Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Download
Short summary
To estimate sea ice thickness from satellite freeboard measurements, snow depth information has been required; however, the snow depth estimate has been considered largely uncertain. We propose a new method to estimate sea ice thickness and snow depth simultaneously from freeboards by imposing a thermodynamic constraint. Obtained ice thicknesses and snow depths were consistent with airborne measurements, suggesting that uncertainty of ice thickness caused by uncertain snow depth can be reduced.
TC | Articles | Volume 14, issue 11
The Cryosphere, 14, 3761–3783, 2020
https://doi.org/10.5194/tc-14-3761-2020
The Cryosphere, 14, 3761–3783, 2020
https://doi.org/10.5194/tc-14-3761-2020

Research article 06 Nov 2020

Research article | 06 Nov 2020

Simultaneous estimation of wintertime sea ice thickness and snow depth from space-borne freeboard measurements

Hoyeon Shi et al.

Viewed

Total article views: 1,020 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
710 271 39 1,020 13 36 37
  • HTML: 710
  • PDF: 271
  • XML: 39
  • Total: 1,020
  • Supplement: 13
  • BibTeX: 36
  • EndNote: 37
Views and downloads (calculated since 25 Feb 2020)
Cumulative views and downloads (calculated since 25 Feb 2020)

Viewed (geographical distribution)

Total article views: 770 (including HTML, PDF, and XML) Thereof 752 with geography defined and 18 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 17 Jan 2021
Publications Copernicus
Download
Short summary
To estimate sea ice thickness from satellite freeboard measurements, snow depth information has been required; however, the snow depth estimate has been considered largely uncertain. We propose a new method to estimate sea ice thickness and snow depth simultaneously from freeboards by imposing a thermodynamic constraint. Obtained ice thicknesses and snow depths were consistent with airborne measurements, suggesting that uncertainty of ice thickness caused by uncertain snow depth can be reduced.
Citation