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Abstract. We use repeat high-resolution airborne geophys-
ical data consisting of laser altimetry, snow, and Ku-band
radar and optical imagery acquired in 2014, 2016, and
2017 to analyze the spatial and temporal variability in sur-
face roughness, slope, wind deposition, and snow accumula-
tion at 88° S, an elevation bias validation site for ICESat-2
and potential validation site for CryoSat-2. We find signifi-
cant small-scale variability (< 10km) in snow accumulation
based on the snow radar subsurface stratigraphy, indicating
areas of strong wind redistribution are prevalent at 88° S. In
general, highs in snow accumulation rate correspond with
topographic lows, resulting in a negative correlation coeffi-
cient of 7> = —0.32 between accumulation rate and MSWD
(mean slope in the mean wind direction). This relationship
is strongest in areas where the dominant wind direction is
parallel to the survey profile, which is expected as the geo-
physical surveys only capture a two-dimensional cross sec-
tion of snow redistribution. Variability in snow accumulation
appears to correlate with variability in MSWD. The corre-
lation coefficient between the standard deviations of accu-
mulation rate and MSWD is r? = 0.48, indicating a stronger
link between the standard deviations than the actual parame-
ters. Our analysis shows that there is no simple relationship
between surface slope, wind direction, and snow accumula-
tion rates for the overall survey area. We find high variability
in surface roughness derived from laser altimetry measure-

ments on length scales smaller than 10 km, sometimes with
very distinct and sharp transitions. Some areas also show sig-
nificant temporal variability over the course of the 3 survey
years. Ultimately, there is no statistically significant slope-
independent relationship between surface roughness and ac-
cumulation rates within our survey area. The observed corre-
spondence between the small-scale temporal and spatial vari-
ability in surface roughness and backscatter, as evidenced by
Ku-band radar signal strength retrievals, will make it diffi-
cult to develop elevation bias corrections for radar altimeter
retrieval algorithms.

1 Introduction

Polar ice sheets play a critical role in Earth’s climate sys-
tem. Measurements from satellites and aircraft reveal that the
ice sheets of Greenland and Antarctica are changing at an
accelerating rate, suggesting increasing rates of global sea-
level rise as the ice sheets melt (e.g., Vaughan et al., 2013).
To project future rates of sea-level rise, numerical models
of an ice sheet’s response to climate forcing require input
data of the surface mass balance and its spatial and tempo-
ral variability. Observing changes in ice surface elevation
from satellite and airborne platforms has long been recog-
nized as a powerful tool for assessing and quantifying ice
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sheet mass balance (e.g., Abdalati et al., 2010; Krabill et al.,
2000; Thomas and Investigators, 2001; Zwally et al., 2002).
The southern convergence of all Ice, Cloud, and land
Elevation Satellite-2 (ICESat-2; Markus et al., 2017) and
CryoSat-2 (Wingham et al., 2006) ground reference tracks is
at 88° S. Because of the density of tracks, the small impact of
surface processes, and the region’s relative quiescence, 88° S
is the primary ICESat-2 land—ice validation site in the South-
ern Hemisphere (Brunt et al., 2019a, b). Both radar and laser
altimeters are potentially prone to elevation biases related
to surface roughness and slope. For laser altimeters such
as ICESat-2, increased surface roughness causes broadening
of the return signal, which can cause elevation biases up to
0.2 m (Smith et al., 2019). When surface roughness changes
seasonally, the elevation biases will also change with time
(Smith et al., 2019). For radar altimeters such as CryoSat-
2, smoother surfaces will have larger return signal strength
compared to rougher surfaces, which also changes the shape
of the return waveform, potentially causing elevation biases
(Kurtz et al., 2014). Since radar altimeters penetrate below
the ice surface, volume backscatter from subsurface firn will
also impact the return signal waveform (e.g., Nilsson et al.,
2016). Radar extinction with depth depends on the dielec-
tric permittivity of firn, which is primarily a function of firn
density (Kovacs et al., 1995). Changes in firn density are
often related to changes in snow accumulation rates (e.g.,
Grima et al., 2014), making radar elevation biases potentially
a function of spatial changes in accumulation rates. Further-
more, wind-induced anisotropic features of firn can introduce
azimuth-dependent elevation biases (Armitage et al., 2014).
Previous Antarctic studies have reported relationships be-
tween surface slope, roughness, and snow accumulation rates
(e.g., Arcone et al., 2012; Dattler et al., 2019; Fahnestock et
al., 2000; Grima et al., 2014; Hamilton, 2004; King et al.,
2004). To better understand potential correlations between
altimetry elevation biases and geophysical parameters of the
ice surface, we are specifically studying the spatial and tem-
poral variability of surface roughness and accumulation rate
over the ICESat-2 validation site at 88°S. We use repeat
high-resolution airborne data consisting of laser altimetry,
snow and Ku-band radar, and natural color imagery acquired
as part of the National Aeronautics and Space Administra-
tion’s (NASA) Operation IceBridge (OIB) mission to analyze
spatial and temporal variability in surface roughness, slope,
accumulation rate, and Ku-band radar backscatter along a
1400 km circle around 88° S (Fig. 1). We start with a descrip-
tion of the survey area and the data sets we use (Sect. 2). We
then focus on surface roughness in Sect. 3, first describing
its relevance to cryospheric research, the methods we use to
estimate surface roughness, and by a description of temporal
and spatial variations in surface roughness that we observe
in our data. We then describe in Sect. 4 how we estimate
snow accumulation rates, followed by a description of the
spatial variability we observe in snow accumulation rates in
our survey area in Sect. 5. Section 6 explores the relation-
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Figure 1. Location map with survey area around 88°S (yellow
line). Surface elevation is from Helm et al. (2014a). Rock outcrops
from the Antarctic Digital Database are marked in red. SP marks
the geographic South Pole, TD is Titan Dome, and FIS is Filchner
Ice Shelf.

ship between surface, slope, and wind direction. The impact
of surface roughness on radar backscatter and therefore ele-
vation bias in radar altimeter measurements is discussed in
Sect. 7. Section 8 concludes the paper.

2 Data sets and survey area

Our survey area is situated on the East Antarctic plateau
in the hinterland of the Transantarctic Mountains (Fig. 1).
The ice surface elevation along the 1400 km long survey line
around 88° S varies between 2450 and 3100 m, with bedrock
elevations ranging from —1450 to 1785 m (Morlighem et al.,
2020, and Fig. 4). The thinnest ice along 88°S is 1190 m
thick and the thickest ice reaches 4100 m (Fig. 4). Ice surface
velocities in our survey area are generally below 10myr~!
(Mouginot et al., 2019). Accumulation measurements from
snow pits and shallow firn cores are sparse (Favier et al.,
2013; Picciotto et al., 1971). The survey area is in a region
of low snow accumulation (7-10cm annual water equiva-
lent) (Arthern et al., 2006; McConnell et al., 1997; Mosley-
Thompson et al., 1999; Winski et al., 2019) and low sur-
face slope (0.11° £0.10°, Fig. Ala) (Helm et al., 2014a). To-
gether with the low snow accumulation rate and low ice sur-
face velocities, this makes it an ideal area for calibration and
validation of spaceborne altimeters (Brunt et al., 2019a, b).
Accumulation of snow on the Antarctic ice sheet is pri-
marily the result of precipitation of snow. The precipitated
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distribution of accumulated snow is subsequently modified
spatially by wind-driven erosion and deposition. Sublima-
tion of accumulated snow in the form of both wind-driven
sublimation of airborne snow particles and surface sublima-
tion removes accumulated snow and therefore mass from the
surface and further modifies the initial deposition pattern re-
sulting from precipitation (e.g., Frezzotti et al., 2007, and ref-
erences therein). For slopes > 0.002, Das et al. (2013) found
wind—scoured areas in East Antarctica with negative surface
mass balance similar to the wind-glaze area described by
Scambos et al. (2012). Using European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis data, Casey
et al. (2014) estimate that around half of the snow accu-
mulation at the South Pole comes from periodic moisture-
bearing storms traversing the Filchner—Ronne and Ross Ice
Shelves towards the pole from West Antarctica. It is likely
that the percentage of snow accumulation from such cyclonic
events is even higher at 88° S near the Transantarctic Moun-
tains compared to the South Pole since the area is closer
to the source of moisture, complicating the relationship be-
tween surface slope, wind direction, and snow accumulation.
Therefore, there is no simple relationship between surface
slope, wind direction, and snow accumulation rates.

We use airborne geophysical data collected during six
NASA OIB survey flights in 2014, 2016, and 2017. The data
consists of high-resolution laser altimetry, natural color im-
agery, and snow and Ku-band radar data and are available
from the National Snow and Ice Data Center (NSIDC).

2.1 Laser altimeters
2.1.1 Airborne Topographic Mapper (ATM)

The ATM is a conically scanning laser altimeter that mea-
sures the surface topography of a swath beneath the aircraft
at a 15° off-nadir angle (Krabill et al., 2002). The range from
the laser altimeter to the surface is converted to geographic
position by integration with the platform Global Positioning
System (GPS) and attitude/inertial measurement unit (IMU)
measurement subsystems. The conical scan geometry results
in a near-constant angle of incidence, and intersecting laser
footprints allow for pointing biases to be determined over
any type of surface (Harpold et al., 2016; Martin et al., 2012).
The two generations of instruments used in this study, T4 and
T6, have a pulse repetition frequency of 3000 Hz, a wave-
length of 532 nm, and a pulse width of 6 ns full width at half
maximum (FWHM). The ATM scanner has a swath width of
240 m at a nominal flight elevation of 460 m above ground
level (a.g.l.) and a footprint diameter of ~ 0.8 m. As a re-
sult of the conical scan pattern, the density of spot elevation
measurements varies across the swath from 0.03 footprints
per square meter at the center to 0.37 footprints per square
meter at the edge. At a nominal aircraft speed of 130ms™!
the average spacing between point elevation measurements
is ~ 5m in the center of the scan and < 1 m near the edge.
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The vertical accuracy of an individual laser spot measure-
ment is estimated to be 7 cm with a vertical shot-to-shot pre-
cision of 3 cm (Martin et al., 2012). We use both the L1B and
L2 (ICESSN) data products (Studinger, 2013, updated 2018,
2014, updated 2018).

2.1.2 Riegl LMS-Q240i laser altimeter

The University of Alaska, Fairbanks (UAF) operates a com-
mercially available Riegl LMS-Q240i airborne laser scanner
together with IMU and dual-frequency GPS subsystems for
attitude and precise position. The system is a near-infrared
linear, unidirectional scanner that scans the surface in par-
allel lines. The system acquires measurements at 10 000 Hz
with a footprint size of 1.0m at 460 ma.g.l. and at a +30°
off-nadir scan angle. The average spacing of laser footprints
both along track and across track is ~ 1 m at 460 ma.g.l. and
the ground speed is 85 ms~! (Johnson et al., 2013; Larsen,
2010, updated 2018). Results over 20 % of our study area at
88° S show that two flights from a 2017 UAF laser altimetry
survey had a < 10 cm bias and a surface measurement preci-
sion of < 10 cm (Brunt et al., 2019a).

2.2 Snow and Ku-band radar

The snow radar is an ultra-wideband microwave radar that
operates over the 2—-8 GHz frequency range and is developed
and operated by the Center for Remote Sensing of Ice Sheets
(CReSIS) at the University of Kansas (KU). The system is
a frequency-modulated continuous-wave (FMCW) radar that
images the stratigraphy in the upper ~ 40 m of the ice sheet
with a bandwidth-limited range resolution of 2.6 cm in firn
with a density of 550kgm™> and 3.8 cm in air (Leuschen,
2014, updated 2018; Panzer et al., 2013; Rodriguez-Morales
et al., 2014). At these low-accumulation sites, preservation
of reflection horizons is greatly reduced due to a slow rate
of burial. Also, the ambient conditions required to gener-
ate seasonal reflections might not always be present (such as
depth hoar). At the nominal flight elevation of 460 m a.g.1. the
snow radar has a footprint size of approximately 10 m across
track and 14.5m along track (Panzer et al., 2013). A nine-
by-four (range bin-by-trace) median filter is applied to the
data to minimize noise. The Ku-band radar altimeter is iden-
tical in design but operates over the frequency range of 12—
18 GHz for mapping subsurface stratigraphy in the upper
10 m of polar firn (Gomez-Garcia et al., 2012; Paden et al.,
2014, updated 2018; Rodriguez-Morales et al., 2014). Since
both radars have the same bandwidth (6 GHz) the bandwidth-
limited range resolution of the Ku-band radar is the same as
that of the snow radar.

2.3 Digital Mapping System natural color imagery
The Digital Mapping System (DMS) is a digital cam-

era that acquires natural color, high-resolution images
at 10cm pixel size at the nominal flight elevation of
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460 ma.g.l. (Dominguez, 2010, updated 2018) (Fig. 2). The
camera is operated by NASA’s Airborne Sensor Facility lo-
cated at the Ames Research Center. Images are approxi-
mately 380 m across swath and 570 m along swath and cover
the entire ATM swath width. A combined IMU and GPS sys-
tem for precise position and attitude information is part of the
instrument package. DMS images are acquired with overlap
between consecutive images to ensure data continuity. The
difference in geolocation between distinct elongated snow
surface features (sastrugi) between overlapping, orthorecti-
fied images is on the order of several meters. The DMS im-
ages are referenced to the RADARSAT 200 m digital eleva-
tion model (DEM) (Liu et al., 2015).

2.4 Survey flights

Between 2014 and 2017 six NASA OIB airborne geophys-
ical survey flights were completed to acquire data around
88°S (Table 1). Two flights are necessary to complete the
entire small circle around 88° S with the platforms and bases
of operations used. Snow and Ku-band radar data and DMS
images are only available for 2014 and 2016 years. The com-
bination of simultaneous laser altimetry, snow radar stratigra-
phy, and natural color imagery on a regional scale provides a
unique data set to study small-scale deposition and erosional
processes and their temporal and spatial variability.

3 Ice surface roughness
3.1 Background

The surface roughness of polar ice sheets is primarily a re-
sult of ice dynamics and surface—atmosphere interactions on
varying temporal and spatial scales. In general, ice flow over
rugged bedrock topography causes roughness features that
can extend from several hundreds of kilometers to a few
kilometers depending on ice thickness, flow speed, and basal
conditions (e.g., Smith et al., 2006, and references therein).
These large-scale variations in ice surface topography caused
by ice dynamics are not the topic of this analysis. Here, we
focus on small-scale surface roughness or surface texture
that spans from several meters to hundreds of meters and is
primarily the result of ice—atmosphere interactions, such as
wind deposition and wind-induced ablation or erosion, the
predominant types of surface—atmosphere interactions in the
area of 88° S. Sastrugi are the dominant form of small-scale
surface roughness in the interior of polar ice sheets and are
known to form parallel to the prevailing wind direction. Their
orientation can therefore be used to infer time-averaged pre-
vailing wind directions (e.g., Bromwich et al., 1990; Gow,
1965). Lister and Pratt (1959) describe sastrugi on the or-
der of 20-30 m along the route of the Commonwealth Trans-
Antarctic Expedition that also crossed 88° S. Figure 2 shows
natural color DMS images of the same area at 88°S and
135°E taken 2 years apart. The dominant sastrugi orienta-
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tion matches the 26-year average (1980-2016) of the 10 m
wind direction from MERRA-2 (Modern-Era Retrospective
Analysis for Research and Applications; e.g., Gelaro et al.,
2017) (Fig. 3a). The ice surface on the East Antarctic plateau
often has a dominant sastrugi orientation with sometimes two
or three populations of sastrugi forming a crossing network
of ridges that reflects seasonal changes in wind orientation
(e.g., Warren et al., 1998) (Fig. 2). These seasonal changes
are not captured in our averaged MERRA-2 wind direction.
The good agreement between the dominant sastrugi orien-
tation and the MERRA-2 long-term average, however, sug-
gests that a single dominant wind direction is a good repre-
sentation of the conditions in the survey area (Fig. 2).

In recent decades, especially in the rapidly warming West
Antarctic region, synoptic heat- and moisture-bearing storms
have reached the South Pole area (e.g., Harris, 1992; Nicolas
and Bromwich, 2011). Such storms and cyclonic events have
been less common, though they still occur in the interior of
East Antarctica (e.g., Gorodetskaya et al., 2014; Hirasawa et
al., 2000). Individual sastrugi can be eroded and reform dur-
ing a single storm (Warren et al., 1998). Most changes, how-
ever, occur as a result of seasonal changes between summer
and winter months (e.g., Gow, 1965). Gow (1965) shows that
sastrugi form during winter months, resulting in a rough sur-
face, and subsequently get eroded during the summer by sub-
limation and deflation at the South Pole. This effect mostly
results in a flattening of the subsurface layer stratigraphy and
therefore does not affect our surface roughness results.

3.2 Relevance of surface roughness and slope for
altimetry and surface mass balance

The surface roughness and slope of ice sheets affect several
processes that are relevant for ice sheet mass balance (e.g.,
Gow, 1965, and references therein; van der Veen et al., 2009).
King et al. (2004) describe small-scale variations in accumu-
lation rate on the order of 1km that appear to be associated
with wind-borne redistribution as a function of slope. Hamil-
ton (2004) found significant variability in snow accumulation
rates due to the interaction of prevailing winds with meter-
scale surface topography, where, for example, a concave de-
pression can receive up to 18 % more accumulation than ad-
jacent steeper snow surface topography. Similarly, Arcone et
al. (2012) mapped accumulation patterns in East Antarctica
that are created by wind-blown deposition on windward and
leeward slopes. Slope-dependent accumulation is also related
to spatial variations in firn density (Grima et al., 2014), which
impacts mass balance estimates from altimetry data. Small-
scale roughness contributes to noise in firn core records and
therefore accumulation rate estimates (van der Veen et al.,
1998, 2009). Studies by van der Veen et al. (1998, 2009)
used ATM roughness estimates over Greenland to determine
the uncertainty in water equivalent (w.e.) accumulation esti-
mates from shallow firn cores.
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Figure 2. DMS natural color images of the same area at 88° S and 135° E. The location is indicated in Fig. 3b. The two aerial images are nadir-
looking, geolocated, and orthorectified color photographs of a sun-illuminated snow surface taken from 460 ma.g.l. The two photographs
were taken on the same day of year 2 years apart. The low-angle sun illuminates the elongated, elevated surface features (sastrugi) facing the
sun and creates dark shadows in the opposite direction behind the elevated features. For the 2014 image the sun is 11.5° above the horizon
(accounting for refraction through the atmosphere) and for the 2016 image it is 12.1°. The orientations of sastrugi, indicated by dashed lines,
are determined by visually following transitions of elongated bright, sun-illuminated features and corresponding shadows. Both images show
a dominant sastrugi orientation parallel to the 26-year averaged 10 m wind field from MERRA-2 (e.g., Gelaro et al., 2017) and a secondary

orientation that appears to be less pronounced in 2014 compared to 2016.

Table 1. Science instruments and airborne platforms of six NASA OIB aerogeophysical survey flights at 88° S.

Date Longitude segment  Aircraft Laser Snow & Ku-band radars ~ Camera  Flight elevation
23 0ct2014  110°Eto 70° W DC-8 ATM-T4 KU CReSIS DMS 460ma.g.l.
26 Oct 2014  70°Wto 110°E DC-8 ATM-T4 KU CReSIS DMS 460ma.g.l.
26 Oct 2016  70°W to 110°E DC-8 ATM-T6 KU CReSIS DMS 460ma.g.l.
15Nov 2016  110°E to 70° W DC-8 ATM-T6 KU CReSIS DMS 460ma.g.l.
30 Nov 2017 100°E to 10° W DC-3 UAF Riegl n/a n/a 460ma.g.l.
3 Dec 2017 30 to 150° W DC-3 UAF Riegl n/a n/a 460 ma.g.l.

n/a: not applicable.

Surface roughness also affects the albedo and bidirectional
reflectance distribution function of ice sheets (Leroux and
Fily, 1998; Warren et al., 1998). Nolin et al. (2002) used
ATM roughness estimates to calibrate Multi-angle Imaging
SpectroRadiometer (MISR) roughness estimates, and No-
lin and Payne (2007) then derived relationships between ice
surface roughness and near-infrared albedo using ATM and
MISR data. Ongoing satellite and modeling investigations on
radiative impacts of surface roughness and sastrugi continue
to illuminate angular relationships and parameterizations that
can be key to quantifying bidirectional reflectance distribu-
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tion function and albedo sensitivities in ice surface studies
(e.g., Corbett and Su, 2015; Kokhanovsky and Zege, 2004;
Larue et al., 2020). As ice sheet surface roughness map-
ping and modeling capabilities improve, it will be possible
to more accurately include the radiative effects of surface
roughness. Surface roughness furthermore affects thermo-
dynamic fluxes because it affects boundary layer processes
through the aerodynamic roughness and therefore the surface
energy balance (Boisvert et al., 2017; Chambers et al., 2019;
Nolin and Mar, 2018; Palm et al., 2017).
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Figure 3. (a) Ice surface elevation from CryoSat-2 (Helm et al., 2014a) and 26-year 10 m average wind speed from MERRA-2 (e.g., Gelaro
et al., 2017). The red line marks the location of 88S° S airborne geophysical data collection. TD is Titan Dome. (b) Ice surface roughness
from 2014 ATM data (Studinger, 2014, updated 2018). The background image is a MODIS mosaic of Antarctica 2013-2014 (Haran et al.,
2014) using MODIS data between November 2013 and March 2014. Locations of megadune fields are marked in orange, and roughness
features A, B, and C refer to Fig. 4b. The location of the segment with a smooth surface in 2016 and 2017 between 175° W and 60° E that is

discussed in Sect. 3.4 and shown in Fig. 4 is marked by a green line.

3.3 Surface roughness estimates — methods

There are several diverse approaches to quantifying topo-
graphic irregularity or surface roughness (e.g., Smith, 2014,
and references therein). In general, roughness metrics are not
only scale, and orientation-dependent, but also impacted by
the spatial resolution, footprint size, and sample spacing of
the input data. One commonly used metric for surface rough-
ness is the standard deviation o of small-scale elevation fluc-
tuations from a mean or de-trended surface in a given area
or over a given length (e.g., Das et al., 2013; Smith, 2014,
and references therein). In order to minimize potential effects
from anisotropy in surface roughness over different length
scales and orientations, we have calculated surface roughness
over an area roughly square in size common to both laser al-
timeters. Individual spot elevation measurements are binned
into 0.06° longitude segments (240 m in length at 88° S). We
then fit a third-order polynomial regression model through
all spot elevation measurements within a longitude segment.
We define the standard deviation o of the residuals as a met-
ric for surface roughness.

For estimation of surface roughness from snow radar data,
we pick an initial surface for each radar trace record (ev-
ery ~ 5m along track) by finding the maximum slope in the
radar return power across nine discrete time intervals called
range bins. The size of a range bin in firn with a density of
550kgm™3 is 1.8 cm. Starting at the initial surface pick, we
keep sliding the surface pick one range bin deeper (or later in
time) while the slope for the range bin remains above 3 stan-
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dard deviations of the mean, which provides our final sur-
face. Next, surface picks that lie outside of a 15-range bin
window from a smoothed surface are discarded and set to
the smoothed surface; however, very few data points are dis-
carded (1.8 %). Surface roughness is estimated from residu-
als to the smoothed surface fit. Specifically, surface rough-
ness for a given location is calculated as the standard de-
viation in surface range-bin residuals for locations within
a 250 m radius. This radius was selected to ensure consis-
tency with laser-altimeter-derived roughness values. Finally,
the range-bin roughness is converted to heights by using the
radar wave velocity in air (2.998 x 108 ms™1).

For a closer look at very fine-scale spatial and temporal
changes in surface roughness around 88° S, we use roughness
estimates contained in the ATM Level 2 smoothed ice surface
data product, known as ICESSN. The ICESSN data prod-
uct includes slope and roughness estimates in overlapping
80m x 80m platelets across the swath (Studinger, 2014, up-
dated 2018). The root mean square of the residuals of a plane
fit through the platelets is an estimate of the surface rough-
ness. Removing the mean results in the root mean square be-
ing equivalent to the standard deviation o.

Figure 4 shows the surface roughness estimates around
88° S latitude from three different instruments and over the
course of 3 different years. In general, there is good agree-
ment between the roughness estimated using the ATM laser
altimeter and the synchronous roughness estimates from the
snow radar (Fig. 4b, c). Because of the smaller footprint size
and higher sampling density, the ATM laser-derived rough-

https://doi.org/10.5194/tc-14-3287-2020
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ness estimates are slightly larger than the radar estimates,
with few exceptions. The radar estimates also reveal more
scatter, probably caused by the much lower range resolution
of the radar compared to the ATM laser altimeter. The mean
difference of the laser minus snow radar roughness estimates
180.6 1.9 cm for 2014 and 1.6 2.1 cm for 2016; however,
the spatial patterns, which are of main interest for this study,
are nearly indistinguishable. There are no obvious spatial
patterns in the roughness difference between laser and radar
that would reflect a geophysical signal. Because of the higher
point density, roughness derived from the UAF Riegl system
is larger than the ATM roughness estimates. The mean dif-
ference between the 2017 UAF minus 2016 ATM laser esti-
mates is 1.2 £+2.4cm.

A 370km long segment between 150° W and 100° E was
repeated in 2017 within 3 d with the same instrument. It is
unlikely that the surface was significantly altered within 3 d,
and therefore the difference between the two estimates can be
used as an approximate estimate of the instrument-specific
accuracy and precision of the laser-derived roughness esti-
mates. The mean surface roughness for the first east-bound
flight is 9.5+ 1.5 and 10.1 % 2.0 cm for the later west-bound
flight. The mean p of the difference in surface roughness be-
tween the two 2017 flights is 0.02cm with a o of 0.7 cm.
For comparison, a separate study by Das et al. (2013) over
Dome Argus with a Riegl LMS—Q240i scanner shows a sim-
ilar range of roughness as our measurements around 88° S.

3.4 Surface roughness, slope, and elevation around
88° S — results

In order to distinguish ice surface roughness features caused
by ice dynamics from roughness features that are a result of
ice—atmosphere interactions, the proximity of the ice surface
to bedrock topography and bedrock roughness must be un-
derstood (Fig. 4a). The large ice thickness (Fig. 4) and slow
ice flow velocities (< 10 myr_l; Mouginot et al., 2019) in
the survey area, combined with the small window size we
use to calculate the roughness make it unlikely that any of the
roughness features we observe are ice dynamic related. Thus,
we interpret the roughness characteristics shown in Figs. 3
and 4 as caused by ice—atmosphere interactions.

Figures 3b and 4 show several spatially coherent segments
with distinct roughness characteristics around 88° S that ap-
pear not to be related to ice dynamics. In general, the surface
roughness estimated from snow radar and laser altimetry data
varies between 2 and 25 cm. The smoothest surface in 2016
and 2017 is between 175° W and 60° E and includes Titan
Dome. The location of this segment is indicated by green
lines in Figs. 3b and 4d. The smooth segment also coincides
with the highest ice surface elevations and shallowest surface
slopes around 88° S (Fig. 4).

The segment between 70 and 100° W shows a pronounced
increase in roughness in 2014 (Fig. 4b). The MODIS Mosaic
of Antarctica (MOA; Haran et al., 2014) shows that this seg-
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ment is near the edge of a megadune field that is mostly north
of 88°S (Fig. 3b). Megadunes are long-wavelength surface
ripples (Fahnestock et al., 2000) with amplitudes on the or-
der of a few meters (peak to trough) and wavelengths of sev-
eral kilometers (Fahnestock et al., 2000; Scambos and Fahne-
stock, 1998). The typical elevation pattern of megadunes is
not visible in the 88° S laser altimetry data. The likely rea-
sons for this are that the airborne geophysical data were col-
lected at the edge of the dune field, and the orientation of the
dune crests is subparallel to the airborne geophysical data.
The orientation of dune crests between 70 and 100° W is
approximately perpendicular to the prevailing surface wind
direction from MERRA-2 (Fig. 3a) consistent with findings
from Fahnestock et al. (2000).

A second megadune field can be seen between 130-145
and 150-155° W (Figs. 3 and 4). The surface of this dune
field is less rough in 2017 compared to 2014 and 2016.
Data for MOA were collected between November 2013
and March 2014. The temporal stability of megadune
fields remains poorly understood. Fahnestock et al. (2000)
found 60 m of dune migration over a 34-year period for a
megadune field in the vicinity of Vostok Station, approxi-
mately 1100km from the dune field discussed here. There-
fore dune migration rates could vary significantly between
the two sites. Since our survey area is near the edge of the
dune field, we cannot rule out that over the course of 4 years
the edge of the dune field has migrated out of the coverage
of the airborne geophysical data.

The slope of the ATM ICESSN nadir platelets shows many
distinct peaks that are aligned very well between the 2014
and 2016 data, indicating that these features are stable in lo-
cation (Fig. 4e). The mean p and standard deviation o of
the surface slope around 88° S are 0.20° £0.16° and never
exceed 1.5°.

3.5 Temporal changes in surface roughness — results

We use ATM Level 2 ICESSN roughness estimates for a
closer look at multiyear temporal changes in surface rough-
ness around 88° S (Fig. 5) because they are calculated over
80m x 80m platelets. The 2014 data reveal several areas
where surface roughness doubles over very short spatial
scales of only a few hundred meters (Fig. 4a). These fea-
tures, labeled A, B, and C in Fig. 4b, are several tens of kilo-
meters wide and appear to be oriented parallel to the main
sastrugi direction visible in simultaneously collected ATM
spot elevation data and Digital Mapping System (DMS) im-
agery. Figure 5 shows a close-up of one of the features (C).
The rougher surface features are also present in the simulta-
neously collected CReSIS snow radar data (Fig. 5a, c).
These areas of increased surface roughness disappear in
2016 or seem to be significantly reduced in amplitude with
the sharpness of the edges significantly blurred. Both the
laser-derived surface roughness and the roughness estimated
from snow radar data seem to be slightly lower than the
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Figure 4. (a) Ice surface elevation from 2014 ATM data (Studinger, 2014, updated 2018) and bedrock topography from 2014 CReSIS
Multichannel Coherent Radar Depth Sounder (MCoRDS) data (Leuschen et al., 2010, updated 2018). The profile starts at Titan Dome (TD)
and moves clockwise around 88° S. (b) Surface roughness from 2014 ATM laser and snow radar data. A 14 min disk failure of the snow
radar in 2014 resulted in a data gap over the megadunes. (¢) Same for 2016. (d) Surface roughness from 2017 UAF laser data. The location
of the smooth segment between 175° W and 60° E that is discussed in Sect. 3.4 and also shown in Fig. 3b is indicated by a green line.
(e) Surface slope from 2014 and 2016 ATM ICESSN data using only the nadir platelet (Studinger, 2014, updated 2018). Heavy dashed lines
in (b)—(e) mark megadune areas, and thin dashed lines in (b) indicate distinct abrupt changes in surface roughness in 2014.

smooth area. In 2017, the segments labeled A, B, and C ap- 4 Snow accumulation rates derived from snow radar

pear to have no distinct roughness anomaly (Fig. 4d) com- data and MERRA-2 — methods

pared to the surrounding areas.
For snow-radar-derived accumulation calculations, we first
stack traces to an approximate along-track separation of
100 m (~ 18 traces), which largely reduces noise in the re-
turn power, especially at depth. These stacked echograms are
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Figure 5. Laser spot elevation measurements and DMS imagery over roughness feature “C” (Fig. 4b). The center of all map panels is at
88.97° S, 135°E. All panels cover the exact same area on the ground and are shown in a local coordinate system parallel to the aircraft
trajectory. Panels (a), (¢), and (e) show laser spot elevation measurements in 2014, 2016, and 2017. Inset plots in (a) and (c¢) show surface
roughness from ATM and snow radar at the center of the scan/nadir position. Panels (a) and (c) show small (centimeter level) semicircular
elevation biases that are a result of occasional variations in scan azimuth speed (Yi et al., 2015). The peak-to-peak amplitude of these biases
is an order of magnitude smaller than the ice surface topography. Panels (b), (d), and (f) show corresponding DMS imagery (b and d only)
and surface roughness from laser altimetry in 2014, 2016, and 2017. The darkening towards the edge of the DMS frames in (b) and (d) is
caused by vignetting from the lens and not related to geophysical changes. ATM roughness is from ICESSN data, and the UAF Riegl data
from 2017 have been calculated in the same way as ATM ICESSN data to make them compatible. A distinct change in roughness can be
seen in 2014 that is visible in both the laser-derived surface roughness and the length of the shadows in DMS imagery (b). The roughness
doubles over a distance of ~ 200 m (a). The orientation of the boundary is parallel to the dominant sastrugi orientation (b). In 2016 and 2017
the distinct change in roughness seems to have been smoothened out.

then combined into segments of ~ 100 km. A single radar
reflection horizon, assumed isochronous, is tracked through
the 100km segment. The actual horizon picked will likely
vary from segment to segment because we chose to map the
strongest and most continuous reflection within that segment.
The horizon is picked semiautomatically. First, the user visu-
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ally selects the horizon of interest. The range bin with the
strongest return power within a 15-bin window is then se-
lected as the horizon “pick” for that trace. That pick is ex-
tended laterally across all traces by finding the strongest re-
turn power in adjacent traces within the 15-bin window. The
user can then modify the picks if they deviate from their vi-
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sual interpretation. The user can also eliminate portions of a
given horizon if visual inspection deems horizon differentia-
tion impossible. The spatial variability in accumulation rates
and the varying strength of signal return prevent the calcu-
lation of temporally consistent accumulation rate from a sin-
gle continuous horizon around the entirety of 88°S. Thus,
the accumulation rates estimated for each 100 km segment
will span differing time intervals; however, because of the
relatively low accumulation rates, the majority span several
decades, minimizing the impact of interannual variability.

For each 100km segment, we estimate the spatial vari-
ability in snow accumulation using the aforementioned hori-
zon picks. Typically, radar-derived accumulation rates rely
on knowledge of the horizon age as well (e.g., Medley et al.,
2013, 2014), but a lack of nearby dated ice core stratigra-
phy or clearly defined annual horizons restricts our ability
to assign an age to our horizon picks. Because our work is
focused on evaluating the spatial variability in snow accu-
mulation, we develop a method that approximates the age
of a given horizon through combination of horizon depths
and MERRA-2 mean annual precipitation minus evaporation
(P — E). In such a manner, our large-scale mean accumula-
tion rates are forced to large-scale MERRA-2 P — E; how-
ever, rates are allowed to vary on < 1 km length scales from
our radar horizon picks. We detail the methodology below.

Assuming each horizon pick within a given segment is
isochronous, we need to determine a way to approximate
the age of that horizon. To do so, we begin by determin-
ing the mean accumulation rate and 2 m air temperature from
MERRA-2 over the entire segment and use those variables to
model steady-state firn density and age profiles using Herron
and Langway (1980). The two-way travel time (7) between
the surface and the horizon pick is converted into depth (d)
assuming

ct(x)

2WE '
where c is the speed of light and ¢ is the integrated dielectric
permittivity of the material above the horizon and x is the dis-
tance along the flight line. Specifically, we use the modeled
depth—density profile to generate depth-dielectric permittiv-
ity based on Kovacs et al. (1995), which is then used to relate
depth and two-way travel time with a depth-varying radar-
wave velocity. Using this model, we interpolate horizon two-
way travel time to depth. Depths vary along track (as our
layer pick varies), but our large-scale depth—age model from
Herron and Langway (1980) does not; thus, we will estimate
a variable along-track age of the radar horizon. The use of a
single firn density model for the entire 88° S circle is justified
because the difference between the minimum and maximum
accumulation rates is relatively small. The along-track vari-
ability is counter to our initial assumption that the radar hori-
zons are isochronous; however, when we take the average age
along track, we effectively force the overall mean accumula-
tion rate for the segment to the large-scale MERRA-2 mean.

d(x) (D
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We then use this age to calculate spatially varying accumu-
lation rates along the entire segment as outlined by Med-
ley et al. (2015). In such a manner, we force the large-scale
mean accumulation rates to those prescribed by MERRA-2
but allow for small-scale variability derived from the snow
radar horizon picks in the absence of independent estimates
of firn depth—age profiles (Dattler et al., 2019). For compari-
son we have plotted all existing accumulation measurements
of Favier et al. (2013) in Fig. 6¢ over our MERRA-2 and
radar-derived accumulation rates. These snow pit measure-
ments include data from the 1962-1963 South Pole Traverse
(Taylor, 1971). While there is general agreement, it should
be pointed out that Favier et al. (2013) applied the quality
rating of Magand et al. (2007), which identifies all snow pit
data points shown in Fig. 6¢ as low quality and subsequently
excludes these data points from the quality-controlled ver-
sion presented in Favier et al. (2013). Further limitations of
the comparison are the long time between the snow pit mea-
surements and airborne data and the large variability in snow
accumulation rates on length scales of 10 km that can be seen
in the radar-derived snow accumulation rates.

5 Spatial variability in snow accumulation rates —
results

Previous work used the mean slope in the mean wind di-
rection (MSWD) for studying relationships between surface
slope and spatial variability in snow accumulation rates (e.g.,
Das et al., 2013; Dattler et al., 2019; Scambos et al., 2012).
MSWD is defined as the scalar dot product between the sur-
face slope with the mean wind direction (Scambos et al.,
2012). Here, we use the time-averaged zonal and meridional
wind components u and v from MERRA-2, transformed in
to a Cartesian polar-stereographic projection, to calculate the
mean wind direction. Analyzing relationships between sur-
face slope, accumulation rates, and mean wind direction at
88° S is limited by the latitudinal resolution of the MERRA-2
reanalysis model, which is 0.5° or 55 km, as well as the cross-
sectional nature of the geophysical surveys (i.e., the data rep-
resent a two-dimensional cross section). Given the narrow
swath width of the ATM laser data (240 m), we use the ice
surface slope derived from the CryoSat-2 DEM (Helm et al.,
2014a) at 1 km resolution to calculate the MSWD. The slope
south of 88° S is only weakly constrained due to the absence
of elevation data imposing further limitations on the analysis.
The MERRA-2 26-year 10 m wind field is interpolated to the
CryoSat-2 DEM grid cell locations. The difference in spatial
resolution between the surface DEM and MERRA-2 will re-
sult in MSWD uncertainty from oversampling the wind field.
Because of the small slopes in the study area, however, we
do not anticipate complex wind fields where actual wind ori-
entation would significantly deviate from the MERRA-2 re-
analysis model. Small topographic features, however, are not
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represented by the 10 m surface wind field as will be dis-
cussed later.

In general, annual snow accumulation is around
Scmw.e.yr~! and is highest near the backside of the
Transantarctic Mountains near 150° W, a region that is
influenced by precipitation from cyclonic events penetrating
the area from the Bellingshausen Sea and Ross Sea sectors
(Casey et al., 2014; Nicolas and Bromwich, 2011) (Fig. 6).
The highest accumulation rates (up to 20 cm w.e. yr~!) near
150° W coincide with a megadune field (Fig. 3b) and appear
to be in a local topographic low at the flank of Titan Dome
that trends perpendicular to the aerogeophysical survey pro-
file around 88° S (Figs. 6a and Ala). The surface depression
coincides with a 1000 m deep and 25 km wide bedrock low
perpendicular to the profile (Studinger et al., 2006, and
Fig. 3a). The dominant wind direction is near perpendicular
to the survey profile and follows the trend of the ice surface
low (Fig. 3a). The high-accumulation area also shows high
surface roughness combined with steep slopes (Figs. 4 and
Al). Another area with relatively high snow accumulation
rates is located between 45° W and 0° longitude and is also
exposed to precipitation from the Weddell Sea sector (e.g.,
Casey et al., 2014).

The snow accumulation rate at 88° S is spatially highly
variable over very short length scales of several kilometers
(Fig. 6¢c). Based on visual inspection small-scale variabil-
ity in snow accumulation rate correlates with small-scale
variability in ice surface elevation (Fig. 6a), suggesting that
wind-driven erosion and deposition is a primary process of
snow accumulation. The relatively constant surface elevation
between 60 and 150° E shows very little variation in snow
accumulation. In contrast, the short-scale (< 10 km) undula-
tions in ice surface elevation between 75° W and 45° E cor-
respond to a highly variable (020 cm w.e.yr—!) snow ac-
cumulation pattern with a similar length scale (Figs. 6a, c
and A2). The dominant wind direction in the western seg-
ment is subparallel to the profile (Fig. A2). Here, several pro-
nounced peaks in snow accumulation rate correspond to to-
pographic depressions in ice surface elevation (grey dashed
lines in Fig. A2), indicating windblown deposition of snow.
The eastern part of the profile has a wind direction oblique
or perpendicular to the profile. However, several peaks in
snow accumulation rate still correlate with topographic de-
pressions. Near 90° E the wind direction is parallel to the pro-
file (Fig. 3). A pronounced peak in snow accumulation rate
at 90° E correlates with a 20m deep depression in surface
topography that is several kilometers wide (Fig. A3). Accu-
mulation decreases on the lee side of the topographic high at
the western shoulder of the depression and increases towards
the lowest part of the depression where it reaches its highest
point (Fig. A3). The general correlation of highs in accumu-
lation rate with lows in topography results in an overall neg-
ative correlation coefficient of r> = —0.33 between accumu-
lation rate and MSWD (Fig. 7a). DMS natural color imagery
and laser altimetry data typically shows two dominant wind
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directions (Fig. 2). Our MERRA-2 wind direction is an aver-
age over seasonal variations in wind speed and likely reflects
a wind direction somewhere between the two dominant ori-
entations of sastrugi. Since we have no knowledge of when a
particular layer of snow has been deposited during a year, it
is not possible to do a more detailed analysis.

The surface roughness derived from ATM laser altimetry
reflects roughness on a scale of < 250 m and does not reflect
ice surface slope changes on length scales of several kilome-
ters. However, the MSWD (Fig. 6d) shows the same pattern
of high variability between 75° W and 45° E and fairly con-
stant values between 60 and 150° E. To quantify the relation-
ship between variability in surface slope, wind direction, and
accumulation rates, we use the standard deviation o of the
MSWD and snow accumulation rate calculated over a 20 km
long moving window (Fig. 6e). Figure 6e shows the standard
deviation of the MSWD and accumulation rate. In general,
higher o in accumulation rate generally occurs in areas with
higher o in MSWD. The match is strongest near 90° E where
wind orientation is parallel to the profile.

The correlation coefficient between the standard devia-
tions of the accumulation rate and the MSWD is r2 = 0.50,
indicating a stronger link between these variables than the
actual parameters (Fig. 7b). The magnitude of the correlation
coefficient, however, is dependent on the length scale used to
calculate the standard deviation. Dattler et al. (2019) find a
similar behavior between o accumulation rate and 0 MSWD.
Visual inspection of Fig. 7 suggests that the relationship be-
tween accumulation rate and MSWD and the o of accumula-
tion rate and o of MSWD is more pronounced for larger mag-
nitudes of the variables. A kernel density estimate quantifies
the probability density estimate of nearby points and allows
visualization of the point density using a color scale for the
data points (Fig. 7). We divide the data set into three subsets
using the mean p and o: the lower end is defined by values
below u — o, while the upper end is values above p +o. The
remaining points that are within o0 from p form the center
subset. We have calculated correlation coefficients > for all
subsets. In general, the correlation is strongest for the upper
subsets, while the lower subsets show weak correlation. This
is different from the results of Dattler et al. (2019), who find
that the lower end also shows a strong correlation. The up-
per tenth percentile of our data have an r2 of 0.85 similar to
the results of Dattler et al. (2019). Most of the data of Dat-
tler et al. (2019) are located over high-accumulation areas in
West Antarctica. A possible explanation for the weak corre-
lation could be the very low accumulation rates in our area,
combined with very small slopes and low wind speed. Noise
in the elevation data will have a stronger impact on MSWD
calculation, and similarly, subtle changes in surface slope are
likely below the resolution of MERRA-2, therefore resulting
in a noisier and thus uncorrelated lower subset.
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Figure 6. (a) Ice surface elevation around 88° S from ATM laser altimetry. (b) Surface roughness from ATM laser altimetry. (¢) Snow
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(4km). (e) Standard deviation o of the MSWD and snow accumulation rate estimated over 20 km long segments.

6 Relationship between surface roughness, slope, and
wind direction — results

Wind-related deposition and ablation processes could cause
spatial roughness variations depending on surface slope and
wind direction. For example, windblown deposition of snow
into concave surface depressions and ablation on upslope ar-
eas could create spatial surface roughness patterns that cor-
relate with slope and wind direction. We use the MSWD to
determine if slopes that are exposed to uphill winds have dif-

The Cryosphere, 14, 3287-3308, 2020

ferent surface roughness than slopes experiencing primarily
downhill winds (Fig. 8a). We calculate r> for upslope winds
(MSWD < 0) and downslope winds (MSWD > 0). Neither
the upslope winds (r> = —0.14) nor downslope winds (r> =
0.29) show any statistically significant correlation between
surface roughness and slope as can be seen in the scatter plot
(Fig. 8a). Similarly, the surface roughness does not seem to
be correlated with snow accumulation rates (r> = 0.28), in-
dicating that there is also no statistically significant slope-
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Figure 9. (a) Surface roughness from 2014 ATM laser and CReSIS Ku-band radar data over roughness features “A”, “B”, and “C” (Fig. 4b).
Vertical black lines mark the locations of radar waveforms over smooth and rough surfaces shown in Fig. A4. (b) Maximum of relative return
signal strength from 2014 snow radar data. The red line is a running mean calculated over 350 radar traces (~ 2 km), which is similar in size
to the 1.65 km CryoSat-2 footprint in low-resolution mode (LRM) over smooth surfaces (Scagliola, 2013). The strength of the surface return

is around 3 dB weaker over rough areas compared to smooth areas.

independent relationship between surface roughness and ac-
cumulation rates within our survey area (Fig. 8b). Correla-
tions may exist in smaller local areas, but our data show that
there is no consistent relationship between surface rough-
ness, slope and wind direction on a regional scale within
our survey area. However, our analysis is constrained by
using two-dimensional high-resolution roughness estimates
and correlating them with three-dimensional wind fields and
surface slope with much lower spatial resolution.

7 Radar backscatter and surface roughness

Surface roughness impacts the return signal of radar altime-
ters and can therefore cause elevation biases (e.g.,van der
Veen et al., 2009, and references herein) similar to slope-
dependent errors in altimetry data (Helm et al., 2014a; Slater
et al., 2018). Radar backscatter in radar altimeters such as
CryoSat-2 is a function of surface roughness. Surface rough-
ness at the length scales of the radar wavelength (2.2 cm)
predominantly contributes to radar backscatter, which can-
not be resolved by our laser data. Changes in surface rough-
ness cause changes in radar backscatter through changes of
the echo waveform, which can introduce range biases in the
retrieval of surface elevation (Arthern et al., 2001; Kurtz et
al., 2014). Figure 9 shows the maximum of the Ku-band
radar return signal strength over the distinct roughness fea-
tures identified from laser altimetry data (see Sect. 3.5). The
maximum return energy over rougher surface areas is about
3 dB lower than over the smooth areas in between. The dif-
ference in return signal strength is even more pronounced for

The Cryosphere, 14, 3287-3308, 2020

the snow radar (4 dB, not shown). Stacked Ku-band wave-
forms shown in Fig. A4 show 3dB higher surface return
power at 3.053 us over a smooth surface compared to the
rough surface. The amplitude of the subsurface backscatter
below 3.06 us, however, is similar in strength over smooth
and rough areas (Fig. A4). This observation is consistent with
the finding of Gow (1965) that heat from radiation causes
crystal growth on the flanks of sastrugi, resulting in loosely
bonded crystals that are prone to erosion by moderate winds
(Gow, 1965). This differential sublimation—deflation-driven
redistribution of snow flattens the surface topography at the
end of the summer, resulting in relatively flat subsurface
stratigraphy compared to the surface topography. The differ-
ence in waveform shapes between smooth and rough surfaces
suggests that radar altimeters are potentially prone to eleva-
tion errors when threshold or leading edge trackers are be-
ing used for range retrieval. The Ku-band radar’s relatively
wide bandwidth and small footprint size allow resolution of
the surface and subsurface layers and thus accurate track-
ing of the surface elevation. However, the reduced bandwidth
and significantly larger footprint size of CryoSat-2 LRM re-
turns does not allow for the resolution of individual layers,
but instead leads to a pronounced broadening of the return
waveform when the total cumulative backscatter of the sub-
surface layers is close to, or exceeds, the backscatter from the
surface layer.

The relatively small-scale nature and temporal variability
of these features would require the use of more sophisticated
retrieval techniques to better account for differences caused
by the lower relative surface backscatter of rough areas. The
elevation biases caused by temporal and spatial variability in
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surface roughness are in addition to elevation biases caused
by wind-induced anisotropy in the firn that have been identi-
fied from crossover analysis (Armitage et al., 2014).

8 Conclusions

We have mapped the spatial and temporal variability in sur-
face roughness and snow accumulation rate on a regional
scale along a 1400 km circle around 88°S. We find signif-
icant small-scale variability (< 10km) in snow accumula-
tion based on snow radar subsurface stratigraphy, indicat-
ing areas of strong wind redistribution are prevalent at 88° S.
The observed small-scale variability in snow accumulation
rates is not captured by existing reanalysis models such as
MERRA-2, which have low spatial resolution. Our analy-
sis shows that there is no simple relationship between sur-
face slope, wind direction, and snow accumulation rates for
the entire survey area. Previous studies have primarily fo-
cused on smaller regions, often showing good correlation be-
tween surface slope and accumulation rates, and are often
used to falsely extrapolate parameters and relationships to
larger regions beyond the study area. While we also observe
these local correlations between surface slope, wind direc-
tion, and accumulation rates, our results show that even for
a homogenous area like the East Antarctic plateau near the
South Pole such simple relationships do not exist on a re-
gional scale. At the same time, we note that our accumula-
tion rate measurements are a simple two-dimensional view;
until we have three-dimensional mapping of accumulation
rates, these relationships might remain elusive. Our results
underline the importance of regional-scale studies to derive
accurate regional-scale parameterizations and relationships
in light of expanding data sets, advances in high-performance
computing, and sophistication in model development. Simi-
larly, we find high variability in surface roughness derived
from laser altimetry measurements on length scales smaller
than 10 km, sometimes with very distinct and sharp transi-
tions. These areas also show significant temporal variabil-
ity over the course of the 3 survey years. We also find that
surface roughness does not seem to be correlated with snow
accumulation rates. There seems to be no statistically signif-
icant slope-independent relationship between surface rough-
ness and accumulation rates within our survey area. The ob-
served small-scale temporal and spatial variability in surface
roughness will make it difficult to develop elevation bias cor-
rections for radar altimeter retrieval algorithms.
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Figure Al. (a) Ice surface slope in degrees derived from CryoSat-2 (Helm et al., 2014a) and 26-year 10 m wind average from MERRA-2
(e.g., Gelaro et al., 2017). (b) Mean slope in the mean wind direction (MSWD).
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For location see Fig. 9. The difference between the radar waveforms indicates that radar altimeters are potentially

prone to elevation errors when threshold or leading edge trackers are being used for range retrieval.
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