Research article
05 Nov 2020
Research article | 05 Nov 2020
DeepBedMap: a deep neural network for resolving the bed topography of Antarctica
Wei Ji Leong and Huw Joseph Horgan
Related authors
Related subject area
Cited articles
Aitken, A. R. A., Young, D. A., Ferraccioli, F., Betts, P. G., Greenbaum, J. S., Richter, T. G., Roberts, J. L., Blankenship, D. D., and Siegert, M. J.: The subglacial geology of Wilkes Land, East Antarctica, Geophys. Res. Lett., 41, 2390–2400,
https://doi.org/10.1002/2014GL059405, 2014.
a
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – KDD '19, ACM Press, Anchorage, AK, USA,
https://doi.org/10.1145/3292500.3330701, 2623–2631, 4–8 August 2019.
a
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 111, D06107,
https://doi.org/10.1029/2004JD005667, 2006.
a,
b,
c,
d
Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.:
Algorithms for Hyper-Parameter Optimization, in: Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS'11, Curran Associates Inc., Granada, Spain, 2546–2554, 2011. a
Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., and Cox, D. D.:
Hyperopt: A Python Library for Model Selection and Hyperparameter Optimization,
Computational Science & Discovery,
8, 014008,
https://doi.org/10.1088/1749-4699/8/1/014008, 2015.
a
Bindschadler, R., Choi, H., Wichlacz, A., Bingham, R., Bohlander, J., Brunt, K., Corr, H., Drews, R., Fricker, H., Hall, M., Hindmarsh, R., Kohler, J., Padman, L., Rack, W., Rotschky, G., Urbini, S., Vornberger, P., and Young, N.: Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year, The Cryosphere, 5, 569–588,
https://doi.org/10.5194/tc-5-569-2011, 2011.
a
Bingham, R. G., Vaughan, D. G., King, E. C., Davies, D., Cornford, S. L., Smith, A. M., Arthern, R. J., Brisbourne, A. M., De Rydt, J., Graham, A. G. C., Spagnolo, M., Marsh, O. J., and Shean, D. E.: Diverse landscapes beneath Pine Island Glacier influence ice flow, Nat. Commun., 8, 1618,
https://doi.org/10.1038/s41467-017-01597-y, 2017.
a,
b,
c,
d
Blau, Y., Mechrez, R., Timofte, R., Michaeli, T., and Zelnik-Manor, L.: 2018 PIRM Challenge on Perceptual Image Super-resolution, arXiv:1809.07517 [cs], 2018. a
Chen, Z., Wang, X., Xu, Z., and Hou, W.:
Convolutional Neural Network Based Dem Super Resolution, ISPRS – International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences,
XLI-B3, 247–250,
https://doi.org/10.5194/isprsarchives-XLI-B3-247-2016, 2016.
a
Clarke, G. K. C., Berthier, E., Schoof, C. G., and Jarosch, A. H.:
Neural Networks Applied to Estimating Subglacial Topography and Glacier Volume,
J. Climate,
22, 2146–2160,
https://doi.org/10.1175/2008JCLI2572.1, 2009.
a
Cornford, S. L., Martin, D. F., Lee, V., Payne, A. J., and Ng, E. G.:
Adaptive Mesh Refinement versus Subgrid Friction Interpolation in Simulations of Antarctic Ice Dynamics,
Ann. Glaciol.,
57, 1–9,
https://doi.org/10.1017/aog.2016.13, 2016.
a
Cox, S. C., Smith-Lyttle, B., Siddoway, C., Capponi, G., Elvevold, S., Burton-Johnson, A., Halpin, J., Morin, P., Elliot, D., and Geomap Action Group: The GeoMAP dataset of Antarctic rock exposures, in: POLAR2018, p. 2428, Davos, Switzerland, 19–23 June 2018.
a,
b
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and Wei, Y.:
Deformable Convolutional Networks,
arXiv:1703.06211 [cs], 2017. a
Dong, C., Loy, C. C., He, K., and Tang, X.:
Image Super-Resolution Using Deep Convolutional Networks,
arXiv:1501.00092 [cs], 2014. a
Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A.:
The Variety and Distribution of Submarine Glacial Landforms and Implications for Ice-Sheet Reconstruction,
Geol. Soc. Mem.,
46, 519–552,
https://doi.org/10.1144/M46.183, 2016a.
a
Dowdeswell, J. A., Solheim, A., and Ottesen, D.:
Rhombohedral Crevasse-Fill Ridges at the Marine Margin of a Surging Svalbard Ice Cap,
Geol. Soc. Mem.,
46, 73–74,
https://doi.org/10.1144/M46.62, 2016b.
a
Drews, R., Pattyn, F., Hewitt, I. J., Ng, F. S. L., Berger, S., Matsuoka, K., Helm, V., Bergeot, N., Favier, L., and Neckel, N.: Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line, Nat. Commun., 8, 15228,
https://doi.org/10.1038/ncomms15228, 2017.
a
Dumoulin, V., Perez, E., Schucher, N., Strub, F., Vries, H., Courville, A., and Bengio, Y.: Feature-wise transformations, Distill, 3, e11,
https://doi.org/10.23915/distill.00011, 2018.
a,
b
Durand, G., Gagliardini, O., Favier, L., Zwinger, T., and le Meur, E.:
Impact of Bedrock Description on Modeling Ice Sheet Dynamics: Bedrock Description to Model Ice Sheet,
Geophys. Res. Lett.,
38,
https://doi.org/10.1029/2011GL048892, 2011.
a
Falcini, F. A., Rippin, D. M., Krabbendam, M., and Selby, K. A.:
Quantifying Bed Roughness beneath Contemporary and Palaeo-Ice Streams,
J. Glaciol.,
64, 822–834,
https://doi.org/10.1017/jog.2018.71, 2018.
a
Farinotti, D., Huss, M., Bauder, A., Funk, M., and Truffer, M.:
A Method to Estimate the Ice Volume and Ice-Thickness Distribution of Alpine Glaciers,
J. Glaciol.,
55, 422–430,
https://doi.org/10.3189/002214309788816759, 2009.
a
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., F”urst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970,
https://doi.org/10.5194/tc-11-949-2017, 2017.
a
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., and Pandit, A.:
A Consensus Estimate for the Ice Thickness Distribution of All Glaciers on Earth,
Nat. Geosci.,
12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019.
a
Ferraccioli, F., Corr, H., Jordan, T. A., Robinson, C., Armadillo, E., Bozzo, E., and Caneva, G.: Airborne radar bed elevation picks across the Wilkes Subglacial Basin, 2005–2006, Polar Data Centre, Natural Environment Research Council, UK,
https://doi.org/10.5285/59e5a6f5-e67d-4a05-99af-30f656569401, 3 April 2018.
a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393,
https://doi.org/10.5194/tc-7-375-2013, 2013.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Goff, J. A., Powell, E. M., Young, D. A., and Blankenship, D. D.:
Conditional Simulation of Thwaites Glacier (Antarctica) Bed Topography for Flow Models: Incorporating Inhomogeneous Statistics and Channelized Morphology,
J. Glaciol.,
60, 635–646,
https://doi.org/10.3189/2014JoG13J200, 2014.
a
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.:
Generative Adversarial Networks,
arXiv:1406.2661 [cs, stat], 2014.
a,
b,
c,
d
Graham, F. S., Roberts, J. L., Galton-Fenzi, B. K., Young, D., Blankenship, D., and Siegert, M. J.: A high-resolution synthetic bed elevation grid of the Antarctic continent, Earth Syst. Sci. Data, 9, 267–279,
https://doi.org/10.5194/essd-9-267-2017, 2017.
a,
b
He, K., Zhang, X., Ren, S., and Sun, J.:
Deep Residual Learning for Image Recognition,
arXiv:1512.03385 [cs], 2015. a
He, K., Zhang, X., Ren, S., and Sun, J.:
Identity Mappings in Deep Residual Networks,
arXiv:1603.05027 [cs], 2016. a
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559,
https://doi.org/10.5194/tc-8-1539-2014, 2014.
a
Holschuh, N., Christianson, K., Paden, J., Alley, R. B., and Anandakrishnan, S.: Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica, Geology, 48, 268–272,
https://doi.org/10.1130/G46772.1, 2020.
a,
b
Howat, I. M., Paul, M., Claire, P., and Myong-Jong, N.: The Reference Elevation Model of Antarctica, Harvard Dataverse,
https://doi.org/10.7910/DVN/SAIK8B, 2018.
a,
b
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674,
https://doi.org/10.5194/tc-13-665-2019, 2019.
a,
b,
c,
d
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A.:
Image-to-Image Translation with Conditional Adversarial Networks,
arXiv:1611.07004 [cs], 2016. a
Jeofry, H., Ross, N., Corr, H. F. J., Li, J., Gogineni, P., and Siegert, M. J.: 1-km bed topography digital elevation model (DEM) of the Weddell Sea sector, West Antarctica,
https://doi.org/10.5281/zenodo.1035488, 2017.
a
Jordan, T. A., Ferraccioli, F., Corr, H., Graham, A., Armadillo, E., and Bozzo, E.:
Hypothesis for Mega-Outburst Flooding from a Palaeo-Subglacial Lake beneath the East Antarctic Ice Sheet: Antarctic Palaeo-Outburst Floods and Subglacial Lake,
Terra Nova,
22, 283–289,
https://doi.org/10.1111/j.1365-3121.2010.00944.x, 2010.
a
Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt, J. W., Scambos, T., and Vaughan, D. G.:
Basal Conditions for Pine Island and Thwaites Glaciers, West Antarctica, Determined Using Satellite and Airborne Data,
J. Glaciol.,
55, 245–257,
https://doi.org/10.3189/002214309788608705, 2009.
a
Kern, M., Cullen, R., Berruti, B., Bouffard, J., Casal, T., Drinkwater, M. R., Gabriele, A., Lecuyot, A., Ludwig, M., Midthassel, R., Navas Traver, I., Parrinello, T., Ressler, G., Andersson, E., Martin-Puig, C., Andersen, O., Bartsch, A., Farrell, S., Fleury, S., Gascoin, S., Guillot, A., Humbert, A., Rinne, E., Shepherd, A., van den Broeke, M. R., and Yackel, J.: The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission, The Cryosphere, 14, 2235–2251,
https://doi.org/10.5194/tc-14-2235-2020, 2020.
a
King, E. C., Pritchard, H. D., and Smith, A. M.: Subglacial landforms beneath Rutford Ice Stream, Antarctica: detailed bed topography from ice-penetrating radar, Earth Syst. Sci. Data, 8, 151–158,
https://doi.org/10.5194/essd-8-151-2016, 2016.
a,
b
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with Deep Convolutional Neural Networks, in: Advances in Neural Information Processing Systems 25, edited by: Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., Curran Associates, Inc., Lake Tahoe, Nevada, 1097–1105, 2012. a
Kyrke-Smith, T. M., Gudmundsson, G. H., and Farrell, P. E.: Relevance of Detail in Basal Topography for Basal Slipperiness Inversions: A Case Study on Pine Island Glacier, Antarctica, Front. Earth Sci., 6, 33,
https://doi.org/10.3389/feart.2018.00033, 2018.
a
Le Brocq, A. M., Payne, A. J., and Vieli, A.: An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1), Earth Syst. Sci. Data, 2, 247–260,
https://doi.org/10.5194/essd-2-247-2010, 2010.
a
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.:
Backpropagation Applied to Handwritten Zip Code Recognition,
Neural Comput.,
1, 541–551,
https://doi.org/10.1162/neco.1989.1.4.541, 1989.
a
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.:
Gradient-Based Learning Applied to Document Recognition,
P. IEEE,
86, 2278–2324,
https://doi.org/10.1109/5.726791, 1998.
a
LeCun, Y., Bengio, Y., and Hinton, G.:
Deep Learning,
Nature,
521, 436–444,
https://doi.org/10.1038/nature14539, 2015.
a,
b,
c
Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W.: Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, Hawaii, 105–114,
https://doi.org/10.1109/CVPR.2017.19, 21–26 July 2017.
a
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A.:
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization,
arXiv:1603.06560 [cs, stat], 2018. a
Lim, B., Son, S., Kim, H., Nah, S., and Lee, K. M.:
Enhanced Deep Residual Networks for Single Image Super-Resolution,
arXiv:1707.02921 [cs], 2017. a
Lythe, M. B. and Vaughan, D. G.: BEDMAP:
A New Ice Thickness and Subglacial Topographic Model of Antarctica,
J. Geophys. Res.-Sol. Ea.,
106, 11335–11351,
https://doi.org/10.1029/2000JB900449, 2001.
a
Maas, A. L., Hannun, A. Y., and Ng, A. Y.: Rectifier nonlinearities improve neural network acoustic models, in ICML Workshop on Deep Learning for Audio, Speech, and Language Processing, Atlanta, Georgia, USA, 16 June 2013.
a,
b
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., Popescu, S., Shum, C., Schutz, B. E., Smith, B., Yang, Y., and Zwally, J.:
The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation,
Remote Sens. Environ.,
190, 260–273,
https://doi.org/10.1016/j.rse.2016.12.029, 2017.
a
Masi, G., Cozzolino, D., Verdoliva, L., and Scarpa, G.:
Pansharpening by Convolutional Neural Networks,
Remote Sens.-Basel,
8, 594,
https://doi.org/10.3390/rs8070594, 2016.
a
Monnier, J. and Zhu, J.: Inference of the bed topography in poorly flew over ice-sheets areas from surface data and a reduced uncertainty flow model, HAL Archives Ouvertes, available at:
https://hal.archives-ouvertes.fr/hal-01926620 (last access: 7 March 2019), 2018. a
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 1, Boulder, Colorado, USA. NASA National Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/C2GFER6PTOS4, 2019.
a,
b,
c
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry, D.:
A Mass Conservation Approach for Mapping Glacier Ice Thickness: BALANCE THICKNESS,
Geophys. Res. Lett.,
38,
https://doi.org/10.1029/2011GL048659, 2011.
a
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.:
BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation,
Geophys. Res. Lett.,
44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
a
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M. R. van den, Ommen, T. D. van, Wessem, M., and van and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137,
https://doi.org/10.1038/s41561-019-0510-8, 2019.
a,
b,
c,
d,
e
Mouginot, J., Scheuchl, B., and Rignot, E.: MEaSUREs Antarctic Boundaries for IPY 2007–2009 from Satellite Radar, Version 2. Boulder, Colorado, USA, NASA National Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/AXE4121732AD, 2017.
a
Mouginot, J., Rignot, E., and Scheuchl, B.:
Continent-Wide, Interferometric SAR Phase, Mapping of Antarctic Ice Velocity,
Geophys. Res. Lett.,
46, 9710–9718,
https://doi.org/10.1029/2019GL083826, 2019a.
a
Mouginot, J., Rignot, E., and Scheuchl, B.: MEaSUREs Phase-Based Antarctica Ice Velocity Map, Version 1. Boulder, Colorado, USA, NASA National Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/PZ3NJ5RXRH10, 2019b.
a,
b,
c,
d,
e
Nias, I. J., Cornford, S. L., and Payne, A. J.:
Contrasting the Modelled Sensitivity of the Amundsen Sea Embayment Ice Streams,
J. Glaciol.,
62, 552–562,
https://doi.org/10.1017/jog.2016.40, 2016.
a
Park, T., Liu, M.-Y., Wang, T.-C., and Zhu, J.-Y.:
Semantic Image Synthesis with Spatially-Adaptive Normalization,
arXiv:1903.07291 [cs], 2019. a
Raymond, M. J. and Gudmundsson, G. H.: On the relationship between surface and basal properties on glaciers, ice sheets, and ice streams, J. Geophys. Res.-Sol. Ea., 110, B08411,
https://doi.org/10.1029/2005JB003681, 2005.
a
Rignot, E., Mouginot, J., and Scheuchl, B.:
Antarctic Grounding Line Mapping from Differential Satellite Radar Interferometry: Grounding Line of Antarctica,
Geophys. Res. Lett.,
38,
https://doi.org/10.1029/2011GL047109, 2011.
a
Rippin, D., Bingham, R., Jordan, T., Wright, A., Ross, N., Corr, H., Ferraccioli, F., Le Brocq, A., Rose, K., and Siegert, M.:
Basal Roughness of the Institute and Möller Ice Streams, West Antarctica: Process Determination and Landscape Interpretation,
Geomorphology,
214, 139–147,
https://doi.org/10.1016/j.geomorph.2014.01.021, 2014.
a
Robin, G. D. Q., Swithinbank, C., and Smith, B.:
Radio Echo Exploration of the Antarctic Ice Sheet,
in: International Symposium on Antarctic Glaciological Exploration (ISAGE),
edited by: Gow, A., Keeler, C., Langway, C., and Weeks, W.,
no. 86 in IASH Publication,
International Association of Scientific Hydrology, Hanover, New Hampshire, USA, 97–115, 1970. a
Rumelhart, D. E., Hinton, G. E., and Williams, R. J.:
Learning Representations by Back-Propagating Errors,
Nature,
323, 533–536,
https://doi.org/10.1038/323533a0, 1986.
a
Scarpa, G., Vitale, S., and Cozzolino, D.:
Target-Adaptive CNN-Based Pansharpening,
IEEE T. Geosci. Remote,
56, 5443–5457,
https://doi.org/10.1109/TGRS.2018.2817393, 2018.
a
Sergienko, O. V. and Hindmarsh, R. C. A.:
Regular Patterns in Frictional Resistance of Ice-Stream Beds Seen by Surface Data Inversion,
Science,
342, 1086–1089,
https://doi.org/10.1126/science.1243903, 2013.
a
Shi, L., Allen, C. T., Ledford, J. R., Rodriguez-Morales, F., Blake, W. A., Panzer, B. G., Prokopiack, S. C., Leuschen, C. J., and Gogineni, S.: Multichannel Coherent Radar Depth Sounder for NASA Operation Ice Bridge, in 2010 IEEE International Geoscience and Remote Sensing Symposium, pp. 1729–1732, IEEE, Honolulu, HI, USA,
https://doi.org/10.1109/IGARSS.2010.5649518, 25–30 July 2010.
a,
b
Siegert, M. J., Taylor, J., Payne, A. J., and Hubbard, B.:
Macro-Scale Bed Roughness of the Siple Coast Ice Streams in West Antarctica,
Earth Surf. Proc. Land.,
29, 1591–1596,
https://doi.org/10.1002/esp.1100, 2004.
a
Simonyan, K. and Zisserman, A.:
Very Deep Convolutional Networks for Large-Scale Image Recognition,
arXiv:1409.1556 [cs], 2014. a
Tokui, S., Yamazaki Vincent, H., Okuta, R., Akiba, T., Niitani, Y., Ogawa, T., Saito, S., Suzuki, S., Uenishi, K., and Vogel, B.: Chainer: A Deep Learning Fr
amework for Accelerating the Research Cycle, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – KDD '19, ACM Press, Anchorage, AK, USA, 2002–2011,
https://doi.org/10.1145/3292500.3330756, 4–8 August 2019.
a
Tsai, R. and Huang, T. S.:
Multiframe Image Restoration and Registration,
in: Advance Computer Visual and Image Processing, vol. 1,
edited by: Huang, T. S.,
JAI Press, Greenwich, CT, 317–339, 1984. a
van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pettersson, R., Pohjola, V. A., Isaksson, E., and Divine, D.: An iterative inverse method to estimate basal topography and initialize ice flow models, The Cryosphere, 7, 987–1006,
https://doi.org/10.5194/tc-7-987-2013, 2013.
a
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., and Loy, C. C.:
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks,
in: Computer Vision – ECCV 2018 Workshops, vol. 11133,
edited by: Leal-Taixé, L. and Roth, S.,
Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-030-11021-5_5, 63–79, 2019.
a,
b,
c,
d,
e,
f,
g
Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E.:
Image Quality Assessment: From Error Visibility to Structural Similarity,
IEEE T. Image Process.,
13, 600–612,
https://doi.org/10.1109/TIP.2003.819861, 2004.
a
Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W., and Tian, D.:
The Generic Mapping Tools Version 6,
Geochem. Geophy. Geosy.,
20, 5556–5564,
https://doi.org/10.1029/2019GC008515, 2019.
a,
b
Xu, Z., Wang, X., Chen, Z., Xiong, D., Ding, M., and Hou, W.:
Nonlocal Similarity Based DEM Super Resolution,
ISPRS J. Photogramm.,
110, 48–54,
https://doi.org/10.1016/j.isprsjprs.2015.10.009, 2015.
a
Yang, J., Fu, X., Hu, Y., Huang, Y., Ding, X., and Paisley, J.: PanNet: A Deep Network Architecture for Pan-Sharpening, in: 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, Venice, Italy, 1753–1761,
https://doi.org/10.1109/ICCV.2017.193, 22–29 October 2017.
a
Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.-H., and Liao, Q.:
Deep Learning for Single Image Super-Resolution: A Brief Review,
IEEE T. Multimedia,
21, 3106–3121,
https://doi.org/10.1109/TMM.2019.2919431, 2019.
a,
b