Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1383-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-1383-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Giant dust particles at Nevado Illimani: a proxy of summertime deep convection over the Bolivian Altiplano
Filipe G. L. Lindau
CORRESPONDING AUTHOR
Centro Polar e Climático, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
Jefferson C. Simões
Centro Polar e Climático, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
Climate Change Institute, University of Maine, Orono, ME 04469, USA
Barbara Delmonte
Department of Environmental and Earth Sciences, University of Milano-Bicocca, 20126 Milan, Italy
Patrick Ginot
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Giovanni Baccolo
Department of Environmental and Earth Sciences, University of Milano-Bicocca, 20126 Milan, Italy
Chiara I. Paleari
Department of Environmental and Earth Sciences, University of Milano-Bicocca, 20126 Milan, Italy
Elena Di Stefano
Department of Environmental and Earth Sciences, University of Milano-Bicocca, 20126 Milan, Italy
Elena Korotkikh
Climate Change Institute, University of Maine, Orono, ME 04469, USA
Douglas S. Introne
Climate Change Institute, University of Maine, Orono, ME 04469, USA
Valter Maggi
Department of Environmental and Earth Sciences, University of Milano-Bicocca, 20126 Milan, Italy
Eduardo Garzanti
Department of Environmental and Earth Sciences, University of Milano-Bicocca, 20126 Milan, Italy
Sergio Andò
Department of Environmental and Earth Sciences, University of Milano-Bicocca, 20126 Milan, Italy
Related authors
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-129, https://doi.org/10.5194/cp-2020-129, 2020
Manuscript not accepted for further review
Short summary
Short summary
Glaciers are important freshwater sources in the Tropical Andes. Their retreat has been accelerating since the 1980s. This exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Both the glacial area of Illimani and its ice core record of coarse dust particles respond to warmer conditions across the southern tropical Andes, and drier conditions over the Amazon basin.
Adrien Ooms, Mathieu Casado, Ghislain Picard, Laurent Arnaud, Maria Hörhold, Andrea Spolaor, Rita Traversi, Joel Savarino, Patrick Ginot, Pete Akers, Birthe Twarloh, and Valérie Masson-Delmotte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3259, https://doi.org/10.5194/egusphere-2025-3259, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This work presents a new approach to the estimation of accumulation rates at Concordia Station, East-Antarctica, for the last 20 years, from a new data set of chemical tracers and snow micro-scale properties measured in a snow trench. Multi-annual and meter to decameter scale variability of accumulation rates are compared again in-situ measurements of surface laser scanner and stake farm, with very good agreement. This further constrains SMB estimation for Antarctica at high temporal resolution.
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past, 21, 1323–1341, https://doi.org/10.5194/cp-21-1323-2025, https://doi.org/10.5194/cp-21-1323-2025, 2025
Short summary
Short summary
Aeolian diatoms and dust in the Antarctic Roosevelt Island Climate Evolution project (RICE) ice core allow the reconstruction of atmospheric circulation and climate variability in the Eastern Ross Sea over the past 2 millennia. Since about 1470 CE and during the Little Ice Age, the site experienced a rapid atmospheric circulation reorganization related to the development of the Roosevelt Island polynya, the eastward protrusion of the Ross Sea polynya that significantly impacted the regional climate dynamics of the Ross Sea area.
Marco Zanatta, Pia Bogert, Patrick Ginot, Yiwei Gong, Gholam Ali Hoshyaripour, Yaqiong Hu, Feng Jiang, Paolo Laj, Yanxia Li, Claudia Linke, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Nsikanabasi Silas Umo, Franziska Vogel, and Robert Wagner
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-12, https://doi.org/10.5194/ar-2025-12, 2025
Revised manuscript accepted for AR
Short summary
Short summary
Back carbon is an atmospheric pollutant from combustion, contributes to the Arctic warming. However, its properties change as it travels through the atmosphere, affecting its impact. We recreated Arctic transport conditions in a laboratory to study how black carbon evolves over time. Our findings show that temperature and altitude strongly influence its transformation, providing key insights for improving climate models and understanding Arctic pollution.
Andrea Securo, Costanza Del Gobbo, Giovanni Baccolo, Carlo Barbante, Michele Citterio, Fabrizio De Blasi, Marco Marcer, Mauro Valt, and Renato R. Colucci
The Cryosphere, 19, 1335–1352, https://doi.org/10.5194/tc-19-1335-2025, https://doi.org/10.5194/tc-19-1335-2025, 2025
Short summary
Short summary
We have reconstructed the multi-decadal (1980s–2023) ice mass changes for all the current mountain glaciers in the Dolomites. We used historical aerial photographs, drone surveys, and lidar to fill the glaciological data gap for the region. We observed an alarming decline in both glacier area and volume, with some of the glaciers showing smaller losses due to local topography and debris cover feedback. We strongly recommend more specific monitoring of these glaciers.
Agnese Petteni, Elise Fourré, Elsa Gautier, Azzurra Spagnesi, Roxanne Jacob, Pete D. Akers, Daniele Zannoni, Jacopo Gabrieli, Olivier Jossoud, Frédéric Prié, Amaëlle Landais, Titouan Tcheng, Barbara Stenni, Joel Savarino, Patrick Ginot, and Mathieu Casado
EGUsphere, https://doi.org/10.5194/egusphere-2024-3335, https://doi.org/10.5194/egusphere-2024-3335, 2025
Short summary
Short summary
Our research compares three CFA-CRDS systems from Venice, Paris, and Grenoble for measuring water isotopes in ice cores, crucial for reconstructing past climate. We quantify each system’s mixing and measurement noise effects, which impact the achievable resolution of isotope continuous records. Our findings reveal specific configurations and procedures to enhance measurement accuracy, providing a framework to optimise water isotope analysis.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, https://doi.org/10.5194/acp-23-10325-2023, 2023
Short summary
Short summary
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023, https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary
Short summary
Ammonia is a reactive gas in our atmosphere that is key in air quality issues. Assessing its emissions and how it reacts is a hot topic that can be addressed from the past. Stable isotopes (the mass of the molecule) measured in ice cores (glacial archives) can teach us a lot. However, the concentrations in ice cores are very small. We propose a protocol to limit the contamination and apply it to one ice core drilled in Mont Blanc, describing the opportunities our method brings.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Andressa Marcher, Jefferson Cardia Simões, Ronaldo Torma Bernardo, Francisco Eliseu Aquino, Isaías Ullmann Thoen, Pedro Teixeira Valente, and Venisse Schossler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-161, https://doi.org/10.5194/tc-2022-161, 2022
Publication in TC not foreseen
Short summary
Short summary
We investigated the stable water isotopes and snow accumulation records from the upper reaches of the Weddell Sea sector. Our findings revealed that these records are strongly influenced by large-scale modes of climate variability (SAM and ENSO) and synoptic scale events (both extreme precipitation and wind events). They also provide valuable information to understand mass balance on the basin scale in this sector.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Giovanni Baccolo, Barbara Delmonte, Elena Di Stefano, Giannantonio Cibin, Ilaria Crotti, Massimo Frezzotti, Dariush Hampai, Yoshinori Iizuka, Augusto Marcelli, and Valter Maggi
The Cryosphere, 15, 4807–4822, https://doi.org/10.5194/tc-15-4807-2021, https://doi.org/10.5194/tc-15-4807-2021, 2021
Short summary
Short summary
As scientists are pushing efforts to recover deep ice cores to extend paleoclimatic reconstructions, it is now essential to explore deep ice. The latter was considered a relatively stable environment, but this view is changing. This study shows that the conditions of deep ice promote the interaction between soluble and insoluble impurities, favoring complex geochemical reactions that lead to the englacial dissolution and precipitation of specific minerals present in atmospheric mineral dust.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Rafael S. dos Reis, Rafael da Rocha Ribeiro, Barbara Delmonte, Edson Ramirez, Norberto Dani, Paul A. Mayewski, and Jefferson C. Simões
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-186, https://doi.org/10.5194/tc-2021-186, 2021
Revised manuscript not accepted
Short summary
Short summary
The ice-core recovered in Peruvian Andes depicts the 12 years of dust particles data in snow accumulation. The seasonality of the dry and wet season, respectively, are represented by high and low dust concentration in profile. Our observations period show the differences between fine and larger particles concentrations over the years and their correlation with oceanic oscillations phenomena. Also, we introduce the link of the dust groupings with Madeira River in the Amazon basin context.
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Short summary
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers micro-destructive, micrometer-scale impurity analysis of ice cores. For improved understanding of the LA-ICP-MS signals, novel 2D impurity imaging is applied to selected glacial and interglacial samples of Antarctic deep ice cores. This allows evaluating the 2D impurity distribution in relation to ice crystal features and assessing implications for investigating highly thinned climate proxy signals in deep polar ice.
Jandyr M. Travassos, Saulo S. Martins, Mariusz Potocki, and Jefferson C. Simões
The Cryosphere, 15, 3495–3505, https://doi.org/10.5194/tc-15-3495-2021, https://doi.org/10.5194/tc-15-3495-2021, 2021
Short summary
Short summary
This paper gives a timescale estimation and the yearly accumulation rate from ice cores encompassing the entire firn layer at the Detroit Plateau, the Antarctic Peninsula, through a non-linear pairing transformation of high-resolution H2O2 concentration data to a local temperature time series. An 11-year moving average of the yearly ice accumulation rate may suggest an increase in the span of 30 years, with an average of 2.5–2.8 m w.e./year.
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-129, https://doi.org/10.5194/cp-2020-129, 2020
Manuscript not accepted for further review
Short summary
Short summary
Glaciers are important freshwater sources in the Tropical Andes. Their retreat has been accelerating since the 1980s. This exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Both the glacial area of Illimani and its ice core record of coarse dust particles respond to warmer conditions across the southern tropical Andes, and drier conditions over the Amazon basin.
Cited articles
Aceituno, P.: Elementos del clima en el altiplano sudamericano, Revista
Geofisica, 44, 37–55, 1996. a
Adebiyi, A. A. and Kok, J. F.: Climate models miss most of the coarse dust in
the atmosphere, Sci. Adv., 6, 1–10, https://doi.org/10.1126/sciadv.aaz9507,
2020. a
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S.,
Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved
dust representation in the Community Atmosphere Model, J. Adv.
Model. Earth Sy., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014. a
Baccolo, G., Maffezzoli, N., Clemenza, M., Delmonte, B., Prata, M., Salvini,
A., Maggi, V., and Previtali, E.: Low-background neutron activation
analysis: a powerful tool for atmospheric mineral dust analysis in ice
cores, J. Radioanal. Nucl. Ch., 306, 589–597,
https://doi.org/10.1007/s10967-015-4206-2, 2015. a
Baccolo, G., Clemenza, M., Delmonte, B., Maffezzoli, N., Nastasi, M.,
Previtali, E., Prata, M., Salvini, A., and Maggi, V.: A new method based on
low background instrumental neutron activation analysis for major, trace and
ultra-trace element determination in atmospheric mineral dust from polar ice
cores, Anal. Chim. Acta, 922, 11–18, https://doi.org/10.1016/j.aca.2016.04.008,
2016. a, b, c
Bonnaveira, H.: Etude des Phenomenes de depot et post-depot de la neige andine
sur un ste tropical d'altitude (Illimani – Bolivie – 6340 m) en vue de
l'interpretation d'une carote de glace, PhD thesis, Université
Joseph Fourier, Grenoble, France, 303 pp., 2004. a
Bony, S., Risi, C., and Vimeux, F.: Influence of convective processes on the
isotopic composition (δ18O and δD) of precipitation and water
vapor in the tropics: 1. Radiative-convective equilibrium and Tropical
Ocean-Global Atmosphere-Coupled Ocean-Atmosphere Response Experiment
(TOGA-COARE), J. Geophys. Res.-Atmos., 113, 1–21,
https://doi.org/10.1029/2008JD009942, 2008. a
Castillo, S., Moreno, T., Querol, X., Alastuey, A., Cuevas, E., Herrmann, L.,
Mounkaila, M., and Gibbons, W.: Trace element variation in size-fractionated
African desert dusts, J. Arid Environ., 72, 1034–1045,
https://doi.org/10.1016/j.jaridenv.2007.12.007, 2008. a
Correia, A., Freydier, R., Delmas, R. J., Simões, J. C., Taupin, J.-D., Dupré, B., and Artaxo, P.: Trace elements in South America aerosol during 20th century inferred from a Nevado Illimani ice core, Eastern Bolivian Andes (6350 m asl), Atmos. Chem. Phys., 3, 1337–1352, https://doi.org/10.5194/acp-3-1337-2003, 2003. a, b, c
Cremers, A., Elsen, A., De Preter, P., and Maes, A.: Quantitative analysis
of radiocaesium retention in soils, Nature, 335, 247–249,
https://doi.org/10.1038/335247a0, 1988. a
Dansgaard, W.: Stable isotopes in precipitation, Tellus A, 16, 436–468,
https://doi.org/10.3402/tellusa.v16i4.8993, 1964. a
Delmonte, B., Petit, J., and Maggi, V.: Glacial to Holocene implications of
the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice
core, Clim. Dynam., 18, 647–660, https://doi.org/10.1007/s00382-001-0193-9, 2002. a
Delmonte, B., Petit, J. R., Andersen, K. K., Basile-Doelsch, I., Maggi, V., and
Lipenkov, V. Y.: Dust size evidence for opposite regional atmospheric
circulation changes over east Antarctica during the last climatic
transition, Clim. Dynam., 23, 427–438, https://doi.org/10.1007/s00382-004-0450-9,
2004. a
Delmonte, B., Andersson, P. S., Schöberg, H., Hansson, M., Petit, J. R.,
Delmas, R., Gaiero, D. M., Maggi, V., and Frezzotti, M.: Geographic
provenance of aeolian dust in East Antarctica during Pleistocene glaciations:
preliminary results from Talos Dome and comparison with East Antarctic and
new Andean ice core data, Quaternary Sci. Rev., 29, 256–264,
https://doi.org/10.1016/j.quascirev.2009.05.010, 2010. a
Delmonte, B., Paleari, C. I., Andò, S., Garzanti, E., Andersson, P. S.,
Petit, J. R., Crosta, X., Narcisi, B., Baroni, C., Salvatore, M. C., Baccolo,
G., and Maggi, V.: Causes of dust size variability in central East
Antarctica (Dome B): Atmospheric transport from expanded South American
sources during Marine Isotope Stage 2, Quaternary Sci. Rev., 168,
55–68, https://doi.org/10.1016/j.quascirev.2017.05.009, 2017. a
Eichler, A., Gramlich, G., Kellerhals, T., Tobler, L., and Schwikowski, M.: Pb
pollution from leaded gasoline in South America in the context of a 2000-year
metallurgical history, Sci. Adv., 1, e1400196,
https://doi.org/10.1126/sciadv.1400196, 2015. a
Flamant, C., Chaboureau, J. P., Parker, D. J., Taylor, C. M., Cammas, J. P.,
Bock, O., Timouk, F., and Pelon, J.: Airborne observations of the impact of
a convective system on the planetary boundary layer thermodynamics and
aerosol distribution in the inter-tropical discontinuity region of the West
African Monsoon, Q. J. Roy. Meteor. Soc., 133,
1175–1189, https://doi.org/10.1002/qj.97, 2007. a
Gabrielli, P., Wegner, A., Petit, J. R., Delmonte, B., De Deckker, P.,
Gaspari, V., Fischer, H., Ruth, U., Kriews, M., Boutron, C., Cescon, P., and
Barbante, C.: A major glacial-interglacial change in aeolian dust
composition inferred from Rare Earth Elements in Antarctic ice, Quaternary
Sci. Rev., 29, 265–273, https://doi.org/10.1016/j.quascirev.2009.09.002, 2010. a
Gaiero, D. M., Depetris, P. J., Probst, J. L., Bidart, S. M., and Leleyter, L.:
The signature of river- and wind-borne materials exported from Patagonia to
the southern latitudes: A view from REEs and implications for paleoclimatic
interpretations, Earth Planet. Sci. Lett., 219, 357–376,
https://doi.org/10.1016/S0012-821X(03)00686-1, 2004. a, b
Gaiero, D. M., Simonella, L., Gassó, S., Gili, S., Stein, A. F., Sosa,
P., Becchio, R., Arce, J., and Marelli, H.: Ground/satellite observations
and atmospheric modeling of dust storms originating in the high
Puna-Altiplano deserts (South America): Implications for the interpretation
of paleoclimatic archives, J. Geophys. Res. Atmos., 118,
3817–3831, https://doi.org/10.1002/jgrd.50036, 2013. a, b, c
Garreaud, R., Vuille, M., and Clement, A. C.: The climate of the Altiplano:
Observed current conditions and mechanisms of past changes, Palaeogeogr.
Palaeocl., 194, 5–22,
https://doi.org/10.1016/S0031-0182(03)00269-4, 2003. a
Garreaud, R. D.: Multiscale Analysis of the Summertime Precipitation over the
Central Andes, Mon. Weather Rev., 127, 901–921,
https://doi.org/10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2, 1999. a, b
Garreaud, R. D.: Intraseasonal variability of moisture and rainfall over the
South American Altiplano, Mon. Weather Rev., 128, 3337–3346,
https://doi.org/10.1175/1520-0493(2000)128<3337:IVOMAR>2.0.CO;2, 2000. a
Garreaud, R. D. and Aceituno, P.: Interannual rainfall variability over the
South American Altiplano, J. Climate, 14, 2779–2789,
https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2, 2001. a, b
Gili, S., Gaiero, D. M., Goldstein, S. L., Chemale, F., Jweda, J., Kaplan,
M. R., Becchio, R. A., and Koester, E.: Glacial/interglacial changes of
Southern Hemisphere wind circulation from the geochemistry of South American
dust, Earth Planet. Sci. Lett., 469, 98–109,
https://doi.org/10.1016/j.epsl.2017.04.007, 2017. a
Ginot, P., Schwikowski, M., Schotterer, U., Stichler, W., Gäggeler,
H. W., Francou, B., Gallaire, R., and Pouyaud, B.: Potential for climate
variability reconstruction from Andean glaciochemical records, Ann.
Glaciol., 35, 443–450, https://doi.org/10.3189/172756402781816618, 2002. a
Hoffmann, G., Ramirez, E., Taupin, J. D., Francou, B., Ribstein, P., Delmas,
R., Dürr, H., Gallaire, R., Simoes, J., Schotterer, U., Stievenard, M.,
and Werner, M.: Coherent isotope history of Andean ice cores over the last
century, Geophys. Res. Lett., 30, 1–4, https://doi.org/10.1029/2002GL014870,
2003. a
Iizuka, Y., Horikawa, S., Sakurai, T., Johnson, S., Dahl-Jensen, D.,
Steffensen, J. P., and Hondoh, T.: A relationship between ion balance and
the chemical compounds of salt inclusions found in the Greenland Ice Core
Project and Dome Fuji ice cores, J. Geophys. Res.-Atmos., 113, 1–11, https://doi.org/10.1029/2007JD009018, 2008. a
Inoue, M., Curran, M. A. J., Moy, A. D., van Ommen, T. D., Fraser, A. D., Phillips, H. E., and Goodwin, I. D.: A glaciochemical study of the 120 m ice core from Mill Island, East Antarctica, Clim. Past, 13, 437–453, https://doi.org/10.5194/cp-13-437-2017, 2017. a
Insel, N., Poulsen, C. J., and Ehlers, T. A.: Influence of the Andes Mountains
on South American moisture transport, convection, and precipitation, Clim. Dynam., 35, 1477–1492, https://doi.org/10.1007/s00382-009-0637-1, 2010. a
Jiménez, N. and López-Velásquez, S.: Magmatism in the
Huarina belt, Bolivia, and its geotectonic implications, Tectonophysics,
459, 85–106, https://doi.org/10.1016/j.tecto.2007.10.012, 2008. a
Journet, E., Balkanski, Y., and Harrison, S. P.: A new data set of soil mineralogy for dust-cycle modeling, Atmos. Chem. Phys., 14, 3801–3816, https://doi.org/10.5194/acp-14-3801-2014, 2014. a
Kinnard, C., Koerner, R. M., Zdanowicz, C. M., Fisher, D. A., Zheng, J., Sharp,
M. J., Nicholson, L., and Lauriol, B.: Stratigraphic analysis of an ice core
from the Prince of Wales Icefield, Ellesmere Island, Arctic Canada, using
digital image analysis: High-resolution density, past summer warmth
reconstruction, and melt effect on ice core solid conductivity, J.
Geophys. Res.-Atmos., 113, D24120, https://doi.org/10.1029/2008JD011083, 2008. a
Knippertz, P., Deutscher, C., Kandler, K., Müller, T., Schulz, O., and
Schütz, L.: Dust mobilization due to density currents in the Atlas
region: Observations from the Saharan Mineral Dust Experiment 2006 field
campaign, J. Geophys. Res.-Atmos., 112, 1–14,
https://doi.org/10.1029/2007JD008774, 2007. a, b, c
Knüsel, S., Ginot, P., Schotterer, U., Schwikowski, M., Gäggeler,
H. W., Francou, B., Petit, J. R., Simoes, J. C., and Taupin, J. D.: Dating
of two nearby ice cores from the Illimani, Bolivia, J. Geophys.
Res., 108, 4181, https://doi.org/10.1029/2001JD002028, 2003. a, b
Kutuzov, S., Legrand, M., Preunkert, S., Ginot, P., Mikhalenko, V., Shukurov, K., Poliukhov, A., and Toropov, P.: The Elbrus (Caucasus, Russia) ice core record – Part 2: history of desert dust deposition, Atmos. Chem. Phys., 19, 14133–14148, https://doi.org/10.5194/acp-19-14133-2019, 2019. a, b
Kutuzov, S. S., Mikhalenko, V. N., Grachev, A. M., Ginot, P., Lavrentiev,
I. I., Kozachek, A. V., Krupskaya, V. V., Ekaykin, A. A., Tielidze, L. G.,
and Toropov, P. A.: First geophysical and shallow ice core investigation of
the Kazbek plateau glacier, Caucasus Mountains, Environ. Earth
Sci., 75, 1488, https://doi.org/10.1007/s12665-016-6295-9, 2016. a
Lenters, J. D. and Cook, K. H.: On the Origin of the Bolivian High and Related
Circulation Features of the South American Climate, J.
Atmos. Sci., 54, 656–678,
https://doi.org/10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2, 1997. a
Liebmann, B. and Smith, C. A.: Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset, B. Am. Meteorol. Soc., 77, 1275–1277, 1996. a
Lindsay, J. M., Schmitt, A. K., Trumbull, R. B., De Silva, S. L., Siebel, W.,
and Emmermann, R.: Magmatic Evolution of the La Pacana Caldera System,
Central Andes, Chile: Compositional Variation of Two Cogenetic, Large-Volume
Felsic Ignimbrites, J. Petrol., 42, 459–486,
https://doi.org/10.1093/petrology/42.3.459, 2001. a, b, c
McBride, S. L., Robertson, R. C., Clark, A. H., and Farrar, E.: Magmatic and
metallogenetic episodes in the northern tin belt, cordillera real, Bolivia,
Geol. Rundsch., 72, 685–713, https://doi.org/10.1007/BF01822089, 1983. a
McLennan, S. M.: Rare earth elements in sedimentary rocks: influence of
provenance and sedimentary processes, in: Geochemistry and Mineralogy of
Rare Earth Elements, edited by: Lipin, B. R. and McKay, G. A.,
De Gruyter, Berlin, Germany and Boston, USA, 169–200,
https://doi.org/10.1515/9781501509032-010, 1989. a
Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L.,
Mounkaila, M., Elvira, J., and Gibbons, W.: Geochemical variations in
aeolian mineral particles from the Sahara-Sahel Dust Corridor, Chemosphere,
65, 261–270, https://doi.org/10.1016/j.chemosphere.2006.02.052, 2006. a
Mudelsee, M.: Climate Time Series Analysis: Classical Statistical and
Bootstrap Methods, in: Atmospheric and Oceanographic Sciences Library, vol. 51, edited by: Mysak, L. A., Springer International Publishing, Switzerland,
https://doi.org/10.1007/978-90-481-9482-7, 2014. a
Ort, M. H., Coira, B. L., and Mazzoni, M. M.: Generation of a crust-mantle
magma mixture: Magma sources and contamination at Cerro Panizos, central
Andes, Contrib. Mineral. Petr., 123, 308–322,
https://doi.org/10.1007/s004100050158, 1996. a, b
Osmont, D., Sigl, M., Eichler, A., Jenk, T. M., and Schwikowski, M.: A Holocene black carbon ice-core record of biomass burning in the Amazon Basin from Illimani, Bolivia, Clim. Past, 15, 579–592, https://doi.org/10.5194/cp-15-579-2019, 2019. a
Osterberg, E. C., Handley, M. J., Sneed, S. B., Mayewski, P. A., and Kreutz,
K. J.: Continuous ice core melter system with discrete sampling for major
ion, trace element, and stable isotope analyses, Environ. Sci.
Technol., 40, 3355–3361, https://doi.org/10.1021/es052536w, 2006. a
Paleari, C. I., Delmonte, B., Andò, S., Garzanti, E., Petit, J. R., and
Maggi, V.: Aeolian Dust Provenance in Central East Antarctica During the
Holocene: Environmental Constraints From Single‐Grain Raman Spectroscopy,
Geophys. Res. Lett., 46, 1–12, https://doi.org/10.1029/2019gl083402, 2019. a
Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R., Vuille, M., Sicart, J.-E., Huggel, C., Scheel, M., Lejeune, Y., Arnaud, Y., Collet, M., Condom, T., Consoli, G., Favier, V., Jomelli, V., Galarraga, R., Ginot, P., Maisincho, L., Mendoza, J., Ménégoz, M., Ramirez, E., Ribstein, P., Suarez, W., Villacis, M., and Wagnon, P.: Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change, The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, 2013. a
Ramirez, E., Hoffmann, G., Taupin, J. D., Francou, B., Ribstein, P., Caillon,
N., Ferron, F. A., Landais, A., Petit, J. R., Pouyaud, B., Schotterer, U.,
Simoes, J. C., and Stievenard, M.: A new Andean deep ice core from Nevado
Illimani (6350 m), Bolivia, Earth Planet. Sci. Lett., 212,
337–350, https://doi.org/10.1016/S0012-821X(03)00240-1, 2003. a
Ribeiro, R. D. R., Ramirez, E., Simões, J. C., and Machaca, A.: 46 years
of environmental records from the Nevado Illimani glacier group, Bolivia,
using digital photogrammetry, Ann. Glaciol., 54, 272–278,
https://doi.org/10.3189/2013AoG63A494, 2013. a
Risi, C., Bony, S., and Vimeux, F.: Influence of convective processes on the
isotopic composition
(δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical
interpretation of the amount effect, J. Geophys. Res.-Atmos., 113, 1–12, https://doi.org/10.1029/2008JD009943, 2008. a, b, c
Rosso, K. M., Rustad, J. R., and Bylaska, E. J.: The Cs/K exchange in
muscovite interlayers: An AB initio treatment, Clay. Clay Miner., 49,
500–513, https://doi.org/10.1346/CCMN.2001.0490603, 2001. a
Röthlisberger, R., Hutterli, M. A., Sommer, S., Wolff, E. W., and
Mulvaney, R.: Factors controlling nitrate in ice cores: Evidence from the
Dome C deep ice core, J. Geophys. Res.-Atmos., 105,
20565–20572, https://doi.org/10.1029/2000JD900264, 2000. a
Rudnick, R. L. and Gao, S.: Composition of the Continental Crust, in:
Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., Elsevier, the Netherlands,
1–64,
https://doi.org/10.1016/B0-08-043751-6/03016-4, 2003. a, b
Ryder, C. L., Highwood, E. J., Lai, T. M., Sodemann, H., and Marsham, J. H.:
Impact of atmospheric transport on the evolution of microphysical and
optical properties of Saharan dust, Geophys. Res. Lett., 40,
2433–2438, https://doi.org/10.1002/grl.50482, 2013. a
Ryder, C. L., Highwood, E. J., Walser, A., Seibert, P., Philipp, A., and Weinzierl, B.: Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara, Atmos. Chem. Phys., 19, 15353–15376, https://doi.org/10.5194/acp-19-15353-2019, 2019. a
Samuels-Crow, K. E., Galewsky, J., Hardy, D. R., Sharp, Z. D., Worden, J., and
Braun, C.: Upwind convective influences on the isotopic composition of
atmospheric water vapor over the tropical Andes, J. Geophys.
Res.-Atmos., 119, 7051–7063, https://doi.org/10.1002/2014JD021487,
2014. a
Segura, H., Espinoza, J. C., Junquas, C., Lebel, T., Vuille, M., and Garreaud,
R.: Recent changes in the precipitation-driving processes over the southern
tropical Andes/western Amazon, Clim. Dynam., 54, 2613–2631,
https://doi.org/10.1007/s00382-020-05132-6, 2020. a, b, c
Sen, I. S. and Peucker-Ehrenbrink, B.: Anthropogenic disturbance of element
cycles at the Earth's surface, Environmen. Sci. Technol., 46,
8601–8609, https://doi.org/10.1021/es301261x, 2012. a
Simonsen, M. F., Baccolo, G., Blunier, T., Borunda, A., Delmonte, B., Frei, R.,
Goldstein, S., Grinsted, A., Kjær, H. A., Sowers, T., Svensson, A.,
Vinther, B., Vladimirova, D., Winckler, G., Winstrup, M., and Vallelonga, P.:
East Greenland ice core dust record reveals timing of Greenland ice sheet
advance and retreat, Nat. Commun., 10, 4494,
https://doi.org/10.1038/s41467-019-12546-2, 2019. a
Soruco, A., Vincent, C., Rabatel, A., Francou, B., Thibert, E., Sicart, J. E.,
and Condom, T.: Contribution of glacier runoff to water resources of La Paz
city, Bolivia (16°S), Ann. Glaciol., 56, 147–154,
https://doi.org/10.3189/2015AoG70A001, 2015. a
Thompson, L. G., Mosley-Thompson, E., Dansgaard, W., and Grootes, P. M.: The
Little Ice Age as Recorded in the Stratigraphy of the Tropical Quelccaya Ice
Cap, Science, 234, 361–364, https://doi.org/10.1126/science.234.4774.361, 1986. a
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Zagorodnov, V. S., Howat,
I. M., Mikhalenko, V. N., and Lin, P.-N.: Annually resolved ice core records
of tropical climate variability over the past 1800 years., Science,
340, 945–950, https://doi.org/10.1126/science.1234210, 2013. a, b
Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Beaudon, E., Porter, S. E.,
Kutuzov, S., Lin, P.-N., Mikhalenko, V. N., and Mountain, K. R.: Impacts of
recent warming and the 2015/16 El Niño on tropical Peruvian ice
fields, J. Geophys. Res.-Atmos., 122, 688–701,
https://doi.org/10.1002/2017JD026592, 2017. a
Uemura, R., Masson-Delmotte, V., Jouzel, J., Landais, A., Motoyama, H., and Stenni, B.: Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles, Clim. Past, 8, 1109–1125, https://doi.org/10.5194/cp-8-1109-2012, 2012. a
van der Does, M., Knippertz, P., Zschenderlein, P., Giles Harrison, R., and
Stuut, J. B. W.: The mysterious long-range transport of giant mineral dust
particles, Sci. Adv., 4, 1–9, https://doi.org/10.1126/sciadv.aau2768, 2018. a, b
Vimeux, F., Gallaire, R., Bony, S., Hoffmann, G., and Chiang, J. C.: What are
the climate controls on δD in precipitation in the Zongo Valley
(Bolivia)? Implications for the Illimani ice core interpretation, Earth
Planet. Sci. Lett., 240, 205–220, https://doi.org/10.1016/j.epsl.2005.09.031,
2005. a
Vimeux, F., Ginot, P., Schwikowski, M., Vuille, M., Hoffmann, G., Thompson,
L. G., and Schotterer, U.: Climate variability during the last 1000 years
inferred from Andean ice cores: A review of methodology and recent results,
Palaeogeogr. Palaeocl., 281, 229–241,
https://doi.org/10.1016/j.palaeo.2008.03.054, 2009. a
Vimeux, F., Tremoy, G., Risi, C., and Gallaire, R.: A strong control of the
South American SeeSaw on the intra-seasonal variability of the isotopic
composition of precipitation in the Bolivian Andes, Earth Planet.
Sci. Lett., 307, 47–58, https://doi.org/10.1016/j.epsl.2011.04.031, 2011. a, b, c, d, e
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I.,
Feng, Y., Moore, E. W., Van der Plas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P.,
Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A.,
Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald,
C., Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin,
E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A.,
Ingold, G. L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich,
J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner,
J., Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V.,
Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J.,
Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M.,
Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov,
N., Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R.,
Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S.,
Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones,
T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko,
Y. O., and Vázquez-Baeza, Y.: SciPy 1.0: fundamental algorithms for
scientific computing in Python, Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Vlastelic, I., Suchorski, K., Sellegri, K., Colomb, A., Nauret, F., Bouvier,
L., and Piro, J. L.: The high field strength element budget of atmospheric
aerosols (puy de Dôme, France), Geochim. Cosmochim. Ac., 167,
253–268, https://doi.org/10.1016/j.gca.2015.07.006, 2015.
a
Vuille, M.: Atmospheric Circulation Over the Bolivian Altiplano During Dry and
Wet Periods and Extreme Phases of the Southern Oscillation, Int.
J. Climatol., 1600, 1579–1600,
https://doi.org/10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N,
1999. a, b, c
Vuille, M., Bradley, R. S., Healy, R., Werner, M., Hardy, D. R., Thompson,
L. G., and Keimig, F.: Modeling δ18O in precipitation over the
tropical Americas: 2. Simulation of the stable isotope signal in Andean ice
cores, Journal Of Geophysical Research-Atmospheres, 108, 4175,
https://doi.org/10.1029/2001JD002039, 2003. a
Wu, G., Zhang, C., Gao, S., Yao, T., Tian, L., and Xia, D.: Element
composition of dust from a shallow Dunde ice core, Northern China, Global
Planet. Change, 67, 186–192, https://doi.org/10.1016/j.gloplacha.2009.02.003,
2009. a
Wu, G., Yao, T., Xu, B., Tian, L., Zhang, C., and Zhang, X.: Dust
concentration and flux in ice cores from the Tibetan Plateau over the past
few decades, Tellus B, 62,
197–206, https://doi.org/10.1111/j.1600-0889.2010.00457.x, 2010. a
Wu, G., Xu, T., Zhang, X., Zhang, C., and Yan, N.: The visible spectroscopy of
iron oxide minerals in dust particles from ice cores on the Tibetan Plateau,
Tellus B, 68, 29191,
https://doi.org/10.3402/tellusb.v68.29191, 2016. a
Zhou, J. and Lau, K. M.: Does a monsoon climate exist over South America?,
J. Climate, 11, 1020–1040,
https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2, 1998. a
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Information about the past climate variability in tropical South America is stored in the snow...