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Abstract. A method of simultaneously estimating snow
depth and sea ice thickness using satellite-based freeboard
measurements over the Arctic Ocean during winter was pro-
posed. The ratio of snow depth to ice thickness (referred to
as α) was defined and used in constraining the conversion
from the freeboard to ice thickness in satellite altimetry with-
out prior knowledge of snow depth. Then α was empirically
determined using the ratio of temperature difference of the
snow layer to the difference of the ice layer to allow the
determination of α from satellite-derived snow surface tem-
perature and snow–ice interface temperature. The proposed
method was evaluated against NASA’s Operation IceBridge
measurements, and results indicated that the algorithm ad-
equately retrieves snow depth and ice thickness simultane-
ously; retrieved ice thickness was found to be better than the
methods relying on the use of snow depth climatology as in-
put in terms of mean bias. The application of the proposed
method to CryoSat-2 radar freeboard measurements yields
similar results. In conclusion, the developed α-based method
has the capacity to derive ice thickness and snow depth with-
out relying on the snow depth information as input for the
buoyancy equation or the radar penetration correction for
converting freeboard to ice thickness.

1 Introduction

Satellite altimeters have been used to estimate sea ice thick-
ness for nearly 2 decades (Laxon et al., 2003, 2013; Kwok
et al., 2009). The altimeters do not measure sea ice thick-
ness directly but measure the sea ice freeboard which is then
converted to sea ice thickness with assumptions, for exam-
ple, regarding the snow depth, snow–ice densities, and radar
penetration (Ricker et al., 2014). We hereafter refer to this
procedure as “freeboard to thickness conversion”.

Generally, there are two types of satellite altimeters mea-
suring different sea ice freeboards. (1) Lidar altimeters such
as NASA’s ICESat (Zwally et al., 2002) and ICESat-2
(Markus et al., 2017) missions measure the total freeboard
(Ft), which is the height from the sea surface in leads to the
snow surface. (2) Radar altimeters such as ESA’s CryoSat-2
(CS2) (Wingham et al., 2006) measure the radar freeboard
(Fr), which is the difference in the radar ranging between
the sea surface and the radar scattering horizon. By applying
two correction terms regarding the wave propagation speed
change in the snow layer (Fc) and displacement of the scat-
tering horizon from the ice surface (Fp), the radar freeboard
is converted to the ice freeboard (Fi), which is the height
from the sea surface to the snow–ice interface (Fi). Several
studies indicate that the radar scattering horizon is at or above
the snow–ice interface depending on ice type and snow–ice
conditions (Nandan et al., 2017; Armitage and Ridout, 2015;
Willatt et al., 2011; Tonboe et al., 2010). However, the radar
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Figure 1. Schematic diagram of a typical snow–ice system during
the winter. Snow depth (hs), ice thickness (Hi), total freeboard (Ft),
radar freeboard (Fr), and ice freeboard (Fi) are indicated. Correc-
tion terms regarding the wave propagation speed change in the snow
layer (Fc) and the displacement of the scattering horizon from the
ice surface (Fp) are indicated by blue arrows. The red line denotes
a typical temperature profile with air–snow interface temperature
(Tas), snow–ice interface temperature (Tsi), and ice–water interface
temperature (Tiw).

scattering horizon is often treated as the snow–ice interface
(Kurtz et al., 2014; Kwok and Cunningham, 2015; Hendricks
et al., 2016; Guerreiro et al., 2017, Tilling et al., 2018). The
three different freeboards are indicated in Fig. 1.

For both lidar and radar altimeters, snow depth (hs) is re-
quired as an input to constrain the freeboard to thickness con-
version; thus, the conversion results are highly dependent on
snow depth (Ricker et al., 2014; Zygmuntowska et al., 2014;
Kern et al., 2015). The buoyancy equation used in the free-
board to thickness conversion describes the balance between
buoyancy and the weight of snow and ice. For a given free-
board, snow–ice densities, and assumptions on radar pene-
tration of the snow layer, sea ice thickness (Hi) is a func-
tion of hs. According to Zygmuntowska et al. (2014), up to
70 % of uncertainty in the freeboard to thickness conversion
stems from the poorly constrained snow depth. However,
mapping the Arctic-scale snow depth distribution is chal-
lenging. The most commonly used snow depth information
necessary for the freeboard to thickness conversion is the
modified version of the snow depth climatology by Warren
et al. (1999) (hereafter W99). W99 is based on in situ mea-
surements from Soviet drifting stations (1954–1991) mostly
of multiyear ice (MYI). Kurtz and Farrell (2011) compared
W99 with Operation IceBridge (OIB) snow depth measure-
ments in 2009 and claimed that W99 was still valid in the

MYI region and significantly different from OIB snow depth
on first-year ice (FYI). Based on that study, modified W99
(hereafter MW99) was developed, which halves W99 snow
depth in regions covered by FYI. MW99 is often used in
ESA’s CryoSat-2 (CS2) ice thickness products available from
the Center for Polar Observation and Modeling Data Portal
(CPOM-UCL; Laxon et al., 2013), the Alfred Wegener Insti-
tute (AWI; Ricker et al., 2014), and the National Snow and
Ice Data Center (NSIDC; Kurtz and Harbeck, 2017).

However, the use of MW99 for the freeboard to thickness
conversion understandably yields a substantial error, consid-
ering that W99 is climatology and not actual snow depth.
This is because the actual snow depth distribution is subject
to the year-to-year variation of the snow–ice system; thus,
the climatology based on the 37-year measurements of snow
depth would deviate significantly from the actual distribution
(Webster et al., 2014). Accordingly, such deviation causes er-
rors in the estimation of ice thickness. Thus, additional snow
observations covering both MYI and FYI at the Arctic basin
scale would be ideal as a replacement of MW99.

There have been various approaches aimed at obtaining
the snow depth distribution over the Arctic scale using satel-
lite observations. Markus and Cavalieri (1998) developed an
algorithm based on the brightness temperatures (TBs) of the
Special Sensor Microwave/Imager (SSM/I) based on the neg-
ative correlation of the snow depth with the spectral gra-
dient ratio between 18 and 37 GHz of vertically polarized
TBs on the Antarctic FYI. Comiso et al. (2003) have up-
dated the coefficients of this algorithm for the Advanced Mi-
crowave Scanning Radiometer for the Earth Observing Sys-
tem (AMSR-E). However, snow depth retrieval using this
algorithm is relatively less accurate when the MYI frac-
tion within the grid cell is significant (Brucker and Markus,
2013). Recently, Rostosky et al. (2018) suggested a new
method: using the lower frequency pair of 7 and 19 GHz to
overcome this limitation. Nonetheless, estimating the basin-
scale snow depth distribution seems to be a difficult task.

There are other approaches involving the use of the lower
frequency measurements at L-band. Using Soil Moisture
Ocean Salinity (SMOS) measurements, Maaß et al. (2013)
found that 1.4 GHz TB depends on the snow depth through
the insulation effect of the snow layer, and they determined
snow depth by matching TBs simulated with a radiative
transfer model (RTM) with SMOS-measured TBs. Zhou et
al. (2018) simultaneously estimated the sea ice thickness and
snow depth by adding additional laser altimeter freeboard in-
formation, improving the Maaß et al. (2013) approach. How-
ever, both of these RTM-based approaches require a priori
information on ice properties (e.g., temperature and salinity
profiles).

Other satellite remote sensing approaches include the
snow depth retrieval using dual-frequency altimetry (Guer-
reiro et al., 2016; Lawrence et al., 2018; Kwok and Markus,
2018), multilinear regression (Kilic et al., 2019), and a neu-
ral network approach (Braakmann-Folgmann and Donlon,
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2019). In spite of promising results, the dual frequency al-
timetry method is available only for regions where two al-
timeters overlap with each other, reducing a great deal of
spatial coverage. On the other hand, the regression/neural
network methods based on AMSR-2 TBs are prone to the
overfitting problem, limiting their applications to other mi-
crowave sensors.

Here, let us switch our point of view to solving the buoy-
ancy equation instead of retrieving snow depth directly. Re-
member that there are two unknowns (snow depth and ice
thickness) in the buoyancy equation for given snow–ice den-
sities, freeboard, and assumptions on radar penetration of the
snow layer. The attempt so far has been to add one constraint
(snow depth information) to the buoyancy equation for solv-
ing ice thickness. However, if a particular relationship be-
tween two unknowns is available, it can be used to constrain
the equation yielding both ice thickness and snow depth si-
multaneously.

To identify such a relationship, this study examines the
vertical thermal structure within the snow–ice layers ob-
served by drifting buoys. The vertical thermal structure of
a snow–ice system in winter is rather simple; the tempera-
ture profile of the snow–ice system can be assumed to be
piecewise linear, as illustrated in Fig. 1. Therefore, the tem-
peratures at three interfaces can represent the thermal state
of the snow–ice system fairly well: they are (1) air–snow in-
terface temperature (Tas), (2) snow–ice interface temperature
(Tsi), and (3) ice–water interface temperature (Tiw). Tiw is
assumed to be nearly constant at the freezing temperature of
seawater (Maaß et al., 2013), implying that the two other in-
terface temperatures (Tas and Tsi) are sufficient to describe
the thermal structure of the system.

Based on this thermal structure, there is a constraint re-
lating the snow depth and ice thickness. In identifying this
constraint, conductive heat flux is assumed to be continuous
through the snow–ice interface (Maykut and Untersteiner,
1971), implying that conductive heat fluxes within the snow
and ice layers are the same under the steady state assumed
in the given thermal structure. As the conductive heat flux is
proportional to the bulk temperature difference of the layer
divided by its thickness, it is possible to deduce the relation-
ship between snow depth and ice thickness from the given
thermal structure.

Once the relationship is obtained, then it is possible to
apply it at the Arctic Ocean basin scale because the ther-
mal structure can be resolved from satellites, as shown in
the recently available basin-scale and long-term satellite-
derived interface temperatures (Dybkjær et al., 2020; Lee et
al., 2018). In determining the snow depth along with the ice
thickness, instead of using the snow depth as an input to solve
for the ice thickness, we intend to (1) examine the relation-
ship between the vertical thermal structure of a snow–ice sys-
tem (Tas and Tsi) and the thicknesses of the snow and ice layer
(hs andHi) using buoy measurements and (2) retrieve the sea
ice thickness and the snow depth simultaneously by applying

their relationship to the freeboard to thickness conversion as
a constraint, thus replacing the snow depth information. The
result may reduce uncertainty in the freeboard to ice thick-
ness conversion by replacing the currently used snow depth
climatology.

2 Method

Here we provide the theoretical background of how the
snow–ice thickness ratio (α = hs /Hi) can be related to Tas
and Tsi. Then, after empirically determining the relationship
of α to Tas and Tsi from buoy-measured temperature profiles,
α obtained from satellite observed Tas and Tsi is then used to
constrain the conversion from freeboard to ice thickness over
the Arctic Ocean during winter.

2.1 Theoretical background

We intend to find a relationship between snow depth and
ice thickness in terms of the vertical thermal structure of the
snow–ice system. Because the temperature gradients within
the snow and ice layers are linked to both temperature and
thickness, we focus on the temperature gradient. Owing to
the physical reasoning that the conductive heat flux is con-
tinuous across the snow–ice interface (Maykut and Unter-
steiner, 1971), the following relationship is valid at the snow–
ice interface:

ksnow
∂Tsnow

∂z

∣∣∣∣
z=0
= kice

∂Tice

∂z

∣∣∣∣
z=0
. (1)

In Eq. (1), the subscripts snow and ice denote their respec-
tive layers, while T , k, and z denote temperature, thermal
conductivity, and depth, respectively. The snow–ice interface
is defined as z= 0. Assuming a piecewise linear temperature
profile within the snow–ice layer, Eq. (1) can be rewritten as
follows:

ksnow
Tas− Tsi

hs
= kice

Tsi− Tiw

Hi
, (2)

where subscripts as, si, and iw denote the air–snow, snow–
ice, and ice–water interface, respectively, and Hi and hs de-
note the sea ice thickness and snow depth as in Fig. 1. Intro-
ducing a variable α, which is the snow–ice thickness ratio,
Eq. (2) becomes the following:

α =
hs

Hi
=
ksnow

kice

1Tsnow

1Tice
. (3)

Here, 1T denotes the temperature difference between
the top and bottom of each of the snow and ice layers
(i.e., 1Tsnow = Tas− Tsi, 1Tice = Tsi− Tiw). As explained
in detail in Sect. 2.3, α can be used to constrain the free-
board to thickness conversion. Thus, once α is known, both
snow depth and ice thickness can be simultaneously esti-
mated from altimeter-measured freeboard instead of using
snow depth data for ice thickness retrieval.
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2.2 Empirical determination of “α-prediction
equation” from buoy measurements

To obtain α, the conductivity ratio (ksnow / kice) should
be known even if the temperature difference ratio
(1Tsnow /1Tice) is given. In this study, instead of using
the conventional conductivity ratio found in the literature,
it is empirically determined using buoy-measured α and
1Tsnow /1Tice. Thus, the interface should be defined and
determined from buoy-measured temperature profiles, which
show a piecewise linear temperature profile as shown in
Fig. 1.

The buoy-measured temperature profiles at the vertical
resolution of 10 cm are used in this study (Sect. 3.1). Al-
though the instrument initially sets the zero-depth reference
position to be approximately at the snow–ice interface, the
reference position can deviate from the initial location if the
ice deforms or if the snow refreezes after the temporary melt
into snow ice. In addition, the interfaces (air–snow, snow–
ice, and ice–water) may be located in between measurement
levels in a 10 cm spacing. Therefore, an interface searching
algorithm is developed to determine three interfaces (yas, ysi,
yiw) and their respective temperatures (Tas, Tsi, Tiw) by ex-
trapolating each piecewise linear temperature profile itera-
tively.

The interface searching algorithm iterates three processes
to find the location and temperature of each interface: it
(1) divides the temperature profile into four layers using
the most recently available locations of the three interfaces,
(2) finds a linear regression line of the temperature profile
at each layer, and (3) updates the location and temperature
of each interface by finding an intersection between two ad-
jacent regression lines. The algorithm fails if the tempera-
ture profile is far from linear or if the thickness of a certain
layer is too thin to have fewer than two data points. More de-
tailed procedures for determining the interface are provided
in Fig. 2 as a flow chart. The outputs are Tas, Tsi, Tiw, Hi
(Hi = yas− ysi), and hs (hs = ysi− yiw). Examples of the in-
terface searching results for 15 d averaged temperature pro-
files are shown in Fig. 3. The algorithm works adequately for
both Cold Regions Research and Engineering Laboratory Ice
Mass Balance (CRREL-IMB; Fig. 3a–c) and Surface Heat
Energy Budget of the Arctic (SHEBA; Fig. 3d–f) buoy data.

Since Tas, Tsi, Tiw, Hi, and hs can be obtained from the
previous interface determination with buoy data, the calcu-
lation of 1Tsnow /1Tice and α is straightforward. An em-
pirical relationship can then be obtained by relating α to
1Tsnow /1Tice by running a regression model, and details
are given in Sect. 4. However, for the time being, we assume
that the regression equation (referred to as an “α-prediction
equation”, which will be discussed in Sect. 4) is used to pre-
dict α from 1Tsnow/1Tice.

2.3 Simultaneous estimation of ice thickness and snow
depth from satellite-based freeboard using α

In this section, we describe how α can be used to con-
strain the freeboard to thickness conversion. Based on the
assumed hydrostatic balance, ice thickness can be obtained
from satellite-borne total freeboard or ice freeboard as fol-
lows:

Hi =
ρw

ρw − ρi
Ft−

ρw − ρs

ρw − ρi
hs, (4)

Hi =
ρw

ρw − ρi
Fi+

ρs

ρw − ρi
hs. (5)

Here, ρw, ρi, and ρs denote the bulk densities of the water,
ice, and snow layers, respectively. Ice freeboard is obtained
from radar freeboard by applying two correction terms re-
garding the change in the wave propagation speed in snow
layer (Fc) and the displacement of the scattering horizon
from the ice surface (Fp) (Kwok and Cunningham, 2015):

Fi = Fr+
(
Fc−Fp

)
. (6)

The correction terms are expressed in the following equa-
tions (Armitage and Ridout, 2015; Kwok and Markus, 2018):

Fc = (ηs− 1)f hs, (7)
Fp = (1− f )hs. (8)

Here, ηs denotes the refractive index of the snow layer and
f denotes the radar penetration factor (Armitage and Rid-
out, 2015), which is the depth of the radar scattering horizon
relative to the snow depth (e.g., f = 1 if the radar scattering
horizon is at the snow–ice interface and f = 0 if the radar
scattering horizon is at the air–snow interface). A combina-
tion of Eqs. (6)–(8) yields the following relationship:

Fi = Fr+ (f ηs− 1)hs. (9)

Ice freeboard in Eq. (5) can be substituted by radar freeboard
and snow depth using Eq. (9), i.e.,

Hi =
ρw

ρw − ρi
Fr+

(f ηs− 1)ρw + ρs

ρw − ρi
hs. (10)

According to Eq. (10), the ice thickness can be estimated
from the radar freeboard and the snow depth. Note that
Eq. (10) becomes equivalent to the equation for the total free-
board (Eq. 4 if f = 0, i.e., if there is no radar penetration into
the snow layer). With the use of α, defined in Eq. (3), Eqs. (4)
and (10) become the following:

Hi =
ρw

ρw − ρi+α (ρw − ρs)
Ft, (11)

Hi =
ρw

ρw − ρi−α {(f ηs− 1)ρw + ρs}
Fr. (12)

From Eqs. (3), (11), and (12), it is evident that the snow depth
and ice thickness can be simultaneously estimated from the
freeboards once α, ρ, f , and ηs are known.
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Figure 2. The flow chart of the interface searching algorithm: yi and Ti denote the position and temperature of a data point in the temperature
profile, yas,ysi, and yiw denote the position of the interfaces, and Tlayer denotes a set of temperature data points.

In order to obtain α from satellite measurements of Tas
and Tsi, we need to calculate the temperature difference ra-
tio (1Tsnow /1Tice). For the calculation, Tiw is set to be
−1.5 ◦C. The freezing temperature of seawater is often as-
sumed to be −1.8 ◦C; however, the value of −1.5 ◦C has
been chosen based on the buoy observations. A sensitivity
test indicated that the influence of a 0.3 ◦C difference in
the freezing temperature on α was negligible (e.g., approx-
imately 1.2 % difference for typical interface temperatures
of Tas =−30 ◦C and Tsi =−20 ◦C). The α values are cal-
culated only at the pixel whose monthly sea ice concentra-
tion (SIC) is greater than 95 % and rejected if Tas is warmer
than Tsi. The densities are prescribed with those used for
OIB data processing: ρs, ρi, and ρw are 0.320, 0.915, and
1.024 g cm−3, respectively (Kurtz et al., 2013). Although ρs
varies seasonally (Warren et al., 1999) and ρi is greater for
MYI than FYI (Alexandrov et al., 2010), we use the same
densities as those of OIB data because we intend to compare
outputs against OIB data. In solving Eq. (12), cases showing

negative ice thickness (α ≥ αcrit = 0.291 for the given densi-
ties and radar penetration factor) are rejected. Radar penetra-
tion factor f is set to be 0.84 for CS2 (Armitage and Ridout,
2015), and ηs is parameterized as a function of the snow den-
sity, i.e., ηs = (1+ 0.51ρs)

1.5 (Ulaby et al., 1986).
Before the Arctic-basin-scale retrieval, ice thickness is

estimated from OIB total freeboard measurements using
Eq. (11) and from OIB-derived radar freeboards (Sect. 3.3)
using Eq. (12) and using satellite-derived α as a constraint.
At the same time, the corresponding snow depth is derived
by multiplying the obtained sea ice thickness and α (Eq. 3).
Sea ice thicknesses are also calculated from Eqs. (4) and (10)
using MW99 as the snow depth to examine how simultane-
ous retrievals compare with ice thickness estimation using
MW99. To differentiate various outputs, obtained snow depth
and ice thickness are expressed with nomenclature such as
(constraint, freeboard source). For example, the snow depth
estimated from satellite-derived α and OIB total freeboard is
referred to as hs (αsat, FOIB

t ), and sea ice thickness from the
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Figure 3. Examples of interface searching results with an averaging period of 15 d: (a) 2012G period: 2, (b) 2013F period: 8, (c) 2014G
period: 1, (d) Q2 period: 6, (e) R4 period: 6, and (f) SEA period: 10. The period number indicates the sequential 15 d period from 1 November
(e.g., period: 2 denotes a time-averaging period of 16 to 30 November). Blue dots are buoy-measured temperature profiles, and red lines are
regression lines. Dashed black lines indicate the intersections between adjacent regression lines.

MW99 and OIB radar freeboard is referred to as Hi (hMW99
s ,

FOIB
r ). Finally, ice thickness and snow depth are estimated

from CS2 radar freeboard (Sect. 3.4) over the Arctic Ocean.

3 Data

Here we provide detailed information on the datasets used for
the development of the retrieval algorithm, evaluation, and
application at the Arctic Ocean basin scale.

3.1 CRREL and SHEBA buoy data

To determine the empirical relationship between α and
1Tsnow /1Tice using Eq. (3), we need information regard-
ing hs, Hi, Tas, Tsi, and Tiw (as depicted in Fig. 1). These
are sourced from temperature profiles observed by buoys de-
ployed over the Arctic as part of the Surface Heat Energy
Budget of the Arctic (SHEBA) campaign (Perovich et al.,
2007) and the Cold Regions Research and Engineering Labo-
ratory Ice Mass Balance (CRREL-IMB) buoy program (Per-
ovich et al., 2019). Those buoy observations are stored for
further analysis if there are no missing records over the en-
tire period ranging from November to March of the follow-
ing year. Detailed information regarding ice type and initial
snow–ice thickness at deployment locations is given in Ta-
ble 1.

Time averages of temperature profiles are used as input for
the interface searching algorithm (described in Sect. 2.2) to
meet the required near-equilibrium states (e.g., linear tem-
perature profile). However, because of the possibility that the
results are dependent on the averaging period, we examine
the results using various averaging periods from 1 to 30 d.

3.2 Satellite-derived skin and interface temperatures

For applying the buoy-based α-prediction equation in retriev-
ing the snow–ice thicknesses over the Arctic Ocean, satellite-
derived Tas and Tsi data are necessary. In this study, Tas is
obtained from the Arctic and Antarctic ice Surface Tem-
peratures from thermal Infrared satellite sensors version 2
(AASTI-v2) data (Dybkjær et al., 2020), and the monthly
mean for the 1982–2015 period is obtained from daily prod-
ucts. AASTI-v2 Tas is derived from the CM SAF cLouds,
Albedo and surface RAdiation dataset from AVHRR (Ad-
vanced Very High Resolution Radiometer) data edition 2
(CLARA-A2) dataset (Karlsson et al., 2017), which is based
on the algorithm described in Dybkjær et al. (2018). Informa-
tion on the validation of this product is found in Dybkjær and
Eastwood (2016). It is available in a 0.25◦ grid format; how-
ever, because other satellite datasets such as SIC are available
in a 25 km Polar Stereographic SSM/I grid, AASTI-v2 data
are re-gridded in the same 25 km grid format. This reformat-
ted AASTI-v2 dataset is called “satellite skin temperature”.
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Table 1. Information on the measurement sites of buoys whose observations were used in this study.

Name Deployment Ice type Initial snow Initial ice
location depth (m) thickness (m)

CRREL 2010F Beaufort Sea Multiyear 0.25 1.97
2011M Central Arctic Multiyear 0.07 1.67
2012G Central Arctic First year 0.16 1.41
2013F Beaufort Sea Multiyear 0.00 1.40
2013G Beaufort Sea Multiyear 0.00 1.40
2014G Beaufort Sea Multiyear 0.10 1.08
2014I Beaufort Sea Multiyear 0.23 1.32

SHEBA Q2 Beaufort Sea Multiyear 0.06∗ 1.75∗

PIT Beaufort Sea Multiyear 0.12∗ 2.01∗

BALT Beaufort Sea First year 0.07∗ 1.40∗

R4 Beaufort Sea Second year ridge 0.09∗ 4.23∗

SEA Beaufort Sea Ponded area 0.10∗ 1.54∗

∗ The initial snow depth and ice thickness at the SHEBA sites are average values of all thickness gauge measurements
in the corresponding site because there was one thermistor string but several thickness gauges at each measurement site.

Tsi is obtained from snow–ice interface temperature (SIIT)
produced by Lee et al. (2018) over 30 years (1988–2017) of
winters (December to February) using SSM/I and the Special
Sensor Microwave Imager/Sounder (SSMIS) homogenized
TBs (Berg et al., 2018). The daily data are in the 25 km grid
format. Lee et al. (2018) reported that the satellite-derived Tsi
is consistent with snow–ice interface temperatures observed
by CRREL-IMB buoys, with a correlation coefficient, bias,
and RMSE of 0.95, 0.15, and 1.48 K, respectively. In this
study, we also produced Tsi for March using the same al-
gorithm as Lee et al. (2018) for evaluating results against
OIB data, which are mostly collected during spring. Monthly
composites are constructed by averaging daily data for grid
cells where the data frequency is over 20 d. This product is
called “satellite interface temperature”.

3.3 OIB data

In this study, OIB snow depth (hOIB
s ) and total freeboard

(FOIB
t ) are used as a reference in the evaluation of snow

depth and ice thickness retrieved from the developed algo-
rithm. NASA’s OIB is an aircraft mission, and it measures
snow depth and total freeboard over the Arctic using snow
radar, Digital Mapping System (DMS), and Airborne Topo-
graphic Mapper (ATM) (Kurtz et al., 2013). OIB ice thick-
ness is derived from measured snow depth and total free-
board for the given snow and ice densities using Eq. (4).
In this study, the OIB radar freeboard (FOIB

r ) is derived
from FOIB

t and hOIB
s using the combined relationship of

Fi = Ft−hs and Eq. (9) as follows:

FOIB
r = FOIB

t −hOIB
s − (f ηs− 1)hOIB

s . (13)

Because the main objective of using OIB data is to evaluate
the relative performance of the simultaneous retrieval method
when the method is applied to CS2 data, the radar penetration

factor (f ) for OIB data processing is also set to be 0.84. In
the data processing chain, hOIB

s is removed if it is smaller
than the given uncertainty level of the dataset (∼ 5.7 cm) or
it is larger than the total freeboard FOIB

t .
The 5 years of OIB data during the 2011–2015 period are

utilized in this study. The level 4 dataset (Kurtz et al., 2015)
during the 2011–2013 period and Quick Look dataset during
the 2014–2015 period are obtained from the NSIDC web-
site (see the Data Availability section). Because we use the
November–March period for the buoy analysis, only March
OIB data are considered for the evaluation. The OIB data
are also reformatted into the 25 km grid format by averaging
pixel-level OIB observations on the 25 km grid.

3.4 CS2 data

For examining the Arctic Ocean basin distribution of ice
thickness and snow depth, CS2 freeboard measurement sum-
mary data are used (Kurtz and Harbeck, 2017). They are
monthly mean composites of CS2 ice freeboard data in the
25 km Polar Stereographic SSM/I grid format covering the
entire Arctic and available from September 2010. Detailed
descriptions of the retracker algorithm used in this dataset
are found in the study by Kurtz et al. (2014). The dataset also
includes MW99 (hMW99

s ) and W99 snow density climatology
used for producing the ice freeboard.

The CS2 ice freeboard data (FCS2
i ) distributed by NSIDC

(Kurtz and Harbeck, 2017) assumed that the radar scattering
horizon is at the snow–ice interface and applied a wave prop-
agation speed correction. However, the correction was made
using hMW99

s and W99 snow density climatology with an er-
roneous form of hc = (1−η−1

s ) hs instead of the proper form
of hc = (ηs− 1) hs (Mallett et al., 2020). Thus, at this point,
it is straightforward to derive the CS2 radar freeboard by re-
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moving the correction term, as in the following equation:

FCS2
r = FCS2

i −

(
1− η−1

s

)
hMW99

s . (14)

Here, ηs was parameterized as a function of the snow density,
i.e., ηs = (1+1.7ρs+0.7ρ2

s )
0.5 (Tiuri et al., 1984), and ρs is

taken from the W99 climatology based on Kurtz and Harbeck
(2017). Then CS2 ice thickness is reproduced from FCS2

r and
hMW99

s by using Eq. (10) with the constant densities and the
radar penetration factor described in Sect. 2.3. Those hMW99

s
and Hi(h

MW99
s , FCS2

r ) values are used for comparison with
results from our simultaneous method.

3.5 Sea ice concentration

Calculation of α is done for those pixels whose monthly SIC
is greater than 95 % (as described in Sect. 2.3). To determine
pixels that meet this SIC criterion, “bootstrap sea ice con-
centrations from Nimbus-7 SMMR [Scanning Multichannel
Microwave Radiometer] and DMSP [Defense Meteorologi-
cal Satellite Program] SSM/I-SSMIS version 3” produced by
Comiso (2017) are used. This SIC dataset is provided in the
25 km Polar Stereographic SSM/I grid format.

4 Results

4.1 The empirical relationship between α and
1Tsnow /1Tice

We examine variables (i.e., Tas, Tsi, Tiw, Hi, and hs) ob-
tained from buoy observations by applying the interface
searching algorithm. In the scatter plot of weekly aver-
aged 1Tsnow /1Tice vs. α (Fig. 4a), it appears that α
linearly increases with 1Tsnow /1Tice when the ratio is
smaller than 1.8, but the linear slope becomes smaller when
1Tsnow /1Tice is larger than 1.8. This pattern of the slopes
is found to be nearly invariant from year to year, as is ob-
served in the different colors appearing in the entire range of
1Tsnow /1Tice in Fig. 4a. We also found that this slope pat-
tern is of a consistent nature even for different datasets; two
different datasets (red points for SHEBA and other points
for CRREL) covering various ranges of1Tsnow /1Tice show
similar distributions along the two different slopes. Thus, the
slope pattern is not due to different data sources or different
data periods. Further analysis of the two slopes is found in
Appendix A.

Taking such a two-slope pattern with 1Tsnow /1Tice into
account, we introduce a piecewise linear function that may
express the slope pattern, i.e.,

y =

{
a1x+ b1 x ≤ x0
a2x+ b2 x > x0

, x0 =
b1− b2

a2− a1
. (15)

In Eq. (15), x and y correspond to 1Tsnow /1Tice and α, re-
spectively, and x0 is the point where the slope transition takes

Table 2. Coefficients of the regression equation for averaging peri-
ods of 1, 7, 15, and 30 d; a1, b1, a2, b2, and x0 are given in Eq. (15).

Averaging a1 b1 a2 b2 x0
periods

1 d 0.166 0.047 0.050 0.263 1.864
7 d 0.179 0.028 0.053 0.254 1.796
15 d 0.180 0.034 0.029 0.339 2.022
30 d 0.185 0.022 0.076 0.214 1.769

place. Applying Eq. (15) to data points from buoy-based vari-
ables, the regression coefficients (a1, b1, a2, b2) and transi-
tion point (x0) are determined by minimizing the total vari-
ance – the obtained regression line is plotted in Fig. 4a. The
α value is predicted using the determined regression equation
(hereafter referred to as the α-prediction equation) and com-
pared to the original α values to see how well the regression
was performed. The comparison of α with predicted values
in Fig. 4b shows that the regression equation is well fitted
because of the zero bias and 91.9 % of explained variance.

Although the slope pattern discussed with Eq. (15) and
Fig. 4 is based on the weekly averages, the slope pattern
seems to be consistent among the data averaging periods ex-
cept for an averaging period shorter than 5 d. Regressions in
the form of Eq. (15) are performed with buoy data averaged
with different averaging periods to understand the slope pat-
tern. The regression coefficients and transition points for the
chosen averaging periods are examined, and results for four
averaging periods are given in Table 2. Detailed information
on the coefficients and associated statistics varying with the
averaging period is given in Fig. 5. The positions of slope
change (x0) are located at approximately 1.8, delineating a
nearly invariant slope pattern regardless of different data av-
eraging periods. Figure 5a shows that coefficients do not vary
much with different averaging periods, while coefficients of
the first part of the regression line (a1 and b1, x ≤ x0) vary
less than those of the second part (a2 and b2, x > x0). The
regression equations show that the explained variance (R2)
rises quickly when the averaging period is longer but levels
off when data are averaged over a period that is longer than
7 d. The bias appears to be near zero over the various averag-
ing periods. Thus, the regression performance is found to be
comparable if data are averaged over a period that is longer
than 1 week.

4.2 Evaluation against OIB estimates

According to the regression results, it is possible to esti-
mate α from 1Tsnow /1Tice. Since 1Tsnow /1Tice can be
calculated from the satellite skin and interface temperature
(as described in Sect. 3.2), the corresponding α can be esti-
mated from satellite measurements. Thus, we are able to si-
multaneously retrieve sea ice thickness and snow depth from
altimeter-based freeboard measurements following Eqs. (11)
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Figure 4. (a) Scatterplots of the temperature difference ratio of the snow and ice layer (1Tsnow /1Tice) and the snow–ice thickness ratio
(α). Color denotes the collected year of buoy data. The red lines are the regression lines (defined in Eq. 15). (b) The scatter plot of observed
and regressed α.

Figure 5. (a) The regression coefficients (a1, b1, a2, b2) in Eq. (15) and (b) the error statistics of the regression with averaging periods from
1 to 30 d.

and (12). We test and evaluate this simultaneous retrieval ap-
proach using OIB data. Accordingly, ice thickness and snow
depth are simultaneously estimated from OIB freeboard mea-
surements and evaluated against the OIB snow depth (hOIB

s )
and ice thickness (HOIB

i ).
To calculate α, a data averaging period must be selected.

Considering that the monthly composite of satellite free-
board measurements is needed to retrieve snow–ice thick-
ness at the Arctic basin scale, it seems appropriate to use the
monthly averaging period to calculate the monthly α distri-
bution. Thus, we use the monthly averaged satellite tempera-
tures and the coefficients for the 30 d averaging period (Table
2) to calculate α.

We simultaneously retrieved Hi and hs for March of each
year during the 2011–2015 period from the reformatted OIB
freeboard measurements (Sect. 3.3), together with satellite-
derived α (αsat). As expressed in Eqs. (11) and (12), two dif-

ferent ice thickness retrievals are possible depending on the
use of the freeboard type (i.e., total freeboard Ft vs. radar
freeboard Fr). Two accordingly associated retrievals of snow
depth are available. Retrieved results of ice thickness (Hi)
and snow depth (hs) from the use of OIB total freeboard and
radar freeboard are given in the first and second row of Fig. 6,
respectively. Corresponding OIB measurements are given at
the bottom of Fig. 6. The comparison between any snow–
ice retrievals and OIB measurements appear to be consis-
tent with each other for both snow depth and ice thickness
in terms of magnitudes and distribution.

To compare the results quantitatively, scatterplots com-
paring retrievals against OIB measurements are made, along
with statistics for the snow depth and ice thickness retrievals,
in the top four panels of Fig. 7. The two top-left panels are
derived from the use of OIB total freeboard (FOIB

t ), while
the two top-right panels are derived from the OIB radar free-
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Figure 6. Simultaneously retrieved ice thickness and snow depth from OIB total and radar freeboards in March of the 2011–2015 period.
Corresponding OIB products are at the bottom.

board (FOIB
r ). The comparison is done only for pixels for

which all four products (i.e., snow–ice thicknesses from two
different freeboards) are available. This indicates that the
snow depth from the total freeboard (top left) is fairly consis-
tent with the OIB snow depth with a correlation coefficient
of 0.73 and with a near-zero bias. The retrieved ice thickness
from the total freeboard (middle left) appears to be consistent
with OIB ice thickness with a correlation coefficient of 0.93
and a bias around 8.5 cm. The RMSEs for snow depth and ice
thickness are 6.8 cm and 44.3 cm, respectively. Based on the
comparison results, Eq. (15) obtained from buoy measure-
ments can be successfully implemented with space-borne to-

tal freeboard measurements for the simultaneous retrieval of
snow depth and ice thickness.

Following Eq. (12), snow depth and ice thickness retrievals
are made from the use of radar freeboard measurements, and
results are presented in the two top-right panels in Fig. 7.
On the one hand, the comparison of obtained ice thickness
against the OIB ice thickness indicates that the retrieved ice
thickness shows a similar quality as that retrieved from the
total freeboard measurements. On the other hand, snow re-
trievals from the radar freeboard show more scattered fea-
tures compared to snow retrieval results from the total free-
board. The more scattered features found in the snow depth
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Figure 7. Scatter plots between OIB products and the simultaneously retrieved snow depth and ice thickness from OIB total and radar
freeboards during the March 2011–2015 period. Corresponding ice thicknesses estimated from MW99 are in the third row. The red lines are
linear regression lines.

from the radar freeboard are likely due to the greater sensitiv-
ity of the retrieved α and the prescribed densities, as noted in
Eq. (12). Note that Eq. (12) has a smaller denominator than
that of Eq. (11). Results of the associated sensitivity analysis
can be found in Appendix B.

We now examine how the use of MW99 for retrieving
sea ice thickness from ICESat and CS2 measurements com-
pares with results from our simultaneous method. To do so,
OIB-measured total freeboard and radar freeboard are con-
verted into ice thickness using MW99 as the input to solve
Eqs. (4) and (10). In this study, these two ice thickness re-

trievals with the use of MW99 are referred to as “ICESat-
like” thickness and “CS2-like” thickness, respectively, and
their comparisons are now observed in the two panels at
the bottom of Fig. 7. According to our analysis, ICESat-
like thickness tends to underestimate the ice thickness by
about 47.9 cm when MW99 is used in comparison to OIB
thickness, and CS2-like ice thickness shows an overestimate
of about 25.5 cm. Nevertheless, their correlation coefficients
and RMSEs are similar to the results obtained from the α
method.
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The better agreement of Hi from the simultaneous method
with HOIB

i may be due to the fact that the simultaneously
estimated hs is more consistent with hOIB

s (hMW99
s is likely

larger than hOIB
s , as shown in Fig. S1). Note that all inputs

are the same except the snow depth. The negative bias of
ICESat-like thickness and positive bias of CS2-like thickness
reflect expected responses in different signs to the same snow
depth error, as shown in different signs in the last terms of
Eqs. (4) and (10) (also note Eq. B2 in Appendix B). Because
of this reasoning, if there are decreasing trends not only in
ice thickness but also in snow depth, the decreasing trend of
ice thickness estimated from the constant snow depth will be
diminished in radar while being amplified in lidar. Because
of this, the construction of the ice thickness (or volume) trend
from the two different satellite altimeters would be problem-
atic if MW99 is used for the freeboard to thickness conver-
sion. For example, it would be hard to compare the sea ice
thickness records estimated from ICESat and CS2 observa-
tions and to extend the current ice thickness record from CS2
with NASA’s recently launched ICESat-2, which carries a li-
dar altimeter, for the same reason.

4.3 Simultaneous retrieval of ice thickness and snow
depth from CS2 measurements

We have demonstrated that the method of simultaneously re-
trieving the sea ice thickness and snow depth was success-
fully implemented with OIB measurements. Now we extend
the proposed approach to satellite freeboard measurements.
Here the method is tested with CS2 freeboard measurements,
solving for Hi in Eq. (12), and α is obtained from the collo-
cated satellite skin and interface temperature data.

Monthly means of CS2-estimated freeboard (Fr), retrieved
α, ice thickness (Hi), and snow depth (hs) for December
2013 to March 2014 are given in Fig. 8. The geographical
distribution of α indicates that α is largest in January and
becomes smaller during the following months. Geographi-
cally, there seems to be no particular distribution of α be-
tween months, although interestingly the lowest α values are
always found over the north of the Canadian Archipelago,
and the western part of the Arctic Ocean shows α values that
are generally larger than those over the eastern part.

Retrieved ice thickness from the CS2 freeboard (Fr) using
obtained α is presented in the third row of Fig. 8. As expected
and as noted in Eq. (12),Hi shows a similar geographical dis-
tribution to radar freeboard (the first row). The thickest area
is located north of the Canadian Archipelago where the ice
appears thicker than 4 m. On the other hand, most of the FYI
thickness appears to range from 1.0 to 2.0 m. The snow depth
hs is obtained by multiplying α by Hi (in 2nd and 3rd rows),
following Eq. (3), and results are shown in the bottom row.
The obtained snow distribution indicates that thicker (thin-
ner) snow areas are generally coincident with thicker MYI
(thinner FYI) areas. Such a similarity should be consistent

with the notion that MYI should accumulate more precipita-
tion than FYI because of its longer existence.

To assess the accuracy of CS2 retrievals, reference snow
depth and ice thickness collocated with CS2 freeboard in
space and time are necessary. However, different from si-
multaneous retrievals from OIB freeboards in Sect. 4.2, the
evaluation with the required matching data may not be pos-
sible from the monthly composite of CS2 data used in this
study. Here, instead of using monthly collocated match-up
data, an indirect way is used to examine the accuracy of
CS2 retrievals. We do so by examining whether the rela-
tionship between the simultaneous method and the MW99
method, based on retrievals from the OIB freeboard, can be
reproduced by CS2-based retrievals. If similar results are ob-
tained, respective accuracies can be deduced against those
noted from the evaluation against OIB measurements.

The relationships which can be obtained from the analy-
sis in Sect. 4.2 – i.e., hs (αsat, FOIB

r ) vs. hMW99
s and Hi(α

sat,
FOIB

r ) vs. Hi (hMW99
s , FOIB

r ) – are compared with the rela-
tionships found in the current results in Fig. 8 – i.e., hs (αsat,
FCS2

r ) vs. hMW99
s and Hi(α

sat, FCS2
r ) vs. Hi (hMW99

s , FCS2
r );

the results are presented in Fig. 9. Observably, the relation-
ships from CS2 freeboard data (Fig. 9b, d) are very similar to
the relationship obtained from the comparison results from
OIB measurements (Fig. 9a, c). This similarity of the slope
strongly indicates that the CS2-based sea ice thickness from
the current α method has similar accuracy to that found in the
evaluation against OIB measurements (Sect. 4.2). Further un-
certainty estimates for CS2-derived products can be found in
Appendix C.

5 Conclusions and discussion

A new approach towards simultaneously estimating snow
depth and ice thickness from space-borne freeboard measure-
ments was proposed and tested using OIB data and CS2 free-
board measurements. In developing the algorithm, the verti-
cal temperature slopes were assumed to be linear within the
snow and ice layers so that a continuous heat flux could be
maintained in both layers. This assumption allowed for the
description of the snow–ice vertical thermal structure with
snow skin temperature, snow–ice interface temperature, the
water temperature at the ice–water interface, snow depth, and
ice thickness. Based on the continuous heat transfer assump-
tion, the snow–ice thickness ratio (α = hs /Hi) was intro-
duced and could then be embedded into the freeboard to ice
thickness conversion equations. Thus, information on both
ice thickness and snow depth can be derived once α is known
in the case of the availability of a freeboard without relying
on the snow depth information as an input for the conver-
sion from freeboard to ice thickness. From the drifting buoy
measurements of the temperature profile, snow depth, and ice
thickness over the Arctic Ocean, we demonstrated that α can
be reliably determined using the ratio of the vertical differ-
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Figure 8. Geographical distributions of observed CS2 radar freeboard (Fr) and estimated snow–ice thickness ratio (α), ice thickness (Hi),
and snow depth (hs) from December 2013 to March 2014. Gray areas in the second row denote where α retrievals failed because Tas was
warmer than Tsi.

ence of the snow layer temperature to the vertical difference
of ice layer temperature (1Tsnow /1Tice). An empirical re-
gression equation was obtained for predicting α from three
interface temperatures.

Before applying the α-prediction equation to simultane-
ously retrieve the ice thickness and snow depth from satellite-
borne freeboard measurements, the algorithm was evalu-
ated using OIB measurements in conjunction with satellite-
derived snow skin temperature and snow–ice interface tem-
perature. The evaluation of results demonstrated that our pro-
posed algorithm adequately retrieved both parameters simul-
taneously. As a matter of fact, the ice thickness results were
more accurate than they were from the current retrieval meth-
ods relying on the input of snow depth (this time MW99

snow climatology) in terms of mean bias. It should be noted
that in this case, snow depth is a retrieval product instead
of being input for the freeboard to ice thickness conversion
adopted by CS2 or ICESat retrieval. The application was fi-
nally made for the retrieval of the snow depth and ice thick-
ness from CS2 radar freeboard measurements from Decem-
ber 2013 to March 2014 using α as a constraint. Results
showed that the quality of the obtained ice thickness was
similar to that obtained from evaluation results against OIB
measurements. Retrieved snow depth distributions were also
found to be consistent with expectations.

In the retrieval process, we may be concerned about the ap-
plicability of the algorithm developed with buoy observations
representing the point measurements to the larger spatial and
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Figure 9. Comparison of simultaneously retrieved snow depth and ice thickness to those from the MW99 method. (a) Snow depth from OIB
radar freeboard, (b) snow depth from CS2 radar freeboard, (c) ice thickness from OIB radar freeboard, and (d) ice thickness from CS2 radar
freeboard.

temporal scales of satellite measurements. This concern may
be relevant upon observing the range of α values. The α value
in the satellite’s monthly and 25 km× 25 km spatial scales
was found to be generally smaller than 0.2. The smaller range
of α compared to that shown in the buoy analysis results is
likely due to the scale differences, indicating that extreme α
values often shown in buoy measurements (due to very thick
snow and/or very thin ice) may never be observed in satel-
lite measurements. However, the range may not be a prob-
lem because the relationship (Eq. 3) expresses the thermal
equilibrium condition described by the temperature at three
interfaces, the ratio of snow and ice thickness, and the ratio of
thermal conductivity between snow and ice. Considering that
the algorithm is based on the equilibrium conditions, results
should be valid regardless of spatial and temporal scales if
the prerequisite equilibrium conditions are met. Apparently,
buoy observations contain so many different cases that equi-
librium conditions are met with different thermal and physi-
cal conditions of the snow–ice system. The sound evaluation
results and the consistency between OIB and CS2 ice thick-
ness retrieval results, which are subject to different scales,

all suggest that the point-measured α-prediction equation can
apply to satellite measurements.

Overall, the developed α-based method yields ice thick-
ness and snow depth without relying on a priori “uncertain”
snow depth information (MW99), which results in uncer-
tainty in the ice thickness retrieval. The proposed method ap-
plies to both lidar and radar altimeter data, although lidar-
based altimeter data tend to offer relatively more suitable
snow depth information with a smaller RMSE. We expect
to continuously monitor the Arctic-scale snow depth and ice
thickness by applying the proposed α method to total free-
board observations from the recently launched ICESat-2 and
using temperature observations from the upcoming MetOp-
SG meteorological imager (MetImage), the microwave im-
ager (MWI), and the proposed Copernicus Imaging Mi-
crowave Radiometer (CIMR).
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Appendix A: Physical interpretation of the piecewise
linearity between α and 1Tsnow /1Tice

The relationship found between α and 1Tsnow /1Tice
showed a piecewise linearity which is almost invariant to
the data averaging period. Because the slope change is at-
tributable neither to different data sources nor to different
data periods, it is likely caused by the physical properties
of the snow and ice, as shown in Fig. A1. If the slope change
is caused by the snow–ice condition, there will be a signifi-
cant difference in snow–ice properties between the two parts
showing different slopes. Here we examine the possibility of
different physical properties causing the difference in slopes.
Through this comparison using buoy data, we may identify
important properties that might be responsible for the piece-
wise linearity.

First, the averages of basic properties available from buoy
measurements are compared. They include ice thickness,
snow depth, snow–ice interface temperature, ice temperature
– Tice = (Tas+ Tsi)/2 – and so on. The comparison revealed
that snow–ice system within the first part (x ≤ x0) is found
to consist of relatively thicker ice (mean value: 1.84 m), thin-
ner snow (0.29 m), and colder ice (−9.13 ◦C), while the sec-
ond part (x >x0) is found to consist of relatively thinner ice
(1.10 m), thicker snow (0.46 m), and warmer ice (−5.00 ◦C).
In general, a thicker snow or ice layer exhibits a greater tem-
perature difference from the top to the bottom of the layer.
There is no significant difference between the air–snow in-
terface temperature (Tas) in the two slope parts.

The thermal conductivities, ksnow and kice, are also com-
pared because what connects α and 1Tsnow /1Tice is the ra-
tio of thermal conductivities. Before showing the results, we
describe how to calculate ksnow and kice. First, the thermal
conductivity ratio is calculated from buoy-measured vari-
ables (i.e., Tas, Tsi, Tiw, hs, andHi) using Eq. (3). Because the
underlying physics in ksnow are significantly more complex,
kice is estimated first, and then ksnow is obtained by multiply-
ing the calculated kice by ksnow / kice. To calculate kice, the
parameterization of Maykut and Untersteiner (1971), which
describes kice as a function of salinity and temperature, is
used:

kice = 2.03+ 0.117
Sice

Tice
. (A1)

Here, Sice and Tice are the salinity (in parts per thousand, ppt)
and temperature (in Celsius) of sea ice, respectively. For the
calculation, Sice is estimated according to the empirical re-
lationship between sea ice thickness and mean salinity from
Cox and Weeks (1974) as follows:

Sice =

{
14.24− 19.39Hi, Hi ≤ 0.4m
7.88− 1.59Hi, Hi > 0.4m . (A2)

Although Trodahl et al. (2001) reported that kice depends on
depth and temperature, here we do not estimate accurate ther-
mal conductivities but attempt to examine the physical con-
sequences of the total ice layer.

The calculated thermal conductivities are presented
in Fig. A2. The calculated kice ranges from 1.8 to
2.0 W K−1 m−1 (two left panels in Fig. A2). These values
are consistent with the in situ measurements by Pringle
et al. (2006). The mean values of kice of the first part
(1.96 W K−1 m−1) and the second part (1.88 W K−1 m−1)
show almost no difference. The calculated ksnow ranges
from 0.2 to 1.05 W K−1 m−1 (two right panels in Fig. A2).
This range is consistent with reported values in Sturm et
al. (1997). The first part shows the greater spread in the distri-
bution of ksnow compared to the second part. The mean ksnow
values are 0.44 and 0.27 for the first part and second part,
respectively.

As a significant difference is observed in ksnow, we would
like to find a possible reason for this difference. To do so,
we should first review the factors determining ksnow; they
are density, temperature, and crystal structure (Sturm et al.,
1997). Snow is a mixture of ice particles and air, and air has
lower thermal conductivity than ice. Thus, snow with a rela-
tively lower density including a greater portion of air should
have relatively lower thermal conductivity. Besides, the ther-
mal conductivity of ice particles depends on the temperature,
and the path of heat transfer depends on the crystal structure
which describes how the particles are connected. The heat
transfer occurs not only by conduction but also by water va-
por latent heat transportation and convection through the pore
spaces (Sturm et al., 2002), which are hard to quantify explic-
itly. These two factors are closely related to the temperature
gradient (or difference) imposed within the snow layer.

Based on this knowledge, we can infer the condition of
the snow layer of the two parts. The relatively higher and
varying ksnow of the first part would be related to the com-
paction process resulting in high density and metamorphic
diversity, which changes the crystal structure. According to
Sturm et al. (2002), the value of ksnow of a hard wind slab is
up to 0.5 W m−1 K−1, while that of ksnow of depth hoar is be-
low 0.1 W m−1 K−1. On the other hand, the lower and nearly
constant ksnow of the second part implies that the snow layer
of the second part would consist of fresh and dry snow hav-
ing relatively lower density and a relatively lower likelihood
of experiencing particular metamorphism.

In summary, it is concluded that the physical properties of
snow and ice can account for the piecewise linearity based
on the differences in the physical properties between the
first and second parts. Especially the thermal conductivity
of the snow, ksnow, seems to play an important role. Never-
theless, further analysis is required to fully understand this
phenomenon.
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Figure A1. Distribution of physical variables on scatterplots of the temperature difference ratio of snow and ice layer (1Tsnow /1Tice)
and the snow–ice thickness ratio (α). Color denotes the value of physical variables: (a) ice thickness (Hi), (b) snow depth (hs), (c) air–
snow interface temperature (Tas), (d) snow–ice interface temperature (Tsi), (e) temperature difference within the snow layer (|1Tsnow|), and
(f) temperature difference within the ice layer (|1Tice|).

Figure A2. Histogram of estimated (a, b) kice and (c, d) ksnow. The top and bottom rows denote the first and the second parts, respectively.
The size of the bins is 0.05 W K−1 m−1.
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Appendix B: Sensitivity test for the proposed method

Here we present results of a sensitivity test for showing how
the snow depth and ice thickness retrieval results are depen-
dent on the uncertainties in α. To do so, the uncertainty in the
snow depth (1hs) due to the α error (i.e.,1α) and associated
ice thickness error (1Hi) are estimated. From this sensitivity
test, we expect to understand why the simultaneous method
for the radar freeboard shows more scattered features than
those from the lidar total freeboard.

First, 1hs is defined by the difference of retrieved hs with
error (α+1α) and without error (α):

1hs =

{
hs (α+1α, Ft)−hs (α,Ft) (usingFt)

hs (α+1α,Fr)−hs (α,Fr) (usingFr)
. (B1)

Then 1hs can be converted to the error in the ice thickness
(1Hi) using the following equation derived from Eq. (10):

1Hi =
(f ηs− 1)ρw + ρs

ρw − ρi
1hs =

{
−6.461hs (usingFt)

3.441hs (usingFr)
. (B2)

Because Hi and hs are the combination of freeboard and α,
as in Eqs. (3), (11), and (12), we only examine the uncer-
tainty with some typical sea ice types. Here, physical states
for thicker ice (type A), moderate ice (type B), and thinner
ice (type C) are chosen, which are summarized in Table B1.
Typical values for those three types are shown in the scat-
terplots of OIB-based αOIB vs. FOIB

t and of satellite-based
αsat vs. FCS2

r – Fig. B1. It is shown that the majority of data
points are located around type B, followed by type A. There
seems to be a very small portion of total samples showing
values around type C.

With 1α =±0.05, which is the root mean square differ-
ence (RMSD) value between αOIB and αsat, 1hs and 1Hi
are estimated for three ice types. Table B2 summarizes the
results and shows that |1hs| is within 8 cm and that it tends to
decrease as the ice becomes thinner when the current method
is applied to the total freeboard. On the other hand, the use
of radar freeboard shows that |1hs| tends to be more sen-
sitive for the same 1α. Especially the sensitivity of type C
is the greatest. This is because the denominator of Eq. (12)
becomes smaller when α approaches αcrit, resulting in an un-
stable solution. For the ice thickness, |1Hi| is smaller when
the total freeboard is used since 1Hi is proportional to 1hs.
However, the gap between the results from the two free-
boards has narrowed because Hi from the total freeboard is
more sensitive than the radar freeboard to 1hs, according to
Eq. (B2). The sensitivity characteristics shown here are con-
sistent with the analysis results given in Sect. 4.2. Because
there is a much smaller number of data points belonging to
type C, at least in the data used for this study, the overall
sensitivity would likely be in between types B and A.

Table B1. The physical state of typical cases of points A, B, and C.

Type Hi (m) hs (m) α Ft (m) Fr (m)

A 3.961 0.332 0.084 0.65 0.30
B 1.646 0.123 0.075 0.26 0.13
C 0.616 0.152 0.246 0.17 0.01

Table B2. Errors of snow depth (1hs) and ice thickness (1Hi) for
snow depth to ice thickness ratio error (1α) of ±0.05.

Total freeboard method Radar freeboard method

1α −0.05 0.05 −0.05 0.05

1hs (cm)

A −7.502 4.903 −22.417 36.719
B −3.543 2.277 −9.002 14.437
C −0.080 0.062 −9.499 Retrieval fail∗

1Hi (m)

A 0.485 −0.317 −0.771 1.264
B 0.229 −0.147 −0.310 0.497
C 0.005 −0.004 −0.327 Retrieval fail∗

∗ Retrieval fail occurs if α+1α > αcrit (αcrit = 0.291 for ρs = 320 kg m−3,
ρI = 915 kg m−3, ρw = 1024 kg m−3, and f = 0.84).

It is also of importance to ask what degree of retrievals was
yielded successfully. In this study, cases showing Tas > Tsi
or retrieved α ≥ αcrit are considered to be failures. Statistics
on success/fail ratio of α retrieval for December–March of
the 2011–2015 period are provided in Table B3. Overall, the
success ratio was over 82 % in December−February, while
it was reduced to ∼ 74 % in March. Most of the failures ap-
pear to be associated with cases showing the temperature in-
version (i.e., Tas > Tsi), whose areas are shaded with gray in
the α distributions of Fig. 8. Those failure areas are gener-
ally found around the marginal ice zones and in the east of
Greenland. On the other hand, there was a near-zero failure
(0.02 % of total pixels) for retrieved α ≥ αcrit. This near-zero
failure implies that almost all calculated α values meet the
satisfactory condition after the removal of cases showing the
temperature inversion. It may be concluded that the calcu-
lated α appears to be physically reasonable (i.e., α < αcrit) as
long as presumed thermodynamic conditions are met.

https://doi.org/10.5194/tc-14-3761-2020 The Cryosphere, 14, 3761–3783, 2020



3778 H. Shi et al.: Simultaneous estimation of snow depth and ice thickness from space

Figure B1. Locations of physical states for typical types (A, B, C) on the freeboard-thickness ratio space. Blue dots are from (a) OIB data
and (b) retrieved thickness ratio and CS2 radar freeboard.

Table B3. Statistics of success/fail ratios of α retrieval for winter 2011–2015.

Year/month Total pixels Success Fail Fail
(SIC> 95 %) (Tas > Tsi) (α > αcrit)

2010/12 13 879 12 080 (87.04 %) 1799 (12.96 %) 0 (0.00 %)
2011/01 16 246 14 004 (86.20 %) 2242 (13.80 %) 0 (0.00 %)
2011/02 17 986 14 779 (82.17 %) 3206 (17.82 %) 1 (0.01 %)
2011/03 17 610 12 871 (73.09 %) 4738 (26.91 %) 1 (0.01 %)
2011/12 13 915 11 405 (81.96 %) 2510 (18.04 %) 0 (0.00 %)
2012/01 16 812 13 765 (81.88 %) 3047 (18.12 %) 0 (0.00 %)
2012/02 17 528 14 131 (80.62 %) 3397 (19.38 %) 0 (0.00 %)
2012/03 18 741 13 586 (72.49 %) 5155 (27.51 %) 0 (0.00 %)
2012/12 14 059 11 144 (79.27 %) 2915 (20.73 %) 0 (0.00 %)
2013/01 16 413 13 510 (82.31 %) 2903 (17.69 %) 0 (0.00 %)
2013/02 18 640 15 526 (83.29 %) 3114 (16.71 %) 0 (0.00 %)
2013/03 19 078 14 134 (74.09 %) 4944 (25.91 %) 0 (0.00 %)
2013/12 14 515 12 071 (83.16 %) 2444 (16.84 %) 0 (0.00 %)
2014/01 16 880 14 201 (84.13 %) 2678 (15.86 %) 1 (0.01 %)
2014/02 16 987 14 731 (86.72 %) 2247 (13.23 %) 9 (0.05 %)
2014/03 17 699 13 300 (75.15 %) 4391 (24.81 %) 8 (0.05 %)
2014/12 14 071 11 119 (79.02 %) 2952 (20.98 %) 0 (0.00 %)
2015/01 17 008 15 095 (88.75 %) 1913 (11.25 %) 0 (0.00 %)
2015/02 18 076 15 907 (88.00 %) 2169 (12.00 %) 0 (0.00 %)
2015/03 17 618 14 042 (79.70 %) 3576 (20.30 %) 0 (0.00 %)

December 70 439 57 819 (82.08 %) 12 620 (17.92 %) 0 (0.00 %)
January 83 359 70 575 (84.66 %) 12 783 (15.33 %) 1 (0.00 %)
February 89 217 75 074 (84.15 %) 14 133 (15.84 %) 10 (0.01 %)
March 90 746 67 933 (74.86 %) 22 804 (25.13 %) 9 (0.01 %)

αcrit = 0.291 for ρs = 320 kg m−3, ρi = 915 kg m−3, ρw = 1024 kg m−3, and f = 0.84.
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Appendix C: Uncertainty estimation for CS2 retrievals

Although the sensitivity test regarding uncertainty of
satellite-derived α has been conducted in Appendix B, the
uncertainty of CS2 freeboard measurements and prescribed
parameters should be considered as well for the satellite snow
depth and ice thickness estimates. To do so, a simple prop-
agation analysis of errors is performed, regarding the uncer-
tainty of satellite products (αsat and FCS2

r ) and prescribed
parameters (ρi, ρs, and f ). Uncertainty due to the variabil-
ity of ρw is neglected (Kurtz and Harbeck, 2017; Hendricks
et al., 2016; Ricker et al., 2014). Here we assume that αsat

and FCS2
r are not correlated and have no systematic bias.

Such an assumption may not be true in the real world. How-
ever, it allows us to estimate the retrieval uncertainty from
satellite-derived products with a certain limit. Uncertainty of
ice thickness can be estimated by the following Gaussian er-
ror propagation equation:

ε2
y,total =

∑
x

εy(x)
2. (C1)

Here, εy,total denotes the total uncertainty of retrieved vari-
able y (hs or Hi) and εy(x) denotes the uncertainty of y re-
lated to input variable x (α,Fr, ρi, ρs, or f ). The uncertainties
on the right-hand side are obtained by the following equation:

εy (x)=
∂y

∂x
σx =

y (x+ δ)− y (x)

δ
σx . (C2)

Here, σx denotes the uncertainty of x, and δ is set to be 10−6

for the numerical calculation of the partial derivative using
Eqs. (3) and (12); σα is estimated to be an RMSD value
between αOIB and αsat, σFr is given by Kurtz and Harbeck
(2017), and σf is adopted from Armitage and Ridout (2015).
Uncertainties of snow–ice densities are from the relevant lit-
erature (Alexandrov et al., 2020; Hendricks et al., 2016; Kern
and Spreen, 2015; Ricker et al., 2014; Warren et al., 1999).
Those values are summarized in Table C1.

Table C1. Values and uncertainties of input variables for uncer-
tainty estimation.

α Fr ρi ρs f

(m) (kg m−3) (kg m−3)

Value αsat FCS2
r 915 320 0.84

Uncertainty 0.05 0.065 20 50 0.04

Using Eqs. (C1) and (C2), uncertainties of snow depth
and ice thickness retrievals can be estimated. Ice thickness
uncertainty estimates are presented in Fig. C1. Total uncer-
tainty of ice thickness estimates ranges from 0.8 to 2.0 m.
Generally, Fr-related uncertainty in the third row is greater
than α-related uncertainty in the second row. Snow depth
uncertainty estimates are presented in Fig. C2. Total uncer-
tainty of snow depths ranges from 0.04 to 0.4 m. In the case
of the snow depth, α-related uncertainty is greater than Fr-
related uncertainty. Both uncertainties of ice thickness and
snow depth are greater for MYI regions than FYI regions.
It is thought that the improvement of accuracy in satellite-
derived temperatures can reduce the snow depth uncertainty,
while the improvement of freeboard accuracy can reduce the
ice thickness uncertainty. Uncertainties induced from densi-
ties and radar penetration factors are found to be relatively
smaller than uncertainties related to α and Fr (shown in
Figs. S2 and S3).
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Figure C1. Geographical distributions of sea ice thickness uncertainty: (first row) total uncertainty, (second row) α-related uncertainty, and
(third row) Fr-related uncertainty for the period from December 2013 to March 2014.

Figure C2. Geographical distributions of snow depth uncertainty: (first row) total uncertainty, (second row) α-related uncertainty, and (third
row) Fr-related uncertainty for the period from December 2013 to March 2014.
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