Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3687-2020
https://doi.org/10.5194/tc-14-3687-2020
Research article
 | 
05 Nov 2020
Research article |  | 05 Nov 2020

DeepBedMap: a deep neural network for resolving the bed topography of Antarctica

Wei Ji Leong and Huw Joseph Horgan

Related authors

Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Francesca Baldacchino, Nicholas R. Golledge, Mathieu Morlighem, Huw Horgan, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
The Cryosphere, 19, 107–127, https://doi.org/10.5194/tc-19-107-2025,https://doi.org/10.5194/tc-19-107-2025, 2025
Short summary
Sensitivity of the Ross Ice Shelf to environmental and glaciological controls
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022,https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C)
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022,https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Grounding zone subglacial properties from calibrated active-source seismic methods
Huw J. Horgan, Laurine van Haastrecht, Richard B. Alley, Sridhar Anandakrishnan, Lucas H. Beem, Knut Christianson, Atsuhiro Muto, and Matthew R. Siegfried
The Cryosphere, 15, 1863–1880, https://doi.org/10.5194/tc-15-1863-2021,https://doi.org/10.5194/tc-15-1863-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Data Assimilation
Impact of time-dependent data assimilation on ice flow model initialization and projections: a case study of Kjer Glacier, Greenland
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023,https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams
Beatriz Recinos, Daniel Goldberg, James R. Maddison, and Joe Todd
The Cryosphere, 17, 4241–4266, https://doi.org/10.5194/tc-17-4241-2023,https://doi.org/10.5194/tc-17-4241-2023, 2023
Short summary
Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter
Fabien Gillet-Chaulet
The Cryosphere, 14, 811–832, https://doi.org/10.5194/tc-14-811-2020,https://doi.org/10.5194/tc-14-811-2020, 2020
Short summary

Cited articles

Aitken, A. R. A., Young, D. A., Ferraccioli, F., Betts, P. G., Greenbaum, J. S., Richter, T. G., Roberts, J. L., Blankenship, D. D., and Siegert, M. J.: The subglacial geology of Wilkes Land, East Antarctica, Geophys. Res. Lett., 41, 2390–2400, https://doi.org/10.1002/2014GL059405, 2014. a
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – KDD '19, ACM Press, Anchorage, AK, USA, https://doi.org/10.1145/3292500.3330701, 2623–2631, 4–8 August 2019. a
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006. a, b, c, d
Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.: Algorithms for Hyper-Parameter Optimization, in: Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS'11, Curran Associates Inc., Granada, Spain, 2546–2554, 2011. a
Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., and Cox, D. D.: Hyperopt: A Python Library for Model Selection and Hyperparameter Optimization, Computational Science & Discovery, 8, 014008, https://doi.org/10.1088/1749-4699/8/1/014008, 2015. a
Download
Short summary
A machine learning technique similar to the one used to enhance everyday photographs is applied to the problem of getting a better picture of Antarctica's bed – the part which is hidden beneath the ice. By taking hints from what satellites can observe at the ice surface, the novel method learns to generate a rougher bed topography that complements existing approaches, with a result that is able to be used by scientists running fine-scale ice sheet models relevant to predicting future sea levels.