Outputs
were images of normalised backscatter coefficient σ 0.
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4.1.2 Pre-processing of optical imagery

We calibrated the WorldView-2 data from 22 May 2016 to
top-of-atmosphere (TOA) reflectance following the method-
ology given by Updike and Comp (2010) and applied pan-
sharpening from the Geospatial Data Abstraction Library
(GDAL) command line utilities (version 2.2.4) which is
based on the Brovey method (GDAL/OGR contributors,
2020) using all available bands.

Sentinel-2 data were downloaded in level-1C (L1C) for-
mat and directly used for visual comparisons.

4.1.3 Polarimetric processing of ALOS PALSAR-2
fully polarised SAR data

From the fully polarised ALOS PALSAR-2 data in High-
Sensitive Stripmap mode acquired on 18 April 2015, we de-
duced two polarimetric products in order to infer scattering
properties of regular floating lake ice and anomaly regions.
Firstly, we calculated the coherency matrix T3 (Lee and Pot-
tier, 2009), of which the first element T11 has been shown
to relate to surface scattering and correlate with the area of
gas bubbles trapped in lake ice and methane flux estimates
of ice-covered lakes in Alaska (Engram et al., 2020, 2013).
The calculations were performed in SNAP, and the process-
ing steps were radiometric calibration, calculation of T3 (Lee
and Pottier, 2009), polarimetric speckle filtering using the re-
fined Lee filter (Lee et al., 2008), terrain correction using the
ArcticDEM and spatial subsetting. Secondly, we performed
an unsupervised polarimetric classification using the method
proposed by Cloude and Pottier (1997), which can allow for
a detailed identification of scattering mechanisms. In com-
parison with the calculation of T3, the workflow was essen-
tially the same, with the only difference being that between
the polarimetric speckle filtering and terrain correction steps,
the polarimetric classification was computed. The classifica-
tion itself consists of two main steps. The first step is the po-
larimetric decomposition and extraction of entropy (H ) and
alpha (α) parameters (Cloude and Pottier, 1997; Lee and Pot-
tier, 2009), and the second step is the classification based on
nine discrete regions in the H -α plane (Cloude and Pottier,
1997). Each of these regions indicates the dominant scat-
tering mechanism in the resolution cell concerned (Cloude
and Pottier, 1997). The output pixel values from SNAP did
not correspond to the zone designations in Cloude and Pot-
tier (1997) and Lee and Pottier (2009); i.e. regions in the
H -α plane were labelled by different numbers comparing
between the SNAP documentation and Cloude and Pottier
(1997) and Lee and Pottier (2009). Thus, we reclassified
the output to match the designations of Cloude and Pottier
(1997) and Lee and Pottier (2009).

4.2 Classification and detection methods

4.2.1 Classification of backscatter anomalies from
Sentinel-1 data

The method to classify backscatter anomalies (clusters of
unusually low backscatter) in Sentinel-1 SAR images was
briefly outlined in Pointner and Bartsch (2020) but is given
here in greater detail. The input for the classification algo-
rithm is pre-processed Sentinel-1 images of σ 0 in decibels
after incidence angle normalisation. All steps described in
the following were identically performed on both polarisa-
tion channels. The most important software packages used
for the classification were the Python packages scikit-image
(skimage) version 0.15.0 (van der Walt et al., 2014), GDAL
version 2.2.4 (GDAL/OGR contributors, 2020), SciPy ver-
sion 1.1.0 (Virtanen et al., 2020) and NumPy version 1.15.1
(Harris et al., 2020).

As a first step, areas outside the lake and the shelf
area of the lake, where ground-fast ice is assumed,
were masked. We deduced lake masks from late-autumn
Sentinel-1 EW imagery and shelf masks from winter
Sentinel-1 EW imagery through binary classification for
each year separately. For the extraction of the lake masks,
we used Otsu thresholding (Otsu, 1979) on the HH-
polarisation band (σ 0 in dB) implemented in scikit-image
(skimage.filters.threshold_otsu, default pa-
rameters) of the late-autumn acquisitions. Here, no incidence
angle normalisation was applied, as the incidence angle
range over the lake was small and the backscatter values were
only used to create the masks and were not compared to those
of other acquisitions. After thresholding, we used the method
scipy.ndimage.morphology.binary_fill_
holes (default parameters) to fill holes in the classification
result, polygonised the result using gdal_polygonize.py
(default parameters) and extracted the polygon of Lake
Neyto. Images used for the classification were cropped to the
extent of the lake masks. For the shelf masks, we selected
the latest date where clusters of low-backscatter pixels on
assumed floating ice were not spatially connected to the shelf
zone, where ground-fast lake ice was assumed. The shelf
masks were computed through a binary classification on
the HH-polarisation band using incidence-angle-dependent
thresholding as described by Pointner et al. (2019) and
extraction of all areas that were classified as ground-fast lake
ice and connected to the lake outline. Additionally, binary
dilation (skimage.morphology.dilation with
selem=skimage.morphology.disk(3), otherwise
default parameters) was applied to this shelf mask to exclude
areas that may be affected by late grounding of the lake ice
in late winter or spring from the classification.

After masking, pixel values were re-scaled
from decibels to the interval from −1 to 1 us-
ing skimage.exposure.rescale_intensity
(out_range=(-1,1); in_range=(-40,0) in the
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case of co-polarisation; in_range=(-50,-10) in
the case of cross polarisation), as required by the image
processing algorithms applied in the following. The main
image processing steps were bilateral filtering to reduce
noise in the images, local auto-levelling to balance out
the unevenly distributed backscatter level across the lake,
and Yen thresholding (Yen et al., 1995) to automatically
classify the images into the two categories for floating lake
ice “low-backscatter anomalies” (positive class) and “high
backscatter from regular floating lake ice” (negative class).

For the bilateral filtering, we used
skimage.filters.rank.mean_bilateral
(selem=skimage.morphology.square(5);
s0=20 in the case of EW; s0=150 in the
case of IW; s1=150 in both cases). For the
local auto-levelling, we defined specific ker-
nels as NumPy arrays. In the case of EW data,
numpy.ones([51,int(image.shape[1]/4)])
was used. In the case of IW data,
numpy.ones([204,int(image.shape[1]/4)])
was used. Here, the shape of the image (image.shape)
had been defined by the cropping of the pre-processed
images by the lake masks. These kernels were then rotated
using scipy.ndimage.interpolation.rotate
(angle=45, otherwise default parameters) by 45◦, as
the largest backscatter gradient seemed to often occur
from northwest to southeast of the lake in many images.
The local auto-levelling itself was then performed using
skimage.filters.rank.autolevel_percentile
(with the defined kernel and p0=0 and p1=1). Although
using 0 and 1 as percentiles, we encountered differ-
ent behaviour of this method regarding the treatment
of the no-data mask when compared to the method
skimage.filters.rank.autolevel, and thus
skimage.filters.rank.autolevel_percentile
was preferred. Yen thresholding was in
the following applied to the imagery using
skimage.filters.threshold_yen with default
parameters.

The output of these steps were two classified binary im-
ages: one for the co-polarised channel (HH in EW mode, VV
in IW mode) and one for the cross-polarised channel (HV in
EW mode, VH in IW mode). The bilateral mean filter was
chosen to handle noise with the aim of binary classification
in mind, as opposed to a conventional speckle filter.

We applied a logical AND operator
(numpy.logical_and, default parameters) to these
two images to keep only pixels that belong to the class
of backscatter anomalies in the outcome of both polar-
isation channels. Since we had no in situ data available
(see Sect. 4.3), we tried to use conservative settings
wherever possible. In order to mitigate potential re-
maining noise even further, we removed connected
components (4-neighbourhood) smaller than the size of

9 Sentinel-1 EW pixels from the final classification result
(skimage.morphology.remove_small_objects).

Since Yen thresholding determines the threshold for the
binary classification automatically, it is not applicable if
backscatter anomalies are not present in the image. Since
the mapping of clusters should be automatic, we needed to
include a test of whether anomalies were apparent in the im-
ages. Our approach again utilises the dual-polarisation capa-
bility of Sentinel-1 and tests the similarity between classifi-
cation outcomes of the two polarisation channels using Co-
hen’s kappa score κ (Cohen, 1960). Only if κ was above 0.2
(class “fair agreement” according to Landis and Koch, 1977),
was the final classification produced as described above. If κ
was below 0.2, all pixels in the image were assigned to the
negative class.

The classification method was especially designed to map
anomalies in late-winter and spring images. A considerable
ice thickness is required to resist wind forces without break-
ing on large lakes, and SAR imagery of lake ice acquired
during early periods of ice formation can exhibit features of
fracturing, movement or refreezing (Duguay and Pietroniro,
2005). Our algorithm may classify such features in autumn
or early-winter images incorrectly as the targeted anomalies.
To prevent this, we restricted time series analyses to imagery
acquired after 1 January in all years concerned.

4.2.2 Detection and mapping of holes in lake ice from
WorldView-2 data

For the automated detection of open holes in the ice from
the WorldView-2 acquisition, we used a blob detector from
scikit-image which uses the Laplacian of Gaussian (LoG)
filter (van der Walt et al., 2014). The term blob stands for
“binary large object”, and the holes in the ice are considered
blobs here. The intention behind using this approach was
to automatically map dark round spots in the imagery
characterised by high contrast to the surrounding regions in
a reproducible manner. The blob detector is a method to be
applied to greyscale imagery. We used the green band as
the input as it allowed for the best separation between holes
and surface features that we did not interpret as holes but
could have been confused with holes by the blob-detection
algorithm. The detector works by successively convolving
the image with LoG kernels of increasing standard deviation
and stacking up the responses in a cuboid. Detected blobs
are local maxima in the cuboid that are filtered using an
intensity threshold on the maxima. Again, we tried to be
very cautious when selecting this threshold to only detect
dark round spots characterised by significant contrast to the
surrounding pixels that are most likely holes in the lake
ice. The method skimage.feature.blob_log
(min_sigma=0.69, max_sigma=10,
num_sigma=200, threshold=0.187) was used
on the negative of the green-band pan-sharpened TOA
reflectance image. Figure 2 gives an example of what we
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Figure 2. Examples of features in WorldView-2 imagery acquired
on 22 May 2016 and associated spectral profile. (a) WorldView-2
true-colour composite with red line indicating the pixels used for
plotting the profile (CRS: WGS 84 / UTM zone 42N). (b) Spectral
profile indicating variations between contrast for the two main min-
ima. The left main minimum was considered a hole that should be
detected, while the right minimum was not considered a hole, and
its detection should be avoided.

interpreted as holes and what features we sought to prevent
from being detected as holes. Figure 2a shows a true-colour
composite, and Fig. 2b shows an associated spectral profile.
The red line in Fig. 2a indicates the pixels used for plotting
the profile in Fig. 2b (lower left to upper right). Two main
minima can be identified. The left minimum was interpreted
as a hole that should be detected by the algorithm (and also
the other two dark spots in the lower left of the image),
while the right minimum was not considered a hole and it
should not be detected by the algorithm. In most bands, the
contrast between both minima and the surrounding pixels is
similar, while the smallest contrast for the right minimum is
observed in the green band.

The outputs of the algorithm are the coordinates of the
blob centres and the corresponding radii approximated from
the standard deviation of the LoG kernel that detected the

blob concerned. In order to estimate hole areas, we per-
formed a binary classification based on a marker-based wa-
tershed segmentation using the blob-detection results to clas-
sify all pixels belonging to the holes. Markers for the hole
class were set on single pixels on which the centres of
detected blobs were located. Markers for the background
class were set on pixels with pan-sharpened TOA reflectance
larger than 0.45. The marker image was defined with the
same size as the original image, with value 1 for the hole
markers, value 2 for the background class and value 0 else-
where. After the definition of the markers, the watershed
segmentation (skimage.segmentation.watershed,
default parameters) was applied using the original image and
the marker image, and individual hole objects were extracted
and vectorised. In rare cases, the watershed segmentation
produced unsatisfactory results by clearly overflowing the
area of the expected hole. To handle these false classifica-
tions, we excluded all hole polygons larger than 300 m2 from
further analysis (the largest open holes formed by subcap
seepage in Walter Anthony et al., 2012, were reported to be
approximately 300 m2 in area).

4.3 Validation of Sentinel-1 classification methodology

No in situ data were available for Lake Neyto to validate
the classification of anomaly regions from Sentinel-1 data
directly. The remoteness of the area and the absence of trans-
portation infrastructure largely impedes in situ data collec-
tion. More strikingly, it is likely that parts of the regions
of backscatter anomalies on the lake are characterised by
very thin ice, which would pose a direct threat to human
safety if in situ data collection on the lake ice was attempted.
Ice only a few centimetres thick was also reported by the
Yamal-Nenets on Lake Yambuto in mid-march 2017, where
ice thickness at that time is usually more than 1 m (Pointner
et al., 2019).

Due to the lack of reference data collected at site, we pro-
pose a comparison of classification results from EW data
(HH and HV polarisation) and IW (VV and VH polarisa-
tion) data acquired on consecutive dates. The anomalies are
visible in all polarisation channels, and their extent is ex-
pected to be similar on consecutive dates in the two modes.
In all winters and springs with acquisitions, we could identify
10 points in time when Lake Neyto was observed in the two
modes on successive days (Table 2). For each of the dates, we
re-sampled (nearest neighbour) and re-projected the binary
classification image from the IW mode (10 m pixel spacing)
to the binary classification image from the EW mode (40 m
pixel spacing) in order to be able to carry out pixel-based
comparisons. Here, the classification on the EW data was as-
sessed against the classification on the IW data that acted as
a reference set.

Several metrics have been proposed to assess binary clas-
sification outcomes in the case of imbalanced classes (Chicco
and Jurman, 2020). From the confusion matrix calculated
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from the EW and IW classification results, we estimate the
total number of pixels in the negative class (regular float-
ing lake ice) to be about 1 order of magnitude larger than
the total number of pixels in the positive class (anomalies)
in the validation dataset (Table 2), so class imbalance is
clearly the case here and simple accuracy measures should
be avoided (Chicco and Jurman, 2020). We faced a simi-
lar situation of imbalance when looking at the number of
pixels classified positively over time; i.e. there is a signifi-
cant difference between the number of pixels classified posi-
tively in February and the number of pixels classified pos-
itively in May, for example. So, we argue that averaging
metrics over the 10 points in time (Table 2) cannot be rep-
resentative for the classification method either. We propose
to calculate binary metrics which are suitable in the case of
imbalanced classes on all classified pixels in the validation
dataset, together. Specifically, we calculated F1 scores (Dice,
1945; Sørensen, 1948), the Matthews correlation coefficient
(Matthews, 1975) and Cohen’s kappa coefficient κ (Cohen,
1960). F1 scores are generally calculated per class. We give
two versions of F1 scores here, one being the F1-score bi-
nary, which is calculated for the positive class (anomalies)
only, and one being the F1-score macro, which is the average
of the F1 scores of the positive and negative class.

In order to compare backscatter levels among modes and
polarisation channels, we also used the data from this valida-
tion dataset because of the short time interval between acqui-
sitions in the two modes. We calculated mean σ 0 per class
and date, took the difference between the means per class for
each acquisition date, and calculated the mean of these differ-
ences over time. Further, we calculated the mean σ 0 for the
positive class on single dates and averaged it over time. All
calculations were performed separately for each polarisation
channel.

4.4 Summary of the most important methodological
steps

A flow chart depicting the most important processing, se-
lection and analysis steps associated with Sentinel-1 and
WorldView-2 data is shown in Fig. 3. Sentinel-1 EW and
IW data were both pre-processed and classified using a sim-
ilar methodology. Classification results of IW and EW data
acquired on consecutive dates (Table 2) were used to calcu-
late validation metrics. Polygons of detected holes deduced
from the blob detection and subsequent watershed segmen-
tation on the green band of the pan-sharpened WorldView-2
image acquired on 22 May 2016 were used to calculate statis-
tics of the hole area. Detected locations of holes as produced
by the blob-detection algorithm were visually and quantita-
tively compared to single Sentinel-1 EW acquisitions and
associated anomaly classification results from 16 May and
7 April 2016.

Table 4. Metrics for the comparison between binary classifications
of Sentinel-1 EW and Sentinel-1 IW acquisitions on consecutive
days. A total of 10 pairs of EW and IW acquisitions were used.

F1-score binary 0.80
F1-score macro 0.89
Matthews correlation coefficient 0.78
Cohen’s kappa coefficient κ 0.78

5 Results

An example of classification results from Sentinel-1 EW and
IW imagery acquired on consecutive dates is given in Fig. 4
(HH-polarisation and VV-polarisation bands are shown in
Fig. 4a and b, respectively). Anomalies are characterised by
similar contrast and similar extents in the two acquisitions.

Table 4 shows the metrics calculated from the comparison
between classifications from EW and IW modes in the val-
idation set. κ and the Matthews correlation coefficient have
the same value (0.78); the F1-score binary is slightly higher
(0.80), and the value of the F1-score macro is 0.89.

As described in Sect. 4.3, the validation dataset consists of
10 pairs of Sentinel-1 images acquired in EW and IW modes
on consecutive dates. Several statistics were calculated from
the validation set to describe backscatter levels. Boxplots of
σ 0 for the positive class (anomalies) and negative class (reg-
ular floating lake ice) are shown in Fig. 5 for all polarisations
and acquisition dates in the validation set. The temporal aver-
ages of the differences between mean σ 0 of the positive and
negative class on the single acquisition dates are 4.9 dB for
the EW mode in HH polarisation, 6.0 dB for the EW mode in
HV polarisation, 5.4 dB for the IW mode in VV polarisation
and 7.2 dB for the IW mode in VH polarisation.

The temporal averages of mean σ 0 of the positive class
(anomalies) on single acquisition dates are −12.2 dB for the
EW mode in HH polarisation, −25.9 dB for the EW mode in
HV polarisation, −14.1 dB for the IW mode in VV polarisa-
tion and −25.4 dB for the IW mode in VH polarisation.

Figure 6a shows an example of detected holes in the
lake ice of Lake Neyto on a true-colour composite of the
WorldView-2 acquisition from 22 May 2016, and Fig. 6b
shows examples of mapped holes from the watershed seg-
mentation algorithm. Holes are clearly characterised by dark
tones surrounded by regions of higher reflectance.

The blob-detection algorithm yielded locations of
718 holes. Out of 718 hole polygons deduced by using
the watershed segmentation, 10 had to be excluded by the
application of the area threshold (compare to Sect. 4.2.2).
Figure 7 shows a histogram of hole areas from the remaining
708 hole polygons. The majority of holes are characterised
by an area smaller than 5 m2; the median is 4.00 m2. Few
holes with areas larger than 50 m2 were identified.

The locations of the 718 detected holes (points, poten-
tial seep locations) from the WorldView-2 image acquired
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Figure 3. Workflow of main processing, selection and analysis steps associated with Sentinel-1 and WorldView-2 imagery in this study.

Figure 4. Example of Sentinel-1 EW and IW acquisitions taken 1 d apart and classification outcomes of backscatter anomalies. (a) Sentinel-1
EW HH-polarised acquisition from 24 May 2019. (b) Sentinel-1 IW VV-polarised acquisition from 25 May 2019. Red outlines represent
polygon outlines from vectorised raster classification maps. CRS: WGS 84 / UTM zone 42N.

on 22 May 2016 and the Sentinel-1 HH-polarised image
acquired on 16 May 2016 with the outlines of classified
backscatter anomalies (polygons) are shown in Fig. 8. Of
the 718 detected holes, 71 % lie within the polygons deduced
from the Sentinel-1 classification result. The mean minimum
distance between the points and the polygons is 38 m (if a
point lies within a polygon, the distance is zero). The median
distance of all points lying outside the polygons is 67 m.

Interesting spatial relationships can also be identified
when comparing the locations of detected holes to Sentinel-
1 imagery acquired earlier in the same year. Figure 9 shows
the same locations of detected holes deduced from the
WorldView-2 image acquired on 22 May 2016 as in Fig. 8
on top of a Sentinel-1 EW HH-polarised acquisition from

7 April 2016, taken more than a month earlier than the image
in Fig. 8. A detailed view of the northwestern part of Lake
Neyto is shown. A relationship between many locations of
holes and backscatter anomalies with a smaller spatial extent
can be identified. Maximum and minimum air temperatures
on 22 May 2016 were 1.2 and −2.0 ◦C, respectively, accord-
ing to the ERA5 data (Hersbach et al., 2018). Apart from
1 April and 3 d from 22 to 24 April, maximum air tempera-
ture remained below 0 ◦C until 16 May 2016 (Hersbach et al.,
2018).

The automated classification approach on Sentinel-1 EW
data makes it possible to compose time series of areas of
backscatter anomalies and compare them to time series of
minimum and maximum air temperatures over the years
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Figure 5. Boxplots of σ 0 for the positive class (backscatter anomalies) and negative class (regular floating lake ice) for all polarisations
(HH, HV, VV, VH) and all 10 acquisition dates in the validation set. The means are represented by triangles. Dates are given in the format
year–month–day.

2015 to 2019 (Fig. 10a–e). A steady increase in area of
backscatter anomalies in late winter and spring is evident.
The maximum extent of backscatter anomalies was espe-
cially high in 2019, when on the last useful acquisition
date, its area was approximately half of the whole lake area
(Fig. 10; compare also to Fig. 4a). Maximum air tempera-
ture often approaches or slightly exceeds 0 ◦C throughout the
analysis periods. Days where maximum air temperatures ex-
ceed 0 ◦C are shown by the dashed lines in Fig. 10. In order to
assess the expansion of anomaly regions, the fraction of over-
lap between anomaly regions on consecutive dates is shown
in brown (area of intersection between classified anomaly re-
gions on the timestamp indicated and that of the previous
timestamp, divided by area of the classified anomaly regions
at the previous timestamp). The fraction is especially high
during the last observation dates in the years concerned. In
order to avoid division by zero, the graphs were only calcu-
lated for the time period after zero anomalies were detected
for the last time in the years concerned. The fraction of over-

lap often increases when the air temperatures approach or
exceed 0 ◦C.

The results of the ALOS PALSAR-2 polarimetric analyses
can be directly compared to Sentinel-1 acquisitions in EW
and IW modes (Fig. 11) and to Landsat 8 brightness tem-
perature and surface reflectance data acquired in April 2015.
As expected, backscatter is clearly lower in anomaly zones
than for regular floating lake ice in both Sentinel-1 IW
VV-polarised (Fig. 11a) and Sentinel-1 EW HH-polarised
(Fig. 11b) images. The T11 component of the coherency ma-
trix, which is related to the magnitude of surface scattering
(Engram et al., 2013), interestingly indicates lower backscat-
ter from regular floating lake ice compared to anomaly zones
in the L band (Fig. 11c). The polarimetric classification
(Fig. 11d) shows that regular floating lake ice largely falls in
region 6 (random surface), while anomaly regions mainly fall
in region 9 (Bragg surface) of the H -α plane (Lee and Pot-
tier, 2009). The brightness temperature in anomaly regions
is approximately 1 to 2 K higher than in the rest of the lake
(Fig. 11e), while the snow surface appears rather homoge-
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Figure 6. Examples of hole detection and classification results in
lake ice of Lake Neyto on WorldView-2 true-colour composites ac-
quired on 22 May 2016. (a) Examples of detected holes (red circles)
from the blob-detection method. Radii of circles are scaled propor-
tionally to the standard deviation of the LoG kernel that detected
the respective blob, enlarged for the visualisation. (b) Mapped
holes (red outlines) from the watershed segmentation method. CRS:
WGS 84 / UTM zone 42N.

Figure 7. Histogram of hole areas from 708 hole polygons de-
duced from the watershed segmentation algorithm applied to the
WorldView-2 image acquired on 22 May 2016.

Figure 8. Comparison of detected holes (potential seep locations,
green points) from WorldView-2 imagery acquired on 22 May 2016
and backscatter anomalies (red outlines) from a Sentinel-1 scene
acquired on 16 May 2016 on top of the HH-polarisation band of
the same scene. The blue outline shows the analysis extent that is
determined by the extent of the WorldView-2 image and the lake
and shelf masks. CRS: WGS 84 / UTM zone 42N.

Figure 9. Comparison of detected holes (potential seep locations,
green dots) from WorldView-2 imagery acquired on 22 May 2016
on top of the HH-polarisation band of a Sentinel-1 scene acquired
on 7 April 2016 showing backscatter anomalies at an early stage of
development. CRS: WGS 84 / UTM zone 42N.

neous but also shows very small differences in anomaly re-
gions in the true-colour composite of surface reflectance in
Fig. 11f.

6 Discussion

Validation metrics from the comparison between classifica-
tion results from EW and IW modes are relatively high, with
similar values for the F1-score binary (0.80), the Matthews
correlation coefficient (0.78) and Cohen’s κ (0.78). The F1-
score macro (average of F1 scores for the positive and neg-
ative class) is higher than the F1-score binary because of a
significantly higher F1 score for the negative class, for which
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Figure 10. Time series of fraction of area of anomaly regions with respect to total lake area (black; Pointner and Bartsch, 2020), fraction of
overlap between anomaly regions on consecutive dates (brown) for the time period after no anomalies were detected for the last time in the
years concerned, and maximum (green) and minimum (blue) 2 m air temperature from ERA5 (Hersbach et al., 2018). The left axis indicates
the fraction of area of anomaly regions with respect to total lake area and the fraction of overlap between anomaly regions on consecutive
dates. The right axis indicates air temperature. Fractions of overlap were calculated as the area of intersection between classified anomaly
regions on the timestamp indicated and that of the previous timestamp, divided by area of the classified anomaly regions at the previous
timestamp. Dashed grey lines indicate dates where maximum air temperature exceeded 0 ◦C during the analysis periods of the SAR data.
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Figure 11. Comparison of Sentinel-1 C-band data, ALOS PALSAR-2 L-band polarimetric results, and Landsat 8 brightness temperature and
surface reflectance for Lake Neyto in April 2015. (a) Sentinel-1 IW VV-polarised acquisition from 10 April 2015. (b) Sentinel-1 EW HH-
polarised acquisition from 23 April 2015. (c) ALOS PALSAR-2 T11 from 18 April 2015. (d) Polarimetric classification result from ALOS
PALSAR-2 scene acquired on 18 April 2015 (pixel values denote zones in the H -α plane; zone 6 is termed “random surface” and zone 9 is
termed “Bragg surface” in Lee and Pottier, 2009). (e) Landsat 8 band-10 brightness temperature from 6 April 2015. (f) Landsat 8 true-colour
composite of surface reflectance data from 6 April 2015. Outlines of classified backscatter anomalies are shown in red in (a) and (b). CRS:
WGS 84 / UTM zone 42N.

pixel occurrences are also significantly higher (compare to
Sect. 4.3). Cohen’s κ is especially used to measure inter-rater
reliability. In the interpretation scheme proposed by Landis
and Koch (1977), κ from our validation belongs to the cat-
egory “substantial agreement”. A drawback is that we can-
not present a proper validation against ground truth data, as
often anticipated in remote sensing studies, but the remote-
ness of the study area and the potential endangering of human
safety largely restricts in situ data collection on-site (see also
Sect. 4.3).

Our results show a strong contrast between backscatter
from anomaly regions and regular floating lake ice, with
a difference of 5.9 dB on average across polarisation chan-
nels (Fig. 5). A striking spatial relationship between detected
holes and backscatter anomaly regions is shown in Fig. 8.

More than two-thirds of detected holes (potential seep loca-
tions) mapped from the WorldView-2 acquisition were found
to lie within the backscatter anomaly polygons deduced from
a Sentinel-1 EW acquisition taken 6 d earlier. Especially in
the northern and western part of the lake, most holes can be
clearly associated with the polygons deduced from the clas-
sification of the Sentinel-1 data.

A successive expansion of anomaly regions during spring
is indicated by fractions of overlap between anomaly regions
on consecutive dates (brown line in Fig. 10). During spring,
the percentage of lake area covered by regions of anoma-
lously low backscatter increases significantly, while the per-
centage of intersections remains rather high (mostly above
80 %). When comparing Fig. 9 (Sentinel-1 EW acquisition
from 7 April 2016) and Fig. 8 (Sentinel-1 EW acquisition
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from 22 May 2016), backscatter anomalies seem to emerge
from locations of detected holes in the earlier acquisition,
leading to a large patch of anomalously low backscatter in
the later acquisition.

There might be a connection between the expansion of
anomaly regions and air temperatures, as maximum air tem-
peratures approaching or exceeding 0 ◦C sometimes coincide
with increases in the area of anomalies (Fig. 10) and with
increases in fractions of overlap between anomaly regions
on consecutive dates. The shape and locations of backscatter
anomaly regions vary significantly between different years
(Bogoyavlensky et al., 2018; Pointner and Bartsch, 2020)
(compare also to Figs. 1, 4 and 11), but the characteristic ex-
pansion is similar in all years analysed, as discussed above.

The expanding areas of anomalies in spring might there-
fore be related to lake ice subsidence due to significant snow
load on the lake ice (April is usually considered the month
of maximum snow depth and ice thickness in central Ya-
mal) and consequent flooding through the holes over the
ice top leading to wetting and/or slushing of the snowpack
(see also Anonymous, 2020). The low backscatter might be
consequently caused by increased absorption or specular re-
flection of the slush and/or wet snow. The expansion might
then be caused by increasing snow loading during spring and
possibly by accumulations of slush and/or wet snow around
the holes. This might also be related to the increase in frac-
tions of overlap between anomaly regions on consecutive
dates when air temperature is close to or above 0 ◦C. Pat-
terns identified in the WorldView-2 image from 22 May 2016
that might potentially depict accumulations of slush and wet
snow around the holes are shown in Fig. 12a–d, but in situ
data are needed to test this hypothesis.

During lake ice drilling in Yamal in April 2019, the water
level on several lakes rose up to 40 cm higher than the level
of lake ice (Fig. 13). This could be a similar effect to the one
that might be responsible for the observed anomalies on Lake
Neyto, but in situ data collected on the ice of Lake Neyto
would be required to verify this.

Some potentially interconnected factors might possibly
explain why 29 % of detected holes are located outside the
classified anomaly regions. It is noticeable that the distances
between many detected holes and the anomaly region poly-
gons is relatively short (median 67 m). The snow around
these holes might have flooded after the time of the Sentinel-
1 acquisition, and/or the limited spatial resolution might also
play a role. Other potential reasons for holes outside clas-
sified anomaly regions may include remaining speckle, the
imperfectness of the classification method in general or vari-
ations in snow depth leading to less flooding around some
holes, but other unknown reasons might also contribute.

Features in the outcomes of polarimetric analyses on the
L-band PALSAR-2 data from April 2015 clearly resem-
ble backscatter anomaly regions in C-band Sentinel-1 im-
agery (Fig. 11a–d) as do features in the Landsat 8 brightness
temperature image (Fig. 11e). We could also identify very

small differences in surface reflectance in the anomaly zones
(Fig. 11f), but since the whole lake appears to be covered
with snow, the most obvious interpretation for the differences
in brightness temperature seems to be that there is some
warming from beneath the snow surface, leading to slightly
increased snow surface temperatures in anomaly regions but
not to full melting of the snow. This might also explain why
snow seems to have melted earlier in anomaly regions in the
Sentinel-2 acquisition from 21 May 2016 in Fig. 1a, but as
no data on emissivity of the surface were available, we can-
not reach a conclusion on actual snow surface temperatures,
and the limited spatial resolution of Sentinel-2 and Landsat 8
could prevent the identification of smaller details on the ice
or snow surfaces.

While T11 values are similar between many centres of
anomaly regions and regular floating lake ice, high values
of T11 are observed mainly from the outlines of anomaly
regions (Fig. 11c), which might potentially relate to differ-
ent scattering mechanisms for slush and wet snow, but fur-
ther data are required to assess this and understand scatter-
ing mechanisms at both C-band and L-band frequencies. An
explanation for the classification of anomaly regions in the
L band as Bragg surface (zone 9 in Cloude and Pottier, 1997)
in Fig. 11d also calls for further investigations.

The observation that C-band backscatter is relatively high
and L-band T11 is relatively low in the case of regular float-
ing lake ice may be explained by the longer radar wavelength
in the L band. Recent studies suggest that backscatter from
regular floating lake ice is predominantly caused by surface
scattering controlled by roughness from the ice–water inter-
face for both C-band (Atwood et al., 2015; Gunn et al., 2018)
and L-band (Atwood et al., 2015; Engram et al., 2020, 2013)
SAR. Our polarimetric classification result (Fig. 11d) clearly
supports these findings, as it indicates that the main scatter-
ing mechanism from regular floating lake ice of Lake Neyto
is scattering from a random surface (zone 6 in Cloude and
Pottier, 1997) at the L band. Whether a surface can be consid-
ered rough, which is related to the magnitude of backscatter,
largely depends on the magnitude of local height variations
in relation to the radar wavelength (e.g. Woodhouse, 2005).
The local height variations of the ice–water interface of reg-
ular floating lake ice of Lake Neyto may be too small for the
surface to be considered rough at the L band (approximately
23 cm wavelength) but large enough to be considered rough
at the C band (approximately 5.5 cm wavelength).

Engram et al. (2020) show that L-band T11 (ALOS
PALSAR-1) is positively correlated with the area of methane
bubbles trapped in lake ice and also with total lake methane
flux estimates for thermokarst lakes in Alaska. However,
there are some significant differences between the studies of
Engram et al. (2020) and this study that should be pointed
out. Engram et al. (2020) primarily use autumn acquisitions,
although correlations with spring L-band backscatter were
also shown in Engram et al. (2013). The increased radar re-
turn from ebullition zones is attributed to surface scattering
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Figure 12. Examples of patterns around holes in a true-colour composite of the WorldView-2 image acquired on 22 May 2016. Red circles
indicate locations of detected holes as identified by the blob-detection algorithm. CRS: WGS 84 / UTM zone 42N.

Figure 13. Liquid water on ice during lake ice drilling in central Ya-
mal, April 2019. The lake in the photo is termed LK-013, observed
and drilled on 6 April 2019 (ca. 14:00 local time). The coordinates
(WGS 84 geographic) are 70.262123◦ N, 68.884803◦ E. Ice thick-
ness at the time of drilling was approximately 1.5 m.

from cavities that form due to slower ice growth above dis-
crete point-like ebullition sources, which tend to remain in
the same location every year (Engram et al., 2020). As a con-
sequence of slowed ice growth, the cavities are filled by wa-
ter, partly filled by gas or completely filled by gas (Engram
et al., 2020). Resulting rough surfaces are the ice–water in-

terface or the gas–water interface (Engram et al., 2020). Bo-
goyavlensky et al. (2018) and Pointner and Bartsch (2020)
showed that locations of backscatter anomalies vary signif-
icantly between years for Lake Neyto. Cavities related to
ebullition responsible for increased L-band T11 in PALSAR-
1 SAR imagery in Engram et al. (2020) are of a much smaller
spatial scale than the holes in the VHR imagery of Lake
Neyto. Diameters of reported cavities in Engram et al. (2020)
are on the order of decimetres, while the median area of 718
open holes identified in this study is 4 m2. Engram et al.
(2020) note that hotspot-type seeps are the rarest in Alaskan
lakes and ebullition fluxes are dominated by much weaker A-
type (characterised by isolated bubbles in multiple ice layers)
and B-type (characterised by merged bubbles in multiple ice
layers) seeps in the seep classification scheme of Walter An-
thony et al. (2010).

Hotspots of gas emissions have previously been described
to be visible as black holes (compare to Figs. 1 and 6) in lake
ice (Walter, 2006; Walter et al., 2006), and the size (Fig. 7)
and spatial clustering (Figs. 8 and 9) of holes identified in
this study seem consistent with observations of holes related
to subcap seepage in Walter Anthony et al. (2012). However,
other causes of holes in lake ice were identified for Lake
Baikal, for example, such as seal breathing holes, hot springs
or oil seepage (Galaziy, 1987; Petrov, 2009). Ebullition of
geologic methane as the cause of the holes in the ice of Lake
Neyto would be consistent with studies by Bogoyavlensky
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Figure 14. Examples of Sentinel-1 IW mode VV-polarised images of other lakes in Yamal with regions of anomalously low backscatter
similar to those on Lake Neyto. (a) Lake Yanunto on 25 May 2019. (b) Lake Penadoto on 25 May 2017. (c) Lake Yambuto on 16 May 2018.
(d) Lake Yarroto-2 on 3 May 2019. CRS: WGS 84 / UTM zone 42N.

et al. (2019a, 2018, 2016) and Kazantsev et al. (2020), but in
situ measurements are needed to confirm this hypothesis.

The gas that might be associated with the observed
backscatter anomalies was previously suggested to be orig-
inated from the gas field that stretches out under Lake Neyto
and/or from the dissociation of gas hydrates within the per-
mafrost (Bogoyavlensky et al., 2018). In April 2019, the
wheel of an all-terrain vehicle fell into a patch of very thin
ice on one of the lakes in central Yamal, 60–70 km from
Lake Neyto. Later in August, two gas seeps were found in
this particular place. The emissions of pure methane of bio-
genic origin from these two seeps were estimated as more
than 100 kg yr−1 (Kazantsev et al., 2020). The isotopic com-
position of collected methane and the size of the lake suggest
that the gas has been delivered from permafrost and not from
the deep productive horizons (Dvornikov et al., 2019). The
potential annual amount of methane emitted from only two
small seeps described in Kazantsev et al. (2020) is compa-
rable with the annual diffuse emission from the entire lake
area of West Siberian lakes (5–249 kg yr−1; Kazantsev et al.,
2018) given that it is completely covered with ice throughout
6 to 7 months of the year. Therefore, the emission of seepage
methane may continue throughout the whole year.

It should be noted that similar patches of anomalously low
backscatter in Sentinel-1 SAR imagery have also been shown
for a number of lakes in the vicinity of Lake Neyto by Bo-
goyavlensky et al. (2018) and for Lake Yambuto (approxi-
mately 70 km southwest of Lake Neyto) by Pointner et al.

(2019). Further, more than 300 lakes near Seyakha in Yamal
that may show traces of gas emissions as either craters at the
bottom or holes in lake ice were identified in optical VHR
satellite imagery by Bogoyavlensky et al. (2019a).

Here, we have shown the potential connection between
open holes in lake ice potentially caused by gas emissions
and patches of anomalously low backscatter in C-band SAR
imagery for the first time, but in situ data are needed to under-
stand the phenomenon in detail. Upon the verification of the
presented hypothesis, the capability of SAR instruments to
collect useful data under almost all weather conditions, high
revisit rates and high coverage may allow the identification
of other lakes with subcap gas emissions from C-band SAR
data in future studies at larger spatial extents. This might then
aid our understanding of how much methane is released from
West Siberian lake seeps and might possibly contribute to an
incorporation of emissions from these seeps in climate mod-
els.

Figure 14a–d show examples of lakes in Yamal (including
Lake Yambuto) with similar regions of low C-band backscat-
ter (Fig. 14a–d). Because of a higher spatial resolution, im-
ages acquired by Sentinel-1 in IW mode and VV polarisation
are shown. While Sentinel-1 IW data can depict anomalies
in greater spatial detail, they are unfortunately acquired at
lower temporal frequencies and more irregularly in compari-
son to the EW data over Yamal (see also Sect. 3.1). Anoma-
lies on these lakes appear similar to those on Lake Neyto, but
whether they (including those on Lake Neyto) are indeed re-
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lated to methane ebullition has yet to be verified. Based on
the spatial and temporal dynamics of the C-band backscatter
anomalies on Lake Neyto, a method that incorporates both
spatial and temporal information of C-band SAR data could
be favourable for identifying anomalies over larger spatial
extents.

7 Conclusions

In this study, we investigated and quantified anomalies of C-
band radar backscatter in SAR images of lake ice of Lake
Neyto in Yamal, Russia, and assessed their potential relation
to gas emissions. This relation was suggested before using
visual comparisons between Sentinel-1 data and medium-
resolution optical data, but here we provided a quantifica-
tion of relations between features in SAR and VHR im-
agery, examined the spatio-temporal dynamics of backscatter
anomaly regions, and assessed potential scattering and for-
mation mechanisms in greater detail. The spatial relationship
between 718 holes detected from WorldView-2 imagery and
anomalies mapped from Sentinel-1 EW imagery acquired a
few days apart and more than a month earlier suggests that
anomalies expand from the locations of many holes. Expand-
ing anomalies might be caused by flooding of the ice and sub-
sequent slushing and/or wetting of the snow around the holes,
as the ice surface around the holes might be depressed below
the hydrostatic water level due to increased snow loading in
spring. This explanation is inferred from observed flooding
of the ice layer during ice drilling on another lake in cen-
tral Yamal in spring, but in situ observations of ice of Lake
Neyto are needed to test this hypothesis. Statistics of areas
and spatial clustering of mapped holes are consistent with ob-
servations related to subcap seepage of methane reported in
previous studies, but it has yet to be verified that the holes in
ice of Lake Neyto are indeed caused by up-welling gas. The
proposed method to automatically map backscatter anoma-
lies delivered good results in relation to the chosen valida-
tion strategy and could potentially also allow for monitoring
of gas emissions on Lake Neyto in the future upon the verifi-
cation of this hypothesis. The spatial and temporal properties
of Sentinel-1 SAR data may also allow for the identification
of lakes with similar anomalies to those of Lake Neyto over
larger spatial extents in the near future, and, if the given hy-
pothesis is correct, this might potentially aid our understand-
ing of how much methane is released by West Siberian lake
seeps.
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