Articles | Volume 14, issue 10
https://doi.org/10.5194/tc-14-3381-2020
https://doi.org/10.5194/tc-14-3381-2020
Research article
 | 
12 Oct 2020
Research article |  | 12 Oct 2020

The mechanical origin of snow avalanche dynamics and flow regime transitions

Xingyue Li, Betty Sovilla, Chenfanfu Jiang, and Johan Gaume

Related authors

Detrainment and braking of snow avalanches interacting with forests
Louis Védrine, Xingyue Li, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 22, 1015–1028, https://doi.org/10.5194/nhess-22-1015-2022,https://doi.org/10.5194/nhess-22-1015-2022, 2022
Short summary

Cited articles

Abdelrazek, A. M., Kimura, I., and Shimizu, Y.: Numerical simulation of a small-scale snow avalanche tests using non-Newtonian SPH model, Journal of Japan Society of Civil Engineers, 70, I_681–I_690, 2014. a
Abe, K. and Konagai, K.: Numerical simulation for runout process of debris flow using depth-averaged material point method, Soils Found., 56, 869–888, 2016. a
Ancey, C.: Snow avalanches, in: Oxford Research Encyclopedia of Natural Hazard Science, 2016. a
Barbolini, M., Gruber, U., Keylock, C., Naaim, M., and Savi, F.: Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites, Cold Reg. Sci. Technol., 31, 133–149, 2000. a
Chandel, C., Srivastava, P. K., and Mahajan, P.: Determination of failure envelope for faceted snow through numerical simulations, Cold Reg. Sci. Technol., 116, 56–64, 2015. a
Download
Short summary
This numerical study investigates how different types of snow avalanches behave, how key factors affect their dynamics and flow regime transitions, and what are the underpinning rules. According to the unified trends obtained from the simulations, we are able to quantify the complex interplay between bed friction, slope geometry and snow mechanical properties (cohesion and friction) on the maximum velocity, runout distance and deposit height of the avalanches.
Share