Articles | Volume 14, issue 10
https://doi.org/10.5194/tc-14-3287-2020
https://doi.org/10.5194/tc-14-3287-2020
Research article
 | 
02 Oct 2020
Research article |  | 02 Oct 2020

Temporal and spatial variability in surface roughness and accumulation rate around 88° S from repeat airborne geophysical surveys

Michael Studinger, Brooke C. Medley, Kelly M. Brunt, Kimberly A. Casey, Nathan T. Kurtz, Serdar S. Manizade, Thomas A. Neumann, and Thomas B. Overly

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (10 Jul 2020) by Nanna Bjørnholt Karlsson
AR by Michael Studinger on behalf of the Authors (24 Jul 2020)  Author's response    Manuscript
ED: Publish subject to technical corrections (13 Aug 2020) by Nanna Bjørnholt Karlsson
AR by Michael Studinger on behalf of the Authors (18 Aug 2020)  Author's response    Manuscript
Download
Short summary
We use repeat airborne geophysical data consisting of laser altimetry, snow, and Ku-band radar and optical imagery to analyze the spatial and temporal variability in surface roughness, slope, wind deposition, and snow accumulation at 88° S. We find small–scale variability in snow accumulation based on the snow radar subsurface layering, indicating areas of strong wind redistribution are prevalent at 88° S. There is no slope–independent relationship between surface roughness and accumulation.