Articles | Volume 14, issue 10
https://doi.org/10.5194/tc-14-3381-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-3381-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The mechanical origin of snow avalanche dynamics and flow regime transitions
Xingyue Li
School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
Betty Sovilla
WSL Institute for Snow and Avalanche Research, SLF, Davos, Switzerland
Chenfanfu Jiang
Computer and Information Science Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
WSL Institute for Snow and Avalanche Research, SLF, Davos, Switzerland
Related authors
Louis Védrine, Xingyue Li, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 22, 1015–1028, https://doi.org/10.5194/nhess-22-1015-2022, https://doi.org/10.5194/nhess-22-1015-2022, 2022
Short summary
Short summary
This study investigates how forests affect the behaviour of snow avalanches through the evaluation of the amount of snow stopped by the trees and the analysis of energy dissipation mechanisms. Different avalanche features and tree configurations have been examined, leading to the proposal of a unified law for the detrained snow mass. Outcomes from this study can be directly implemented in operational models for avalanche risk assessment and contribute to improved forest management strategy.
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 2399–2419, https://doi.org/10.5194/nhess-25-2399-2025, https://doi.org/10.5194/nhess-25-2399-2025, 2025
Short summary
Short summary
This study assesses RAMMS::EXTENDED's predictive power in estimating avalanche runout distances critical for mountain road safety. Leveraging meteorological data and sensitivity analyses, it offers meaningful predictions, aiding near real-time hazard assessments and future model refinement for improved decision-making.
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 25, 2215–2223, https://doi.org/10.5194/nhess-25-2215-2025, https://doi.org/10.5194/nhess-25-2215-2025, 2025
Short summary
Short summary
Our study investigates the initiation of snow slab avalanches. Combining experimental data with numerical simulations, we show that on gentle slopes, cracks form and propagate due to compressive fractures within a weak layer. On steeper slopes, crack velocity can increase dramatically after approximately 5 m due to a fracture mode transition from compression to shear. Understanding these dynamics provides a crucial missing piece in the puzzle of dry-snow slab avalanche formation.
Hervé Vicari, Michael Lukas Kyburz, and Johan Gaume
EGUsphere, https://doi.org/10.5194/egusphere-2024-3421, https://doi.org/10.5194/egusphere-2024-3421, 2025
Short summary
Short summary
Advances in 3D modeling have improved understanding of geophysical flows like avalanches, but using these complex simulations in hazard mapping remains challenging. This study presents a tool that converts 3D simulation results into simplified 2D maps, making results more accessible for natural hazard applications. We applied this tool to model an ice avalanche and visualized the data in GIS, aiming to support practical hazard assessment and mitigation efforts.
Alessandro Cicoira, Daniel Tobler, Rachel Riner, Lars Blatny, Michael Lukas Kyburz, and Johan Gaume
Abstr. Int. Cartogr. Assoc., 9, 4, https://doi.org/10.5194/ica-abs-9-4-2025, https://doi.org/10.5194/ica-abs-9-4-2025, 2025
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024, https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite synthetic-aperture radar (SAR) imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores the potential of satellite SAR for timely hazard assessment in remote regions and aiding disaster mitigation efforts effectively.
Louis Védrine, Xingyue Li, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 22, 1015–1028, https://doi.org/10.5194/nhess-22-1015-2022, https://doi.org/10.5194/nhess-22-1015-2022, 2022
Short summary
Short summary
This study investigates how forests affect the behaviour of snow avalanches through the evaluation of the amount of snow stopped by the trees and the analysis of energy dissipation mechanisms. Different avalanche features and tree configurations have been examined, leading to the proposal of a unified law for the detrained snow mass. Outcomes from this study can be directly implemented in operational models for avalanche risk assessment and contribute to improved forest management strategy.
Cited articles
Abdelrazek, A. M., Kimura, I., and Shimizu, Y.: Numerical simulation of a
small-scale snow avalanche tests using non-Newtonian SPH model, Journal of
Japan Society of Civil Engineers, 70, I_681–I_690, 2014. a
Abe, K. and Konagai, K.: Numerical simulation for runout process of debris flow
using depth-averaged material point method, Soils Found., 56,
869–888, 2016. a
Ancey, C.: Snow avalanches, in: Oxford Research Encyclopedia of Natural Hazard
Science, 2016. a
Barbolini, M., Gruber, U., Keylock, C., Naaim, M., and Savi, F.: Application of
statistical and hydraulic-continuum dense-snow avalanche models to five real
European sites, Cold Reg. Sci. Technol., 31, 133–149, 2000. a
Chandel, C., Srivastava, P. K., and Mahajan, P.: Determination of failure
envelope for faceted snow through numerical simulations, Cold Reg. Sci. Technol., 116, 56–64, 2015. a
Choubin, B., Borji, M., Mosavi, A., Sajedi-Hosseini, F., Singh, V. P., and
Shamshirband, S.: Snow avalanche hazard prediction using machine learning
methods, J. Hydrol., 577, 123929, https://doi.org/10.1016/j.jhydrol.2019.123929, 2019. a
Delparte, D., Jamieson, B., and Waters, N.: Statistical runout modeling of snow
avalanches using GIS in Glacier National Park, Canada, Cold Reg. Sci. Technol., 54, 183–192, 2008. a
Eglit, M., Yakubenko, A., and Zayko, J.: A review of Russian snow avalanche
models – From analytical solutions to novel 3D models, Geosciences, 10, 77, https://doi.org/10.3390/geosciences10020077,
2020. a
Faug, T., Turnbull, B., and Gauer, P.: Looking beyond the powder/dense flow
avalanche dichotomy, J. Geophys. Res.-Earth, 123,
1183–1186, 2018. a
Fischer, J.-T., Kowalski, J., and Pudasaini, S. P.: Topographic curvature
effects in applied avalanche modeling, Cold Reg. Sci. Technol.,
74, 21–30, 2012. a
Fischer, J.-T., Fromm, R., Gauer, P., and Sovilla, B.: Evaluation of
probabilistic snow avalanche simulation ensembles with Doppler radar
observations, Cold Reg. Sci. Technol., 97, 151–158, 2014. a
Fischer, J.-T., Kofler, A., Fellin, W., Granig, M., and Kleemayr, K.:
Multivariate parameter optimization for computational snow avalanche
simulation, J. Glaciol., 61, 875–888, 2015. a
Gauer, P., Issler, D., Lied, K., Kristensen, K., and Sandersen, F.: On snow
avalanche flow regimes: Inferences from observations and measurements, in:
Proceedings Whistler 2008 International Snow Science Workshop,
21–27 September 2008. a
Gaume, J., Chambon, G., and Naaim, M.: Quasistatic to inertial transition in
granular materials and the role of fluctuations, Phys. Rev. E, 84,
051304, https://doi.org/10.1103/PhysRevE.84.051304, 2011. a
Gaume, J., van Herwijnen, A., Gast, T., Teran, J., and Jiang, C.: Investigating
the release and flow of snow avalanches at the slope-scale using a unified
model based on the material point method, Cold Reg. Sci.
Technol., 168, 102847, https://doi.org/10.1016/j.coldregions.2019.102847, 2019. a, b, c
Gracia, F., Villard, P., and Richefeu, V.: Comparison of two numerical
approaches (DEM and MPM) applied to unsteady flow, Computational Particle
Mechanics, 6, 591–609, 2019. a
Gubler, H., Hiller, M., Klausegger, G., and Suter, U.: Messungen an
Fliesslawinen. Zwischenbericht, in: Internal Report 41, Swiss Federal
Institute for Snow and Avalanche Research, 1986. a
Hagenmuller, P., Chambon, G., and Naaim, M.: Microstructure-based modeling of snow mechanics: a discrete element approach, The Cryosphere, 9, 1969–1982, https://doi.org/10.5194/tc-9-1969-2015, 2015. a
Issler, D. and Pérez, M. P.: Interplay of entrainment and rheology in snow
avalanches: a numerical study, Ann. Glaciol., 52, 143–147, 2011. a
Jiang, C., Schroeder, C., Selle, A., Teran, J., and Stomakhin, A.: The affine
particle-in-cell method, ACM T. Graphic., 34, 1–10, 2015. a
Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., and Selle, A.: The material
point method for simulating continuum materials, in: ACM SIGGRAPH 2016
Courses, 1–52, 2016. a
Kern, M., Bartelt, P., Sovilla, B., and Buser, O.: Measured shear rates in
large dry and wet snow avalanches, J. Glaciol., 55, 327–338, 2009. a
Keshari, A. K., Satapathy, D. P., and Kumar, A.: The influence of vertical
density and velocity distributions on snow avalanche runout, Ann. Glaciol., 51, 200–206, 2010. a
Klár, G., Gast, T., Pradhana, A., Fu, C., Schroeder, C., Jiang, C., and
Teran, J.: Drucker-prager elastoplasticity for sand animation, ACM
T. Graphic., 35, 1–12, 2016. a
Larsson, S., Prieto, J. M. R., Gustafsson, G., Häggblad, H.-Å., and
Jonsén, P.: The particle finite element method for transient granular
material flow: modelling and validation, Computational Particle
Mechanics,
1–21, https://doi.org/10.1007/s40571-020-00317-6, 2020. a
Li, X., Sovilla, B., Jiang, C., and Gaume, J.: Supplementary data for “The mechanical origin of snow avalanche dynamics and flow regime transitions”, Zenodo, https://doi.org/10.5281/zenodo.3965795, 2020a. a
Li, X., Sovilla, B., Jiang, C., and Gaume, J.: Supplementary videos for “The mechanical origin of snow avalanche dynamics and flow regime transitions”, Zenodo, https://doi.org/10.5281/zenodo.3944698, 2020b. a
Naaim, M., Naaim-Bouvet, F., Faug, T., and Bouchet, A.: Dense snow avalanche
modeling: flow, erosion, deposition and obstacle effects, Cold Reg.
Sci. Technol., 39, 193–204, 2004. a
Naaim, M., Durand, Y., Eckert, N., and Chambon, G.: Dense avalanche friction
coefficients: influence of physical properties of snow, J.
Glaciol., 59, 771–782, 2013. a
Papakrivopoulos, V.: Development and preliminary evaluation of the main
features of the Particle Finite Element Method (PFEM) for solid mechanics,
Master's thesis, Delft University of Technology, 2018. a
Rammer, L., Kern, M., Gruber, U., and Tiefenbacher, F.: Comparison of
avalanche-velocity measurements by means of pulsed Doppler radar, continuous
wave radar and optical methods, Cold Reg. Sci. Technol., 50,
35–54, 2007. a
Rauter, M. and Köhler, A.: Constraints on Entrainment and Deposition Models
in Avalanche Simulations from High-Resolution Radar Data, Geosciences, 10, 9, https://doi.org/10.3390/geosciences10010009,
2020. a, b, c
Rauter, M., Kofler, A., Huber, A., and Fellin, W.: faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM, Geosci. Model Dev., 11, 2923–2939, https://doi.org/10.5194/gmd-11-2923-2018, 2018. a
Raymond, S. J., Jones, B., and Williams, J. R.: A strategy to couple the
material point method (MPM) and smoothed particle hydrodynamics (SPH)
computational techniques, Computational Particle Mechanics, 5, 49–58,
2018. a
Reiweger, I., Gaume, J., and Schweizer, J.: A new mixed-mode failure criterion
for weak snowpack layers, Geophys. Res. Lett., 42, 1427–1432, 2015. a
Salazar, F., Irazábal, J., Larese, A., and Oñate, E.: Numerical
modelling of landslide-generated waves with the particle finite element
method (PFEM) and a non-Newtonian flow model, Int. J. Numer. Anal. Meth., 40, 809–826, 2016. a
Scapozza, C.: Entwicklung eines dichte-und temperaturabhängigen
Stoffgesetzes zur Beschreibung des visko-elastischen Verhaltens von Schnee,
PhD thesis, ETH Zürich, 2004. a
Simo, J. and Meschke, G.: A new class of algorithms for classical plasticity
extended to finite strains. Application to geomaterials, Comput.
Mech., 11, 253–278, 1993. a
Simo, J. C.: Algorithms for static and dynamic multiplicative plasticity that
preserve the classical return mapping schemes of the infinitesimal theory,
Comput. Method. Appl. M., 99, 61–112, 1992. a
Sovilla, B. and Bartelt, P.: Observations and modelling of snow avalanche entrainment, Nat. Hazards Earth Syst. Sci., 2, 169–179, https://doi.org/10.5194/nhess-2-169-2002, 2002. a
Sovilla, B., Burlando, P., and Bartelt, P.: Field experiments and numerical
modeling of mass entrainment in snow avalanches, J. Geophys. Res.-Earth,
111, F03007, https://doi.org/10.1029/2005JF000391, 2006. a
Sovilla, B., Margreth, S., and Bartelt, P.: On snow entrainment in avalanche
dynamics calculations, Cold Reg. Sci. Technol., 47, 69–79, 2007. a
Sovilla, B., McElwaine, J. N., Schaer, M., and Vallet, J.: Variation of
deposition depth with slope angle in snow avalanches: Measurements from
Vallée de la Sionne, J. Geophys. Res.-Earth, 115, F02016, https://doi.org/10.1029/2009JF001390,
2010. a
Sovilla, B., McElwaine, J. N., and Louge, M. Y.: The structure of powder snow
avalanches, C. R. Phys., 16, 97–104, 2015. a
Srivastava, P., Chandel, C., and Mahajan, P.: Micromechanical modeling of
elastic and strength properties of snow, SLAM3-Slab Avalanche Multiscale
Mechanical Modeling, 3–5, 2017. a
Steinkogler, W., Sovilla, B., and Lehning, M.: Influence of snow cover
properties on avalanche dynamics, Cold Reg. Sci. Technol., 97,
121–131, 2014. a
Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P., Pavšek, M., Valt, M., and Darms, G.: Avalanche fatalities in the European Alps: long-term trends and statistics, Geogr. Helv., 71, 147–159, https://doi.org/10.5194/gh-71-147-2016, 2016. a
Zabala, F. and Alonso, E.: Progressive failure of Aznalcóllar dam using the
material point method, Géotechnique, 61, 795–808, 2011. a
Short summary
This numerical study investigates how different types of snow avalanches behave, how key factors affect their dynamics and flow regime transitions, and what are the underpinning rules. According to the unified trends obtained from the simulations, we are able to quantify the complex interplay between bed friction, slope geometry and snow mechanical properties (cohesion and friction) on the maximum velocity, runout distance and deposit height of the avalanches.
This numerical study investigates how different types of snow avalanches behave, how key factors...