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Abstract. To resolve the bed elevation of Antarctica, we
present DeepBedMap — a novel machine learning method
that can produce Antarctic bed topography with adequate
surface roughness from multiple remote sensing data in-
puts. The super-resolution deep convolutional neural network
model is trained on scattered regions in Antarctica where
high-resolution (250 m) ground-truth bed elevation grids are
available. This model is then used to generate high-resolution
bed topography in less surveyed areas. DeepBedMap im-
proves on previous interpolation methods by not restricting
itself to a low-spatial-resolution (1000 m) BEDMAP2 raster
image as its prior image. It takes in additional high-spatial-
resolution datasets, such as ice surface elevation, velocity
and snow accumulation, to better inform the bed topogra-
phy even in the absence of ice thickness data from direct ice-
penetrating-radar surveys. The DeepBedMap model is based
on an adapted architecture of the Enhanced Super-Resolution
Generative Adversarial Network, chosen to minimize per-
pixel elevation errors while producing realistic topography.
The final product is a four-times-upsampled (250 m) bed el-
evation model of Antarctica that can be used by glaciologists
interested in the subglacial terrain and by ice sheet modellers
wanting to run catchment- or continent-scale ice sheet model
simulations. We show that DeepBedMap offers a rougher to-
pographic profile compared to the standard bicubically in-
terpolated BEDMAP2 and BedMachine Antarctica and en-
vision it being used where a high-resolution bed elevation
model is required.

1 Introduction

The bed of the Antarctic ice sheet is one of the most chal-
lenging surfaces on Earth to map due to the thick layer of
ice cover. Knowledge of bed elevation is however essential
for estimating the volume of ice currently stored in the ice
sheets and for input to the numerical models that are used to
estimate the contribution ice sheets are likely to make to sea
level in the coming century. The Antarctic ice sheet is esti-
mated to hold a sea level equivalent (SLE) of 57.9£0.9m
(Morlighem et al., 2019). Between 2012 and 2017, the
Antarctic ice sheet was losing mass at an average rate of
219 +43Gtyr~!' (0.61 +0.12mmyr~! SLE), with most of
the ice loss attributed to the acceleration, retreat and rapid
thinning of major West Antarctic Ice Sheet outlet glaciers
(IMBIE, 2018). Bed elevation exerts additional controls on
ice flow by routing subglacial water and providing frictional
resistance to flow (Siegert et al., 2004). Bed roughness, espe-
cially at short wavelengths, exerts a frictional force against
the flow of ice, making it an important influence on ice ve-
locity (Bingham et al., 2017; Falcini et al., 2018). The impor-
tance of bed elevation has led to major efforts to compile bed
elevation models of Antarctica, notably with the BEDMAP1
(Lythe and Vaughan, 2001) and BEDMAP2 (Fretwell et al.,
2013) products. A need for a higher-spatial-resolution digital
elevation model (DEM) is also apparent, as ice sheet models
move to using sub-kilometre grids in order to quantify glacier
ice flow dynamics more accurately (Le Brocq et al., 2010;
Graham et al., 2017). Finer grids are especially important at
the ice sheet’s grounding zone on which adaptive mesh re-
finement schemes have focused (e.g. Cornford et al., 2016),
and attention to the bed roughness component is imperative
for proper modelling of fast-flowing outlet glaciers (Durand
etal., 2011; Nias et al., 2016). Here we address the challenge
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of producing a high-resolution DEM while preserving a real-
istic representation of the bed terrain’s roughness.

Estimating bed elevation directly from geophysical ob-
servations primarily uses ice-penetrating-radar methods (e.g.
Robin et al., 1970). Airborne radar methods enable reliable
along-track estimates with low uncertainty (around the 1 %
level) introduced by imperfect knowledge of the firn and
ice velocity structure, with some potential uncertainty intro-
duced by picking the bed return. Radar-derived bed estimates
remain limited in their geographic coverage (Fretwell et al.,
2013) and are typically anisotropic in their coverage, with
higher spatial sampling in the along-track direction than be-
tween tracks.

To overcome these limitations, indirect methods of esti-
mating bed elevation have been developed, and these in-
clude inverse methods and spatial statistical methods. In-
verse methods use surface observations combined with
glaciological-process knowledge to determine ice thickness
(e.g. van Pelt et al., 2013). A non-linear relationship exists
between the thickness of glaciers, ice streams and ice sheets
and how they flow (Raymond and Gudmundsson, 2005),
meaning one can theoretically use a well-resolved surface
to infer bed properties (e.g. Farinotti et al., 2009). Using
surface observation inputs, such as the glacier outline, sur-
face digital elevation models, surface mass balance, surface
rate of elevation change, and surface ice flow velocity, var-
ious models have been tested in the Ice Thickness Models
Intercomparison eXperiment (ITMIX; Farinotti et al., 2017)
to determine ice thickness (surface elevation minus bed el-
evation). While significant inter-model uncertainties do ex-
ist, they can be mitigated by combining several models in
an ensemble to provide a better consensus estimate (Farinotti
et al., 2019). On a larger scale, the inverse technique has also
been applied to the Greenland (Morlighem et al., 2017) and
Antarctic (Morlighem et al., 2019) ice sheets, specifically us-
ing the mass conservation approach (Morlighem et al., 2011).
Spatial statistical methods seek to derive a higher-spatial-
resolution bed by applying the topographical likeness of bed
features known to great detail in one area to other regions.
For example, the conditional simulation method applied by
Goff et al. (2014) is able to resolve both fine-scale rough-
ness and channelized morphology over the complex topog-
raphy of Thwaites Glacier and make use of the fact that
roughness statistics are different between highland and low-
land areas. Graham et al. (2017) uses a two-step approach
to generate their synthetic high-resolution grid, with the
high-frequency roughness component coming from the ICE-
CAP and BEDMAPI1 compilation radar point data and the
low-frequency component coming from BEDMAP?2. Neither
method is perfect, and we see all of the above methods as
complementary.

We present a deep-neural-network method that is trained
on direct ice-penetrating-radar observations over Antarctica
and one which has features from both the indirect inverse
modelling and spatial statistical methodologies. An artificial
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neural network, loosely based on biological neural networks,
is a system made up of neurons. Each neuron comprises a
simple mathematical function that takes an input to produce
an output value, and neural networks work by combining
many of these neurons together. The term deep neural net-
work is used when there is not a direct function mapping
between the input data and final output but two or more
layers that are connected to one another (see LeCun et al.,
2015, for a review). They are trained using backpropagation,
a procedure whereby the weights or parameters of the neu-
rons’ connections are adjusted so as to minimize the error
between the ground truth and output of the neural network
(Rumelhart et al., 1986). Similar work has been done before
using artificial neural networks for estimating bed topogra-
phy (e.g. Clarke et al., 2009; Monnier and Zhu, 2018), but
to our knowledge, no-one so far in the glaciological com-
munity has attempted to use convolutional neural networks
that work in a more spatially aware, 2-dimensional setting.
Convolutional neural networks differ from standard artificial
neural networks in that they use kernels or filters in place of
regular neurons (again, see LeCun et al., 2015, for a review).
The techniques we employ are prevalent in the computer vi-
sion community, having existed since the 1980s (Fukushima
and Miyake, 1982; LeCun et al., 1989) and are commonly
used in visual pattern recognition tasks (e.g. Lecun et al.,
1998; Krizhevsky et al., 2012). Our main contributions are
twofold: we (1) present a high-resolution (250 m) bed ele-
vation map of Antarctica that goes beyond the 1 km resolu-
tion of BEDMAP2 (Fretwell et al., 2013) and (2) design a
deep convolutional neural network to integrate as many re-
mote sensing datasets as possible which are relevant to es-
timating Antarctica’s bed topography. We name the neural
network “DeepBedMap”, and the resulting digital elevation
model (DEM) product “DeepBedMap_DEM”.

2 Related work
2.1 Super resolution

Super resolution involves the processing of a low-resolution
raster image into a higher-resolution one (Tsai and Huang,
1984). The idea is similar to the work on enhancing regu-
lar photographs to look crisper. The problem is especially
ill-posed because a specific low-resolution input can cor-
respond to many possible high-resolution outputs, resulting
in the development of several different algorithms aimed at
solving this challenge (see Nasrollahi and Moeslund, 2014,
for a review). One promising approach is to use deep neural
networks (LeCun et al., 2015) to learn an end-to-end map-
ping between the low- and high-resolution images, a method
coined the Super-Resolution Convolutional Neural Network
(SRCNN; Dong et al., 2014). Since the development of SR-
CNN, multiple advances have been made to improve the per-
ceptual quality of super-resolution neural networks (see Yang
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et al., 2019, for a review). One way is to use a better loss
function, also known as a cost function. A loss function is
a mathematical function that represents the error between
the output of the neural network and the ground truth (see
also Appendix A). By having an adversarial component in
its loss function, the Super-Resolution Generative Adversar-
ial Network (SRGAN; Ledig et al., 2017) manages to pro-
duce super-resolution images with finer perceptual details.
A generative adversarial network (Goodfellow et al., 2014)
consists of two neural networks, a generator and a discrim-
inator. A common analogy used is to treat the generator as
an artist that produces imitation paintings and the discrimi-
nator as an art critic that determines the authenticity of the
paintings. The artist wants to fool the critic into believing
its paintings are real, while the critic tries to identify prob-
lems with the painting. Over time, the artist or generator
model learns to improve itself based on the critic’s judge-
ment, producing authentic-looking paintings with high per-
ceptual quality. Perceptual quality is the extent to which an
image looks like a valid natural image, usually as judged by
a human. In this case, perceptual quality is quantified math-
ematically by the discriminator or critic taking into account
high-level features of an image like contrast, texture, etc. An-
other way to improve performance is by reconfiguring the
neural network’s architecture, wherein the layout or build-
ing blocks of the neural network are changed. By removing
unnecessary model components and adding residual connec-
tions (He et al., 2015), an enhanced deep super-resolution
network (EDSR; Lim et al., 2017) features a deeper neu-
ral network model that has better performance than older
models. For the DeepBedMap model, we choose to adapt
the Enhanced Super-Resolution Generative Adversarial Net-
work (ESRGAN; Wang et al., 2019) which brings together
the ideas mentioned above. This approach produces state-of-
the-art perceptual quality and won the 2018 Perceptual Im-
age Restoration and Manipulation Challenge on Super Reso-
lution (Third Region; Blau et al., 2018).

2.2 Network conditioning

Network conditioning means having a neural network pro-
cess one source of information in the context of other sources
(Dumoulin et al., 2018). In a geographic context, condition-
ing is akin to using not just one layer but also other rele-
vant layers with meaningful links to provide additional in-
formation for the task at hand. Many ways exist to insert
extra conditional information into a neural network, such as
concatenation-based conditioning, conditional biasing, con-
ditional scaling and conditional affine transformations (Du-
moulin et al., 2018). We choose to use the concatenation-
based conditioning approach, whereby all of the individual
raster images are concatenated together channel-wise, much
like the individual bands of a multispectral satellite image.
This was deemed the most appropriate conditioning method
as all the contextual remote sensing datasets are raster grid
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images and also because this approach aligns with related
work in the remote sensing field.

An example similar to this DEM super-resolution problem
is the classic problem of pan-sharpening, whereby a blurry
low-resolution multispectral image conditioned with a high-
resolution panchromatic image can be turned into a high-
resolution multispectral image. There is ongoing research
into the use of deep convolutional neural networks for pan-
sharpening (Masi et al., 2016; Scarpa et al., 2018), sometimes
with the incorporation of specific domain knowledge (Yang
etal., 2017), all of which show promising improvements over
classical image processing methods. More recently, genera-
tive adversarial networks (Goodfellow et al., 2014) have been
used in the conditional sense for general image-to-image
translation tasks (e.g. Isola et al., 2016; Park et al., 2019), and
also for producing more realistic pan-sharpened satellite im-
ages (Liu et al., 2018). Our DeepBedMap model builds upon
these ideas and other related DEM super-resolution work (Xu
etal., 2015; Chen et al., 2016), while incorporating extra con-
ditional information specific to the cryospheric domain for
resolving the bed elevation of Antarctica.

3 Data and methods
3.1 Data preparation

Our convolutional neural network model works on 2-D im-
ages, so we ensure all the datasets are in a suitable raster grid
format. Ground-truth bed elevation points picked from radar
surveys (see Table 1) are first compiled together onto a com-
mon Antarctic stereographic projection (EPSG:3031) us-
ing the WGS84 datum, reprojecting where necessary. These
points are then gridded onto a 250 m spatial resolution (pixel-
node-registered) grid. We preprocess the points first using
Generic Mapping Tools v6.0 (GMT6; Wessel et al., 2019),
computing the median elevation for each pixel block in a reg-
ular grid. The preprocessed points are then run through an
adjustable-tension continuous-curvature spline function with
a tension factor set to 0.35 to produce a digital elevation
model grid. This grid is further post-processed to mask out
pixels that are more than 3 pixels (750 m) from the nearest
ground-truth point.

To create the training dataset, we use a sliding window to
obtain square tiles cropped from the high-resolution (250 m)
ground-truth bed elevation grids, with each tile required to
be completely filled with data (i.e. no Not a Number — NaN
— values). Besides these ground-truth bed elevation tiles, we
also obtain other tiled inputs (see Table 2) corresponding to
the same spatial bounding box area. To reduce border edge
artefacts in the prediction, the neural network model’s in-
put convolutional layers (see Fig. 1) use no padding (also
known as “valid” padding) when performing the initial con-
volution operation. This means that the model input grids
(x, wl, w?, w3) have to cover a larger spatial area than the
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Figure 1. DeepBedMap generator model architecture composed of three modules. The input module processes each of the four inputs
(BEDMAP2, Fretwell et al., 2013; REMA, Howat et al., 2019; MEaSUREs Ice Velocity, Mouginot et al., 2019b; snow accumulation, Arthern
et al., 2006; see also Table 2) into a consistent tensor. The core module processes the rich information contained within the concatenated
inputs. The upsampling module scales the tensor up by 4 times and does some extra processing to produce the output DeepBedMap_DEM.

Table 1. High-resolution ground-truth datasets from ice-
penetrating-radar surveys (collectively labelled as y) used to
train the DeepBedMap model. Training site locations can be seen
in Fig. 2.

Location Citation

Pine Island Glacier

Wilkes Subglacial Basin
Carlson Inlet

Rutford Ice Stream

Various locations in Antarctica

Bingham et al. (2017)
Jordan et al. (2010)
King (2011)

King et al. (2016)

Shi et al. (2010)

ground-truth grids (y). More specifically, the model inputs
cover an area of 11km x 11km (e.g. 11 pixels x 11 pixels
for BEDMAP2), while the ground-truth grids cover an area
of 9km x 9km (36 pixels x 36 pixels). As the pixels of the
ground-truth grids may not align perfectly with those of the
model’s input grids, we use bilinear interpolation to ensure
that all the input grids cover the same spatial bounds as those
of the reference ground-truth tiles. The general locations of
these training tiles are shown in orange in Fig. 2.

The Cryosphere, 14, 3687-3705, 2020

3.2 Model design

Our DeepBedMap model is a generative adversarial network
(Goodfellow et al., 2014) composed of two convolutional
neural network models, a generator G¢ that produces the bed
elevation prediction and a discriminator D,, critic that will
judge the quality of this output. The two models are trained
to compete against each other, with the generator trying to
produce images that are misclassified as real by the discrim-
inator and the discriminator learning to spot problems with
the generator’s prediction in relation to the ground truth. Fol-
lowing this is a mathematical definition of the neural network
models and their architecture.

The objective of the main super-resolution generator
model Gy is to produce a high-resolution (250 m) grid of
Antarctica’s bed elevation y given a low-resolution (1000 m)
BEDMAP2 (Fretwell et al., 2013) image x. However, the
information contained in BEDMAP?2 is insufficient for this
regular super-resolution task, so we provide the neural net-
work with more context through network conditioning (see
Sect. 2.2). Specifically, the model is conditioned at the input
block stage with three raster grids (see Table 2): (1) ice sur-
face elevation w', (2) ice surface velocity w? and (3) snow
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Table 2. Remote sensing dataset inputs into the DeepBedMap neural network model.

Symbol  Name Variable Spatial resolution  Citation

X BEDMAP2 bed elevation (m) 1000 m Fretwell et al. (2013)
w! REMA surface elevation (m) 100 mb Howat et al. (2018)

w? MEaSUREs Ice Velocity VX, VY (myr—1)2 500 m® Mouginot et al. (2019a)
w3 Antarctic snow accumulation  snow accumulation rate (kg m~2 yr_l) 1000 m Arthern et al. (2006)

2 Note that the x and y components of velocity are used here instead of the norm.

b Gaps in 100 m mosaic filled in with bilinear resampled 200 m resolution REMA image.

¢ Originally 450 m; bilinear resampled to 500 m.

accumulation w3. This can be formulated as follows:
$=Golx,w!, w?, w), (1)

where Gy is the generator (see Fig. 1) that produces high-
resolution image candidates y. For brevity in the following
equations, we simplify Eq. (1) to hide conditional inputs
w!, w? and w3, so that all input images are represented us-
ing x. To train the generative adversarial network, we update
the parameters of the generator 6 and discriminator n as fol-

lows:

. e
6 = in— Y LgQ& , 2
argngnN; G yn) @

1 N
i =argmin—- > Lo (G, yn), 3)

n=1

where new estimates of the neural network parameters 6
and 7 are produced by minimizing the total loss functions
L and Lp, respectively, for the generator G and discrimina-
tor D and 3, and y, are the set of predicted and ground-truth
high-resolution images over N training samples. The gen-
erator network’s loss Lg is a custom perceptual loss func-
tion with four weighted components — content, adversarial,
topographic and structural loss. The discriminator network’s
loss Lp is designed to maximize the likelihood that predicted
images are classified as fake (0) and ground-truth images are
classified as real (1). Details of these loss functions are de-
scribed in Appendix A.

Noting that the objective of the generator G is opposite
to that of the discriminator D, we formulate the adversarial
min—max problem following Goodfellow et al. (2014) as

ngnmng(G, D) =Ey~pu.c»[InD(y)]

+ Ex~pg [In(1 — D(G (x)))], “

where for the discriminator D, we maximize the expecta-
tion [E or the likelihood that the probability distribution of
the discriminator’s output fits D(y) = 1 when y ~ Pgaa(y);
i.e. we want the discriminator to classify the high-resolution
image as real (1) when the image y is in the distribution of the
ground-truth images Pygawa (y). For the generator G, we mini-
mize the likelihood that the discriminator classifies the gen-
erator output D(G(x)) =0 when x ~ Pg(y); i.e. we do not
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want the discriminator to classify the super-resolution image
as fake (0) when the inputs x are in the distribution of gen-
erated images Pg(x). The overall goal of the entire network
is to make the distribution of generated images G (x) as sim-
ilar as possible to the ground truth y through optimizing the
value function V.

DeepBedMap’s model architecture is adapted from the
Enhanced Super-Resolution Generative Adversarial Network
(ESRGAN; Wang et al., 2019). The generator model G (see
Fig. 1) consists of an input, core and upsampling module.
The input module is made up of four sub-networks, each one
composed of a convolutional neural network that processes
the input image into a consistent 9 x 9 shaped tensor. Note
that the MEaSUREs Ice Velocity (Mouginot et al., 2019b)
input has two channels, one each for the x and y velocity
components. All the processed inputs are then concatenated
together channel-wise before being fed into the core mod-
ule. The core module is based on the ESRGAN architecture
with 12 residual-in-residual dense blocks (see Wang et al.,
2019, for details), saddled in between a pre-residual and post-
residual convolutional layer. A skip connection runs from the
pre-residual layer’s output to the post-residual layer’s out-
put before being fed into the upsampling module. This skip
connection (He et al., 2016) helps with the neural network
training process by allowing the model to also consider min-
imally processed information from the input module, instead
of solely relying on derived information from the residual-
block layers when performing the upsampling. The upsam-
pling module is composed of two upsampling blocks, specif-
ically a nearest-neighbour upsampling followed by a con-
volutional layer and leaky rectified linear unit (LeakyReLU;
Maas et al., 2013) activation, which progressively scales the
tensors by 2 times each time. Following this are two de-
formable convolutional layers (Dai et al., 2017) which pro-
duce the final-output super-resolution DeepBedMap_DEM.
This generator model is trained to gradually improve its pre-
diction by comparing the predicted output with ground-truth
images in the training regions (see Fig. 2), using the total loss
function defined in Eq. (A9).

The main differences between the DeepBedMap generator
model and ESRGAN are the custom input block at the be-
ginning and the deformable convolutional layers at the end.
The custom input block is designed to handle the prior low-
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Figure 2. DeepBedMap_DEM over the entire Antarctic continent. Plotted on an Antarctic stereographic projection (EPSG:3031) with eleva-
tion referenced to the WGS84 datum. Grounding line is plotted as thin black line. Purple box shows Pine Island Glacier extent used in Fig. 3.
Yellow box shows Thwaites Glacier extent used in Fig. 5. Orange areas show locations of training tiles (see Table 1).

resolution BEDMAP2 image and conditional inputs (see Ta-
ble 2). Deformable convolution was chosen in place of the
standard convolution so as to enhance the model’s predictive
capability by having it learn dense spatial transformations.

Besides the generator model, there is a separate adversar-
ial discriminator model D (not shown in the paper). Again,
we follow ESRGAN’s (Wang et al., 2019) lead by imple-
menting the adversarial discriminator network in the style
of the Visual Geometry Group convolutional neural network
model (VGG; Simonyan and Zisserman, 2014). The discrim-
inator model consists of 10 blocks made up of a convolu-
tional, batch normalization (Ioffe and Szegedy, 2015) and
LeakyReLU (Maas et al., 2013) layer, followed by two fully
connected layers comprised of 100 neurons and 1 neuron, re-
spectively. For numerical stability, we omit the final fully
connected layer’s sigmoid activation function from the dis-
criminator model’s construction, integrating it instead into
the binary cross-entropy loss functions at Egs. (A2) and (A3)
using the log-sum-exp function. The output of this discrimi-
nator model is a value ranging from 0 (fake) to 1 (real) that
scores the generator model’s output image. This score is used
by both the discriminator and generator in the training pro-
cess and helps to push the predictions towards more realistic
bed elevations. More details of the neural network training
setup can be found in Appendix B.

The Cryosphere, 14, 3687-3705, 2020

4 Results
4.1 DeepBedMap_DEM topography

Here we present the output digital elevation model (DEM)
of the super-resolution DeepBedMap neural network model
and compare it with bed topography produced by other meth-
ods. The resulting DEM has a 250 m spatial resolution and
therefore a four-times upsampled bed elevation grid prod-
uct of BEDMAP?2 (Fretwell et al., 2013). In Fig. 2, we show
that the full Antarctic-wide DeepBedMap_DEM manages to
capture general topographical features across the whole con-
tinent. The model is only valid for grounded-ice regions,
but we have produced predictions extending outside of the
grounding-zone area (including ice shelf cavities) using the
same bed elevation, surface elevation, ice velocity and snow
accumulation inputs where such data are available up to the
ice shelf front. We emphasize that the bed elevation under the
ice shelves has not been super resolved properly and is not
intended for ice sheet modelling use. Users are encouraged
to cut the DeepBedMap_DEM using their preferred ground-
ing line (e.g. Bindschadler et al., 2011; Rignot et al., 2011;
Mouginot et al., 2017) and replace the under-ice-shelf areas
with another bathymetry grid product (e.g. GEBCO Bathy-
metric Compilation Group, 2020). The transition from the
DeepBedMap_DEM to the bathymetry product across the
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grounding zone can then be smoothed using inverse distance
weighting or an alternative interpolation method.

We now highlight some qualitative observations of
DeepBedMap_DEM’s bed topography beneath Pine Island
Glacier (Fig. 3) and other parts of Antarctica (Fig. 4).
DeepBedMap_DEM shows a terrain with realistic topo-
graphical features, having fine-scale bumps and troughs that
makes it rougher than that of BEDMAP2 (Fretwell et al.,
2013) and BedMachine Antarctica (Morlighem, 2019) while
still preserving the general topography of the area (Fig. 3).
Over steep topographical areas such as the Transantarc-
tic Mountains (Fig. 4a and h), DeepBedMap produced
speckle (S) texture patterns. Along fast-flowing ice streams
and glaciers (Fig. 4b-h), we can see ridges (R) aligned paral-
lel to the sides of the valley, i.e. along the flow. In some cases,
the ridges are also oriented perpendicularly to the flow direc-
tion such as at Whillans Ice Stream (Fig. 4b), Bindschadler
Ice Stream (Fig. 4c¢) and Totten Glacier (Fig. 4g), resulting in
intersecting ridges that create a box-like, honeycomb struc-
ture. Over relatively flat regions in both West Antarctica and
East Antarctica (e.g. Fig. 4g), there are some hummocky,
wave-like (W) patterns occasionally represented in the ter-
rain. Terrace (T) features can occasionally be found winding
along the side of hills such as at the Gamburtsev Subglacial
Mountains (Fig. 4i).

4.2 Surface roughness

We compare the roughness of DeepBedMap_DEM vs. Bed-
Machine Antarctica with ground-truth grids from processed
Operation IceBridge data (Shi et al., 2010) using SD as a
simple measure of roughness (Rippin et al., 2014). We cal-
culate the surface roughness for a single 250 m pixel from
the SD of elevation values over a square 1250 m x 1250 m
area (i.e. 5 pixels x 5 pixels) surrounding the central pixel.
Focusing on Thwaites Glacier, the spatial 2-D view of the
DeepBedMap_DEM (Fig. 5a) shows a range of typical to-
pographic features such as hills and canyons. The calculated
2-D roughnesses for both DeepBedMap_DEM (Fig. 5b) and
the Ground truth (Fig. 5¢) lie in a similar range from 0
to 400 m, whereas the roughness of BedMachine Antarc-
tica (Fig. 5d) is mostly in the 0-to-200m range (hence
the different colour scale). Also, the roughness pattern for
both DeepBedMap_DEM and the ground truth has a more
distributed cluster pattern made up of little pockets (espe-
cially towards the coastal region on the left; see Fig. 5b
and c), whereas the BedMachine Antarctica roughness pat-
tern shows larger cluster pockets in isolated regions (see
Fig. 5d).

Taking a 1-D transect over the 250m resolution
DeepBedMap_DEM, BedMachine Antarctica and ground-
truth grids, we illustrate the differences in bed topography
and roughness from the coast towards the inland area of
Thwaites Glacier with a flight trace from Operation Ice-
Bridge (see Fig. 6). For better comparison, we have cal-
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culated the Operation IceBridge ground-truth bed eleva-
tion and roughness values from a resampled 250 m grid in-
stead of using its native along-track resolution. All three
elevation profiles are shown to follow the same general
trend from the relatively rough coastal region (Fig. 6a from
—1550 to —1500km on the x scale), along the retrograde
slope (Fig. 6a from —1500 to —1450km on the x scale)
and into the interior region. DeepBedMap_DEM features
a relatively noisy elevation profile with multiple fine-scale
(< 10km) bumps and troughs similar to the ground truth,
while BedMachine Antarctica shows a smoother profile that
is almost a moving average of the ground-truth elevation
(Fig. 6a). Looking at the roughness statistic (Fig. 6b), both
the DeepBedMap_DEM and Operation IceBridge ground-
truth grids have a mean SD of about 40 m, whereas BedMa-
chine Antarctica has a mean of about 10 m and rarely exceeds
a SD value of 20 m along the transect.

5 Discussion
5.1 Bed features

In Sect. 4.1, we show that the DeepBedMap model has pro-
duced a high-resolution (250 m) result (see Fig. 3) that can
capture a detailed picture of the underlying bed topogra-
phy. The fine-scale bumps and troughs are the result of the
DeepBedMap generator model learning to produce features
that are similar to those found in the high-resolution ground-
truth datasets it was trained on. However, there are also arte-
facts produced by the model. For example, the winding ter-
race (T, Fig. 4) features are hard to explain, and though they
resemble eskers (Drews et al., 2017), their placement along
the sides of hills does not support this view. Similarly, we are
not sure why speckle (S, Fig. 4) texture patterns are found
over steep mountains, but the lack of high-resolution training
datasets likely leads the model to perform worse over these
high-gradient areas.

Another issue is that DeepBedMap will often pick up de-
tails from the high-resolution ice surface elevation model
(Howat et al., 2019) input dataset, which may not be rep-
resentative of the true bed topography. For example, the
ridges (R, Fig. 4) found along fast-flowing ice streams and
glaciers are likely to be the imprints of crevasses or flow
stripes (Glasser and Gudmundsson, 2012) observable from
the surface. An alternative explanation is that the ridges,
especially the honeycomb-shaped ones, are rhombohedral
moraine deposits formed by soft sediment squeezed up into
basal crevasses that are sometimes found at stagnant surging
glaciers (Dowdeswell et al., 2016a,b; Solheim and Pfirman,
1985). We favour the first interpretation as the positions of
these bed features coincide with the surface features and also
because these ridges are more likely to be eroded away in
these fast-flowing ice stream areas.
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Figure 3. Comparison of interpolated bed elevation grid products over Pine Island Glacier (see extent in Fig. 2). (a) DeepBedMap (ours)
at 250 m resolution. (b) BEDMAP2 (Fretwell et al., 2013), originally 1000 m, bicubically interpolated to 250 m. (c) Elevation difference
between DeepBedMap and BEDMAP2. (d) BedMachine Antarctica (Morlighem, 2019), originally 500 m, bicubically interpolated to 250 m.

The hummocky wave-like (W) patterns we observe over
the relatively flat and slower-flowing areas are likely to re-
sult from surface megadune structures (Scambos, 2014). Al-
ternatively, they may be ribbed or Rogen moraine features
that are formed in an orientation transverse to the ice flow di-
rection (Hittestrand, 1997; Hittestrand and Kleman, 1999).
While any one of these two explanations may be valid in
different regions of Antarctica, we lean towards the conser-
vative interpretation that these features are the result of the
DeepBedMap model overfitting to the ice surface elevation
data.

The Cryosphere, 14, 3687-3705, 2020

5.2 Roughness

In Sect. 4.2, we quantitatively show that a well-trained
DeepBedMap neural network model can produce high
roughness values more comparable to the ground truth than
those of BedMachine Antarctica. While the mass conserva-
tion technique used by BedMachine Antarctica (Morlighem
etal., 2019) improves upon ordinary interpolation techniques
such as bicubic interpolation and kriging, its results are still
inherently smooth by nature. The ground-truth grids show
that rough areas do exist on a fine scale, and so the high-
resolution models we produce should reflect that.
DeepBedMap_DEM manages to capture much of the
rough topography found in the Operation IceBridge ground-
truth data, especially near the coast (see Fig. 6a, from —1550
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Figure 4. Close-up views of DeepBedMap_DEM around Antarctica. Panels (a—c) show Siple Coast locations. Panels (d-f) show Weddell
Sea region locations. Panels (g-i) show East Antarctica locations. Features of interest are annotated in black text against a white background:

ridges R, speckle patterns S, terraces T, wave patterns W.

to —1500km on the x scale) where the terrain tends to
be rougher. Along the retrograde slope (see Fig. 6a, from
—1500 to —1450 km on the x scale), several of the fine-scale
(< 10 km) bumps and troughs in DeepBedMap_DEM can be
seen to correlate well in position with the ground truth. In
contrast, the cubically interpolated BedMachine Antarctica
product lacks such fine-scale (< 10 km) bumps and troughs,
appearing as a relatively smooth terrain over much of the
transect. Previous studies that estimated basal shear stress
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over Thwaites Glacier have found a band of strong bed
extending about 80-100km from the grounding line, with
pockets of weak bed interspersed between bands of strong
bed further upstream (Joughin et al., 2009; Sergienko and
Hindmarsh, 2013), a pattern that is broadly consistent with
the DeepBedMap_DEM roughness results (see Fig. 5b).

In general, DeepBedMap_DEM produces a topography
that is rougher, with SD values more in line with those ob-
served in the ground truth (see Fig. 6b). The roughness values
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Figure 5. Spatial 2-D view of grids over Thwaites Glacier, West Antarctica. Plotted on an Antarctic stereographic projection (EPSG:3031)
with elevation and SD values in metres referenced to the WGS84 datum. (a) DeepBedMap digital elevation model. (b) 2-D roughness from
the DeepBedMap_DEM grid. (¢) 2-D roughness from interpolated Operation IceBridge grid. (d) 2-D roughness from bicubically interpolated
BedMachine Antarctica grid. Orange points in (a) correspond to transect sampling locations used in Fig. 6.

for BedMachine Antarctica are consistently lower through-
out the transect, a consequence of the mass conservation
technique using regularization parameters that yield smooth
results. We note that the DeepBedMap_DEM does appear
rougher than the ground truth in certain areas. It is possi-
ble to tweak the training regime to incorporate roughness
(or any statistical measure) into the loss function (see Ap-
pendix A) to yield the desired surface, and this will be ex-
plored in future work (see Sect. 5.4). Recent studies have
stressed the importance of form drag (basal drag due to bed
topography) over skin drag (or basal friction) on the basal
traction of Pine Island Glacier (Bingham et al., 2017; Kyrke-
Smith et al., 2018), and the DeepBedMap super-resolution
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work here shows strong potential in meeting that demand as
a high-resolution bed topography dataset for ice sheet mod-
elling studies.

In terms of bed roughness anisotropy, DeepBedMap is
able to capture aspects of it from the ground-truth grids by
combining (1) ice flow direction via the ice velocity grid’s x
and y components (Mouginot et al., 2019b), (2) ice surface
aspect via the ice surface elevation grid (Howat et al., 2019),
and (3) the low-resolution bed elevation input (Fretwell et al.,
2013). There are therefore inherent assumptions that the to-
pography of the current bed is associated with the current
ice flow direction, surface aspect and existing low-resolution
BEDMAP?2 anisotropy. Provided that the direction of this
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Figure 6. Comparing bed elevation (a) and surface roughness (b)
(SD of elevation values) of each interpolated grid product (250 m
resolution) over a transect (see Fig. 5 for location of transect line).
Purple values are from the super-resolution DeepBedMap_DEM;
orange values are from tension-spline-interpolated Operation Ice-
Bridge ground-truth points; green values are from bicubically inter-
polated BedMachine Antarctica.

surface velocity and aspect is the same as bed roughness
anisotropy, as demonstrated in Holschuh et al. (2020), the
neural network will be able to recognize it and perform ac-
cordingly. However, if the ice flow direction and surface as-
pect is not associated with bed anisotropy, then this assump-
tion will be violated and the model will not perform well.

5.3 Limitations

The DeepBedMap model is trained only on a small fraction
of the area of Antarctica, at less than 0.1 % of the grounded-
ice regions (excluding ice shelves and islands). This is be-
cause the pixel-based convolutional neural network cannot
be trained on sparse survey point measurements, nor is it
able to constrain itself with track-based radar data. As the
along-track resolution of radar bed picks are much smaller
than 250 m pixels, it is also not easy to preserve roughness
from radar unless smaller pixels are used. The topography
generated by the model is sensitive to the accuracy of its
data inputs (see Tables 1 and 2), and though this is a prob-
lem faced by other inverse methods, neural network mod-
els like the one presented can be particularly biased towards
the training dataset. Specifically, the DeepBedMap model fo-
cuses on resolving short-wavelength features important for
sub-kilometre roughness, compared to BedMachine Antarc-

https://doi.org/10.5194/tc-14-3687-2020

3697

tica (Morlighem et al., 2019) which recovers large-scale fea-
tures like ridges and valleys well.

An inherent assumption in this methodology is that the
training datasets have sampled the variable bed lithology of
Antarctica (Cox et al., 2018) sufficiently. This is unlikely to
be true, introducing uncertainty into the result as different
lithologies may cause the same macroscale bed landscapes to
result in a range of surface features. In particular, the experi-
mental model’s topography is likely skewed towards the dis-
tribution of the training regions that tend to reside in coastal
regions, especially over ice streams in West Antarctica (see
Fig. 2). While bed lithology could be used as an input to
inform the DeepBedMap model’s prediction, it is challeng-
ing to find a suitable geological map (or geopotential proxy;
see e.g. Aitken et al., 2014; Cox et al., 2018) for the entire
Antarctic continent that has a sufficiently high spatial resolu-
tion. Ideally, the lithological map (categorical or qualitative)
would first be converted to a hardness map with an appropri-
ate erosion law and history incorporated (quantitative). This
is because it is easier to train generative adversarial networks
on quantitative data (e.g. hardness as a scale from 0 to 10)
than on categorical data variables (e.g. sedimentary, igneous
or metamorphic rocks); the latter would require a more elab-
orate model architecture and loss function design.

5.4 Future directions

The way forward for DeepBedMap is to combine quality
datasets gathered by radioglaciology and remote sensing
specialists, with new advancements made by the ice sheet
modelling and machine learning community. While care has
been taken to source the best possible datasets (see Tables 1
and 2), we note that there are still areas where more data
are needed. Radio-echo sounding is the best tool available
to fill in the data gap, as it provides not only the high-
resolution datasets needed for training but also the back-
ground coarse-resolution BEDMAP dataset. Besides target-
ing radio-echo-sounding acquisitions over a diverse range
of bed and flow types, swath reprocessing of old datasets
that have that capability (Holschuh et al., 2020) may be an-
other useful addition to the training set. The super-resolution
DeepBedMap technique can also be applied on bed elevation
inputs newer than BEDMAP2 (Fretwell et al., 2013), such
as the 1000 m resolution DEM over the Weddell Sea (Jeofry
et al., 2017), the 500 m resolution BedMachine Antarctica
dataset (Morlighem, 2019) or the upcoming BEDMAP3.

A way to increase the number of high-resolution ground-
truth training data further is to look at formerly glaciated
beds. There are a wealth of data around the margins of
Antarctica in the form of swath bathymetry data and also on
land in areas like the former Laurentide ice sheet. The current
model architecture does not support using solely “elevation”
as an input, because it also requires ice elevation, ice surface
velocity and snow accumulation data. In order to support us-
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ing these paleobeds as training data, one could do one of the
following:

1. Have a paleo-ice-sheet model that provides these ice
surface observation parameters. However, continent-
scale ice sheet models quite often produce only
kilometre-scale outputs, and there are inherent uncer-
tainties with past ice sheet reconstructions that may bias
the resulting trained neural network model.

2. Modularize the neural network model to support dif-
ferent sets of training data. One main branch would
be trained like a single-image super-resolution prob-
lem (Yang et al., 2019), where we try to map a low-
resolution BEDMAP? tile to a high-resolution ground-
truth image (be it from a contemporary bed, a pale-
obed or offshore bathymetry). The optional conditional
branches would then act to support and improve on the
result of this naive super-resolution method. This de-
sign is more complicated to set up and train, but it can
increase the available training data by at least an order
of magnitude and lead to better results.

From a satellite remote sensing perspective, it is important to
continue the work on increasing spatial coverage and mea-
surement precision. Some of the conditional datasets used
such as REMA (Howat et al., 2019) and MEaSUREs Ice Ve-
locity (Mouginot et al., 2019b) contain data gaps which in-
troduce artefacts in the DeepBedMap_DEM, and those holes
need to be patched up for proper continent-wide prediction.
A surface mass balance dataset with sub-kilometre spatial
resolution will also prove useful in replacing the snow accu-
mulation dataset (Arthern et al., 2006) used in this work. As
the DeepBedMap model relies on data from multiple sources
collected over different epochs, it has no proper sense of
time. Ice elevation change captured using satellite altime-
ters such as from CryoSat-2 (Helm et al., 2014), ICESat-2
(Markus et al., 2017) or the upcoming CRISTAL (Kern et al.,
2020) could be added as an additional input to better account
for temporal factors.

The DeepBedMap model’s modular design (see Sect. 3.2)
means the different modules (see Fig. 1) can be improved
on and adapted for future-use cases. The generator model
architecture’s input module can be modified to handle new
datasets such as the ones suggested above or redesigned to
extract a greater amount of information for better perfor-
mance. Similarly, the core and upsampling modules which
are based on ESRGAN (Wang et al., 2019) can be replaced
with newer, better architectures as the need arises. The dis-
criminator model which is currently one designed for stan-
dard computer vision tasks can also be modified to incor-
porate glaciology-specific criteria. For example, the gener-
ated bed elevation image could be scrutinized by the dis-
criminator model for valid properties such as topographic
features that are aligned with the ice flow direction. The re-
designed neural network model can be retrained from scratch

The Cryosphere, 14, 3687-3705, 2020

W. J. Leong and H. J. Horgan: DeepBedMap Antarctica

or fine-tuned using the trained weights from DeepBedMap to
further improve the predictive performance. Taken together,
these advances will lead to an even more accurate and higher-
resolution bed elevation model.

6 Conclusions

The DeepBedMap convolutional neural network method
presents a data-driven approach to resolve the bed topogra-
phy of Antarctica using existing data. It is an improvement
beyond simple interpolation techniques, generating high-
spatial-resolution (250 m) topography that preserves detail in
bed roughness and is adaptable for catchment- to continent-
scale studies on ice sheets. Unlike other inverse methods that
rely on some explicit parameterization of ice flow physics,
the model uses deep learning to find suitable neural network
parameters via an iterative error minimization approach. This
makes the resulting model particularly sensitive to the train-
ing dataset, emphasizing the value of densely spaced bed el-
evation datasets and the need for such sampling over a more
diverse range of Antarctic substrate types. The use of graphi-
cal processing units (GPUs) for training and inference allows
the neural network method to scale easily, and the addition of
more training datasets will allow it to perform better.

The work here is intended not to discourage the usage of
other inverse modelling or spatial statistical techniques but
to introduce an alternative methodology, with an outlook to-
wards combining each methodology’s strengths. Once prop-
erly trained, the DeepBedMap model runs quickly (about
3 min for the whole Antarctic continent) and produces real-
istic rough topography. Combining the DeepBedMap model
with more physically based mass conservation inverse ap-
proaches (e.g. Morlighem et al., 2019) will likely result in
more efficient ways of generating accurate bed elevation
maps of Antarctica. One side product resulting from this
work is a test-driven development framework that can be
used to measure and compare the performance of upcom-
ing bed terrain models. The radioglaciology community has
already begun to compile a new comprehensive bed eleva-
tion and ice thickness dataset for Antarctica, and there have
been discussions on combining various terrain interpolation
techniques in an ensemble to collaboratively create the new
BEDMAP3.
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Appendix A: Details of loss function components

The loss function, or cost function, is a mathematical func-
tion that maps a set of input variables to an output loss value.
The loss value can be thought of as a weighted sum of several
error metrics between the neural network’s prediction and the
expected output or ground truth. It is this loss value which we
want to minimize so as to train the neural network model to
perform better, and we do this by iteratively optimizing the
parameters in the loss function. Following this are the de-
tails of the various loss functions that make up the total loss
function of the DeepBedMap generative adversarial network
model.

Al Content loss

To bring the pixel values of the generated images closer to
those of the ground truth, we first define the content-loss
function L;. Following ESRGAN (Wang et al., 2019), we
have

I & .
Ly==3 115 —illt, (A1)
i=1

where we take the mean absolute error between the generator
network’s predicted value y; and the ground-truth value y;,
respectively, over every pixel i.

A2 Adversarial loss

Next, we define an adversarial loss to encourage the pro-
duction of high-resolution images y closer to the mani-
fold of natural-looking digital-elevation-model images. To
do so, we introduce the standard discriminator in the form
of D(y) = a(C(y)), where o is the sigmoid activation func-
tion and C(y) is the raw, non-transformed output from a
discriminator neural network acting on high-resolution im-
age y. The ESRGAN model (Wang et al.,, 2019), how-
ever, employs an improved relativistic-average discriminator
(Jolicoeur-Martineau, 2018) denoted by Dgj. It is defined as
DRra(y,¥) =0 (C(y) —E4;[C(9)]), where E;[-] is the arith-
metic mean operation carried out over every generated image
¥ in a mini batch. We use a binary cross-entropy loss as the
discriminator’s loss function defined as follows:

L§' = —E,[In(D(y, $))] — E5[In(1 — D(§, y))]. (A2)

The generator network’s adversarial loss is in a symmetri-
cal form:

L§* = —E,[In(1 — D(y, )1 —Ez[In(D($, y)]. (A3)

A3 Topographic loss
We further define a topographic loss so that the elevation
values in the super-resolved image make topographic sense

with respect to the original low-resolution image. Specifi-
cally, we want the mean value of each 4 x 4 grid on the
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predicted super-resolution (DeepBedMap) image to closely
match its spatially corresponding 1 pixel x 1 pixel area on the
low-resolution (BEDMAP2) image.

First, we apply a 4 x 4 mean pooling operation on the gen-
erator network’s predicted super-resolution image:

S RIS
y,-=;;yi, (A4)

where ):z ; is the mean of all predicted values J; across the
16 super-resolved pixels i within a 4 x 4 grid corresponding
to the spatial location of 1 low-resolution pixel at position
Jj. Following this, we can compute the topographic loss as
follows:

1 & -
Lr=—3 113 =l (A5)
i=1

where we take the mean absolute error between the mean of
the 4 x 4 super-resolved pixels calculated in Eq. (A4) y; and
those of the spatially corresponding low-resolution pixel x,
respectively, over every low-resolution pixel j.

A4 Structural loss

Lastly, we define a structural loss that takes into account
luminance, contrast and structural information between the
predicted and ground-truth images. This is based on the
structural similarity index (SSIM; Wang et al., 2004) and is
calculated over a single window patch as

Quspy +c1)2opy +c2)
(Mé + 13 +61)(6)§ +ol2+c)

SSIM(Y, y) = (A6)

where ug and py are the arithmetic mean of predicted im-
age y and ground-truth image y, respectively, over a single
window that we set to 9 pixels x 9 pixels; o3, is the covari-
ance of ¥ and y; 0}3 and 0y2 are the variances of y and y,

respectively; and ¢y and ¢, are two variables set to 0.01% and
0.032 to stabilize division with a weak denominator. Thus,
we can formulate the structural loss as follows:

1 & .
Ls=1-— D SSIM($, ), , (A7)
i=1

where we take 1 minus the mean of all structural similarity
values SSIM(7y, y) calculated over every patch p obtained
via a sliding window over the predicted image y and ground-
truth image y.

The Cryosphere, 14, 3687-3705, 2020



3700

A5 Total loss function

Finally, we compile the loss functions for the discriminator
and generator networks as follows:

Lp =L}, (A8)
Lg=nLi +AL&* + 0Lt +¢Ls, (A9)

where 1, A, 6 and ¢ are the scaled weights for the content L1,
adversarial Lp, topographic Lt and structural losses Lg, re-
spectively (see Table B1 for values used). The loss functions
Lp and Lg are minimized in an alternate 1 : 1 manner so as
to solve the entire generative adversarial network’s objective
function defined in Eq. (4).

Appendix B: Neural network training details

The neural networks were developed using Chainer v7.0.0
(Tokui et al., 2019) and trained using full-precision (floating
point 32) arithmetic. Experiments were carried out on four
graphical processing units (GPUs), specifically two Tesla
P100 GPUs and two Tesla V100 GPUs. On the Tesla V100
GPU setup, one training run with about 150 epochs takes
about 30min. This is using a batch size of 128 on a to-
tal of 3826 training image tiles, with 202 tiles reserved for
validation, i.e. a 95/5 training/validation split. We next de-
scribe the method used to evaluate each DeepBedMap candi-
date model, as well as the high-level way in which we semi-
automatically arrived at a good model via semi-automatic hy-
perparameter tuning.

To check for overfitting, we evaluate the generative ad-
versarial network model using the validation dataset after
each epoch using two performance metrics — a peak signal-
to-noise ratio (PSNR) metric for the generator and an ac-
curacy metric for the discriminator. Training stops when
these validation performance metrics show little improve-
ment, roughly at 140 epochs.

Table B1. Optimized hyperparameter settings.
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Next, we conduct a full evaluation on an independent test
dataset, comparing the model’s predicted grid output with
actual ground-truth xyz points. Using the “grdtrack” func-
tion in Generic Mapping Tools v6.0 (Wessel et al., 2019),
we obtain the grid elevation at each ground-truth point and
use it to calculate the elevation error on a point-to-point ba-
sis. All of these elevation errors are then used to compute a
root mean square error (RMSE) statistic over this indepen-
dent test site. This RMSE value is used to judge the model’s
performance in relation to baseline bicubic interpolation and
is also the metric minimized by a hyperparameter optimiza-
tion algorithm which we will describe next.

Neural networks contain a lot of hyperparameter settings
that need to be decided upon, and generative adversarial net-
works are particularly sensitive to different hyperparameter
settings. To stabilize model training and obtain better per-
formance, we tune the hyperparameters (see Table B1) us-
ing a Bayesian approach. Specifically, we employ the Tree-
structured Parzen Estimator (Bergstra et al., 2011) from the
Optuna v2.0.0 (Akiba et al., 2019) library with default set-
tings as per the Hyperopt library (Bergstra et al., 2015).
Given that we have four GPUs, we choose to parallelize the
hyperparameter tuning experiments asynchronously between
all four devices. The estimator first conducts 20 random ex-
perimental trials to scan the hyperparameter space, gradually
narrowing down its range to a few candidate hyperparame-
ters in subsequent experiments. We set each GPU to run a
target of 60 experimental trials (i.e. a total of 240), though
unpromising trials that have exploding or vanishing gradi-
ents are pruned prematurely using the Hyperband algorithm
(Li et al., 2018) to save on time and computational resources.
The top models from these experiments undergo further vi-
sual evaluation, and we continue to conduct further experi-
ments until a suitable candidate model is found.

Hyperparameter Setting Tuning range
Learning rate (for both generator and discriminator) 1.7 x 1074 2x107%t01x 1074
Number of residual-in-residual blocks 12 8to 14
Mini-batch size 128 64 or 128
Number of epochs 140 90 to 150
Residual scaling 0.2 0.1t0 0.5
Content-loss weighting n 1x 1072 Fixed
Adversarial-loss weighting A 2% 1072 Fixed
Topographic-loss weighting 6 2x1073 Fixed
Structural-loss weighting ¢ 5.25 Fixed
He normal initialization scaling 0.1 Fixed
Adam optimizer epsilon 0.1 Fixed
Adam optimizer betal 0.9 Fixed
Adam optimizer beta2 0.99 Fixed
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Code availability. Python code for data preparation, neural net-
work model training and visualization of model outputs is freely
available at https://github.com/weijil4/deepbedmap (last access:
9 August 2020) and at https://doi.org/10.5281/zenodo.3752613
(Leong and Horgan, 2020). Neural network model training ex-
periment runs are also recorded at https://www.comet.ml/weijil4/
deepbedmap (last access: 9 August 2020).

Data availability. The DeepBedMap_DEM is available from Zen-
odo at https://doi.org/10.5281/zenodo.3752613 (Leong and Hor-
gan, 2020). The Pine Island Glacier dataset (Bingham et al., 2017)
is available on request from Robert Bingham. The Carlson Inlet
dataset (King, 2011) is available on request from Edward King. Bed
elevation datasets from Wilkes Subglacial Basin (Ferraccioli et al.,
2018) and Rutford Ice Stream (King et al., 2016) are available from
the British Antarctic Survey’s Polar Data Centre (https://ramadda.
data.bas.ac.uk, last access: 14 January 2020). Other Antarctic bed
elevation datasets are available from the Center for Remote Sensing
of Ice Sheets (https://data.cresis.ku.edu/data/rds, last access: 15 Au-
gust 2019) or from the National Snow and Ice Data Center (https:
/Insidc.org/data/IRMCR2/versions/1, last access: 15 August 2019).
BEDMAP2 (Fretwell et al., 2013) and REMA (Howat et al., 2018)
are available from the Polar Geospatial Center (http://data.pgc.
umn.edu, last access: 30 August 2019). MEaSUREs Ice Velocity
data (Mouginot et al., 2019b) are available from NSIDC (https://
nsidc.org/data/nsidc-0754/versions/1, last access: 31 August 2019).
Antarctic snow accumulation data (Arthern et al., 2006) are avail-
able from the British Antarctic Survey (https://secure.antarctica.
ac.uk/data/bedmap2/resources/Arthern_accumulation, last access:
17 June 2019).
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