Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2883-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-2883-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing
British Antarctic Survey, Natural Environment Research Council,
High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Robert D. Larter
British Antarctic Survey, Natural Environment Research Council,
High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Alastair G. C. Graham
College of
Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
Robert Arthern
British Antarctic Survey, Natural Environment Research Council,
High Cross, Madingley Road, Cambridge, CB3 0ET, UK
James D. Kirkham
British Antarctic Survey, Natural Environment Research Council,
High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Scott Polar Research Institute, University of Cambridge, Lensfield
Road, Cambridge, CB2 1ER, UK
Rebecca L. Totten
Department of Geological Sciences, University of Alabama, Tuscaloosa,
AL 35487, USA
Tom A. Jordan
British Antarctic Survey, Natural Environment Research Council,
High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Rachel Clark
Department of Earth and Atmospheric Sciences, University of Houston,
Houston, TX 77204, USA
Victoria Fitzgerald
Department of Geological Sciences, University of Alabama, Tuscaloosa,
AL 35487, USA
Anna K. Wåhlin
Department of Marine Sciences, University of Gothenburg, 40530
Göteborg, Sweden
John B. Anderson
Department of Earth Science, Rice University, Houston, TX 77005, USA
Claus-Dieter Hillenbrand
British Antarctic Survey, Natural Environment Research Council,
High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Frank O. Nitsche
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New
York, NY, USA
Lauren Simkins
Department of Environmental Sciences, University of Virginia,
Charlottesville, VA 22904, USA
James A. Smith
British Antarctic Survey, Natural Environment Research Council,
High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Karsten Gohl
Alfred Wegener Institute Helmholtz-Centre for Polar and Marine
Research, 27568 Bremerhaven, Germany
Jan Erik Arndt
Alfred Wegener Institute Helmholtz-Centre for Polar and Marine
Research, 27568 Bremerhaven, Germany
Jongkuk Hong
Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of
Korea
Julia Wellner
Department of Earth and Atmospheric Sciences, University of Houston,
Houston, TX 77204, USA
Related authors
Yavor Kostov, Paul R. Holland, Kelly A. Hogan, James A. Smith, Nicolas C. Jourdain, Pierre Mathiot, Anna Olivé Abelló, Andrew H. Fleming, and Andrew J. S. Meijers
EGUsphere, https://doi.org/10.5194/egusphere-2025-2423, https://doi.org/10.5194/egusphere-2025-2423, 2025
Short summary
Short summary
Icebergs ground when they reach shallow topography such as Bear Ridge in the Amundsen Sea. Grounded icebergs can block the transport of sea-ice and create areas of higher and lower sea-ice concentration. We introduce a physically and observationally motivated representation of grounding in an ocean model. In addition, we improve the way simulated icebergs respond to winds, ocean currents, and density differences in sea water. We analyse the forces acting on freely floating and grounded icebergs.
Asmara A. Lehrmann, Rebecca L. Totten, Julia S. Wellner, Claus-Dieter Hillenbrand, Svetlana Radionovskaya, R. Michael Comas, Robert D. Larter, Alastair G. C. Graham, James D. Kirkham, Kelly A. Hogan, Victoria Fitzgerald, Rachel W. Clark, Becky Hopkins, Allison P. Lepp, Elaine Mawbey, Rosemary V. Smyth, Lauren E. Miller, James A. Smith, and Frank O. Nitsche
J. Micropalaeontol., 44, 79–105, https://doi.org/10.5194/jm-44-79-2025, https://doi.org/10.5194/jm-44-79-2025, 2025
Short summary
Short summary
Thwaites Glacier's retreat is driven by warm ocean water melting its ice shelf. Seafloor-dwelling marine protists, benthic foraminifera, reflect their environment. Here, ice margins, oceanography, and sea ice cover control live foraminiferal populations. Including dead foraminifera in the analyses shows the calcareous test preservation's role in the assemblage make-up. Understanding these modern communities helps interpret past glacial retreat controls through foraminifera in sediment records.
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023, https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Short summary
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic grounding lines record extremely fast retreat of ice streams in the past. Here we use a mathematical model, constrained by real-world observations from Thwaites Glacier, West Antarctica, to explore how corrugation ridges form. We identify
till extrusion, whereby deformable sediment is squeezed out from under the ice like toothpaste as it settles down at each low-tide position, as the most likely process.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Yavor Kostov, Paul R. Holland, Kelly A. Hogan, James A. Smith, Nicolas C. Jourdain, Pierre Mathiot, Anna Olivé Abelló, Andrew H. Fleming, and Andrew J. S. Meijers
EGUsphere, https://doi.org/10.5194/egusphere-2025-2423, https://doi.org/10.5194/egusphere-2025-2423, 2025
Short summary
Short summary
Icebergs ground when they reach shallow topography such as Bear Ridge in the Amundsen Sea. Grounded icebergs can block the transport of sea-ice and create areas of higher and lower sea-ice concentration. We introduce a physically and observationally motivated representation of grounding in an ocean model. In addition, we improve the way simulated icebergs respond to winds, ocean currents, and density differences in sea water. We analyse the forces acting on freely floating and grounded icebergs.
Alexander T. Bradley, David T. Bett, C. Rosie Williams, Robert J. Arthern, Paul R. Holland, James Bryne, and Tamsin L. Edwards
EGUsphere, https://doi.org/10.5194/egusphere-2025-2315, https://doi.org/10.5194/egusphere-2025-2315, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
At least since we started measuring in detail, the West Antarctic Ice Sheet has lost a lot of ice, but we don't know if climate change is responsible. In this work, we put a number on the role of climate change in retreat of a glacier in this ice sheet, for the first time. We show that climate change made the shrinking of this glacier much worse. Our work also suggests that what happened on very long timescales (the last 10,000 years) might also matter for retreat of the ice sheets today.
Ewa Demianiuk, Mateusz Baca, Danijela Popović, Inès Barrenechea Angeles, Ngoc-Loi Nguyen, Jan Pawlowski, John B. Anderson, and Wojciech Majewski
Biogeosciences, 22, 2601–2620, https://doi.org/10.5194/bg-22-2601-2025, https://doi.org/10.5194/bg-22-2601-2025, 2025
Short summary
Short summary
Ancient foraminiferal DNA is studied in five Antarctic cores with sediments up to 25 kyr old. We use a standard and a new, more effective marker, which may become the next standard for paleoenvironmental studies. Much less diverse foraminifera occur on slopes of submarine moraines than in open-marine settings. Soft-walled foraminifera, not found in the fossil record, are especially abundant. There is no foraminiferal DNA in tills, suggesting its destruction during glacial redeposition.
Álvaro Arenas-Pingarrón, Alex M. Brisbourne, Carlos Martín, Hugh F. J. Corr, Carl Robinson, Tom A. Jordan, and Paul V. Brennan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1068, https://doi.org/10.5194/egusphere-2025-1068, 2025
Short summary
Short summary
Synthetic Aperture Radar (SAR) imaging is essential for deep englacial observations. Each pixel is formed by averaging the radar echoes within an antenna beamwidth, but the echo diversity is lost after the average. We improve the SAR interpretation if three sub-images are formed with different sub-beamwidths: each is coloured in red, green, or blue, and they are overlapped, creating a coloured image. Interpreters will better identify the slopes of internal layers, crevasses, and layer roughness.
Asmara A. Lehrmann, Rebecca L. Totten, Julia S. Wellner, Claus-Dieter Hillenbrand, Svetlana Radionovskaya, R. Michael Comas, Robert D. Larter, Alastair G. C. Graham, James D. Kirkham, Kelly A. Hogan, Victoria Fitzgerald, Rachel W. Clark, Becky Hopkins, Allison P. Lepp, Elaine Mawbey, Rosemary V. Smyth, Lauren E. Miller, James A. Smith, and Frank O. Nitsche
J. Micropalaeontol., 44, 79–105, https://doi.org/10.5194/jm-44-79-2025, https://doi.org/10.5194/jm-44-79-2025, 2025
Short summary
Short summary
Thwaites Glacier's retreat is driven by warm ocean water melting its ice shelf. Seafloor-dwelling marine protists, benthic foraminifera, reflect their environment. Here, ice margins, oceanography, and sea ice cover control live foraminiferal populations. Including dead foraminifera in the analyses shows the calcareous test preservation's role in the assemblage make-up. Understanding these modern communities helps interpret past glacial retreat controls through foraminifera in sediment records.
Kevin Hank, Robert J. Arthern, C. Rosie Williams, Alex M. Brisbourne, Andrew M. Smith, James A. Smith, Anna Wåhlin, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2025-764, https://doi.org/10.5194/egusphere-2025-764, 2025
Short summary
Short summary
The slipperiness beneath ice sheets is a key source of uncertainty in sea level rise projections. Using both observations and model output, we infer the most probable representation of basal slipperiness in ice sheet models, enabling more accurate projections. For Pine Island Glacier, our results provide support for a Coulomb-type sliding law and widespread low effective pressures, potentially increasing sliding velocities in prognostic simulations and, hence, sea level rise projections.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025, https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Short summary
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change, and such models benefit from comparison to geological data. Here, we use an ice sheet model output and other data to predict the erosion of debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Indrani Das, Jowan Barnes, James Smith, Renata Constantino, Sidney Hemming, and Laurie Padman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1564, https://doi.org/10.5194/egusphere-2024-1564, 2024
Short summary
Short summary
George VI Ice Shelf (GVIIS) on the Antarctic Peninsula is currently thinning and the glaciers feeding it are accelerating. Geologic evidence indicates that GVIIS had disintegrated several thousand years ago due to ocean and atmosphere warming. Here, we use remote sensing and numerical modeling to show that strain thinning reduces buttressing of grounded ice, creating a positive feedback of accelerated ice inflow to the southern GVIIS, likely making it more vulnerable than the northern sector.
David T. Bett, Alexander T. Bradley, C. Rosie Williams, Paul R. Holland, Robert J. Arthern, and Daniel N. Goldberg
The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024, https://doi.org/10.5194/tc-18-2653-2024, 2024
Short summary
Short summary
A new ice–ocean model simulates future ice sheet evolution in the Amundsen Sea sector of Antarctica. Substantial ice retreat is simulated in all scenarios, with some retreat still occurring even with no future ocean melting. The future of small "pinning points" (islands of ice that contact the seabed) is an important control on this retreat. Ocean melting is crucial in causing these features to go afloat, providing the link by which climate change may affect this sector's sea level contribution.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024, https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Short summary
We use radio-echo sounding data to investigate the presence of flat surfaces beneath the Evans–Rutford region in West Antarctica. These surfaces may be what remains of laterally continuous surfaces, formed before the inception of the West Antarctic Ice Sheet, and we assess two hypotheses for their formation. Tectonic structures in the region may have also had a control on the growth of the ice sheet by focusing ice flow into troughs adjoining these surfaces.
Marion A. McKenzie, Lauren E. Miller, Allison P. Lepp, and Regina DeWitt
Clim. Past, 20, 891–908, https://doi.org/10.5194/cp-20-891-2024, https://doi.org/10.5194/cp-20-891-2024, 2024
Short summary
Short summary
Records of the interaction between land and glacial ice movement in the Puget Lowland of Washington State are used to interpret that solid Earth movement provided stability to this marine-terminating glacial ice for at least 500 years. These results are significant because this landscape is similar to parts of the Greenland Ice Sheet and the Antarctic Peninsula, indicating that the interactions seen in this area are applicable to modern glaciated regions.
Rebecca J. Sanderson, Kate Winter, S. Louise Callard, Felipe Napoleoni, Neil Ross, Tom A. Jordan, and Robert G. Bingham
The Cryosphere, 17, 4853–4871, https://doi.org/10.5194/tc-17-4853-2023, https://doi.org/10.5194/tc-17-4853-2023, 2023
Short summary
Short summary
Ice-penetrating radar allows us to explore the internal structure of glaciers and ice sheets to constrain past and present ice-flow conditions. In this paper, we examine englacial layers within the Lambert Glacier in East Antarctica using a quantitative layer tracing tool. Analysis reveals that the ice flow here has been relatively stable, but evidence for former fast flow along a tributary suggests that changes have occurred in the past and could change again in the future.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023, https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Short summary
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic grounding lines record extremely fast retreat of ice streams in the past. Here we use a mathematical model, constrained by real-world observations from Thwaites Glacier, West Antarctica, to explore how corrugation ridges form. We identify
till extrusion, whereby deformable sediment is squeezed out from under the ice like toothpaste as it settles down at each low-tide position, as the most likely process.
Marion A. McKenzie, Lauren E. Miller, Jacob S. Slawson, Emma J. MacKie, and Shujie Wang
The Cryosphere, 17, 2477–2486, https://doi.org/10.5194/tc-17-2477-2023, https://doi.org/10.5194/tc-17-2477-2023, 2023
Short summary
Short summary
Topographic highs (“bumps”) across glaciated landscapes have the potential to affect glacial ice. Bumps in the deglaciated Puget Lowland are assessed for streamlined glacial features to provide insight on ice–bed interactions. We identify a general threshold in which bumps significantly disrupt ice flow and sedimentary processes in this location. However, not all bumps have the same degree of impact. The system assessed here has relevance to parts of the Greenland Ice Sheet and Thwaites Glacier.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-8, https://doi.org/10.5194/gmd-2023-8, 2023
Revised manuscript not accepted
Short summary
Short summary
Ice sheet models can help predict how Antarctica’s ice sheets respond to environmental change; such models benefit from comparison to geological data. Here, we use ice sheet model results, plus other data, to predict the erosion of Antarctic debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
James A. Smith, Louise Callard, Michael J. Bentley, Stewart S. R. Jamieson, Maria Luisa Sánchez-Montes, Timothy P. Lane, Jeremy M. Lloyd, Erin L. McClymont, Christopher M. Darvill, Brice R. Rea, Colm O'Cofaigh, Pauline Gulliver, Werner Ehrmann, Richard S. Jones, and David H. Roberts
The Cryosphere, 17, 1247–1270, https://doi.org/10.5194/tc-17-1247-2023, https://doi.org/10.5194/tc-17-1247-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet is melting at an accelerating rate. To understand the significance of these changes we reconstruct the history of one of its fringing ice shelves, known as 79° N ice shelf. We show that the ice shelf disappeared 8500 years ago, following a period of enhanced warming. An important implication of our study is that 79° N ice shelf is susceptible to collapse when atmospheric and ocean temperatures are ~2°C warmer than present, which could occur by the middle of this century.
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022, https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
David R. Cox, Paul C. Knutz, D. Calvin Campbell, John R. Hopper, Andrew M. W. Newton, Mads Huuse, and Karsten Gohl
Sci. Dril., 28, 1–27, https://doi.org/10.5194/sd-28-1-2020, https://doi.org/10.5194/sd-28-1-2020, 2020
Short summary
Short summary
A workflow is presented that uses 3D subsurface image (seismic) data to identify and avoid potential geological hazards, in order to increase safety and minimize the risk associated with selecting offshore scientific drilling locations. The workflow has been implemented for a scientific drilling expedition proposal within a challenging region offshore north-western Greenland and resulted in an improved understanding of subsurface hazards and a reduction of risk across all selected drill sites.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Cited articles
Alley, R. B., Anandakrishnan, S., Dupont, T. K., Parizek, B. R., and
Pollard, D.: Effect of sedimentation on ice-sheet grounding-line stability,
Science, 315, 1838–1841, 2007.
Alley, R. B., Blankenship, D. D., Rooney, S. T., and Bentley, C. R.:
Sedimentation beneath ice shelves – the view from ice stream B, Mar. Geol., 85, 101–120, 1989.
Arndt, J. E., Larter, R. D., Friedl, P., Gohl, K., Höppner, K., and the Science Team of Expedition PS104: Bathymetric controls on calving processes at Pine Island Glacier, The Cryosphere, 12, 2039–2050, https://doi.org/10.5194/tc-12-2039-2018, 2018.
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G.,
Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R.,
Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.:
The International Bathymetric Chart of the Southern Ocean (IBCSO) Version
1.0 – A new bathymetric compilation covering circum-Antarctic waters,
Geophys. Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013.
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within
the Antarctic ice sheet and its controls inferred from satellite
observations, J. Geophys. Res.-Earth, 120,
1171–1188, 2015.
Bellwald, B., Hjelstuen, B. O., Sejrup, H. P., Stokowy, T., and Kuvås,
J.: Holocene mass movements in west and mid-Norwegian fjords and lakes,
Mar. Geol., 407, 192–212, 2019.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation, 2nd Edn., Hodder,
Education, London, 802 pp., ISBN 978-0-340-905791, 2010.
Berger, S., Favier, L., Drews, R., Derwael, J.-J., and Pattyn, F.: The
control of an uncharted pinning point on the flow of an Antarctic ice shelf, J. Glaciol., 62, 37–45, 2016.
Bingham, R. G., Vaughan, D. G., King, E. C., Davies, D., Cornford, S. L.,
Smith, A. M., Arthern, R. J., Brisbourne, A. M., De Rydt, J., Graham, A. G.
C., Spagnolo, M., Marsh, O. J., and Shean, D. E.: Diverse landscapes beneath
Pine Island Glacier influence ice flow, Nat. Commun., 8, 1618,
2017.
Caress, D. W. and Chayes, D. N.: Improved processing of Hydrosweep DS
multibeam data on the R/V Maurice Ewing, Mar. Geophys. Res., 18,
631–650, 1996.
Caress, D. W., Chayes, D. N., and Ferreira, C.: MB-System Seafloor Mapping Software, available at:
https://www.mbari.org/products/research-software/mb-system/, last access:
12 February 2020.
Clark, C. D., Tulaczyk, S. M., Stokes, C. R., and Canals, M.: A
groove-ploughing theory for the production of mega-scale glacial lineations,
and implications for ice-stream mechanics, J. Glaciol., 49,
240–256, 2003.
Davies, D., Bingham, R. G., Graham, A. G. C., Spagnolo, M., Dutrieux, P.,
Vaughan, D. G., Jenkins, A., and Nitsche, F. O.: High-resolution
sub-ice-shelf seafloor records of twentieth century ungrounding and retreat
of Pine Island Glacier, West Antarctica, J. Geophys. Res.-Earth, 122, 1698–1714, 2017.
De Rydt, J. and Gudmundsson, G. H.: Coupled ice shelf-ocean modeling and
complex grounding line retreat from a seabed ridge, J. Geophys. Res.-Earth, 121, 865–880, 2016.
De Rydt, J., Holland, P. R., Dutrieux, P., and Jenkins, A.: Geometric and
oceanographic controls on melting beneath Pine Island Glacier, J. Geophys. Res.-Oceans, 119, 2420–2438, 2014.
Dowdeswell, J. A., Batchelor, C. L., Montelli, A., Ottesen, D., Christie, F.
D. W., Dowdeswell, E. K., and Evans, J.: Delicate seafloor landforms reveal
past Antarctic grounding-line retreat of kilometers per year, Science, 368,
1020, 2020.
Dowdeswell, E. K., Todd, B. J., and Dowdeswell, J. A.: Crag-and-tail
features: convergent ice flow through Eclipse Sound, Baffin Island, Arctic
Canada, edited by: Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A., Geological Society, London, Memoirs, 46, 55–56, https://doi.org/10.1144/M46.106, 2016.
Dowdeswell, J. A. and Fugelli, E. M. G.: The seismic architecture and
geometry of grounding-zone wedges formed at the marine margins of past ice
sheets, Geol. Soc. Am. Bull., 124, 1750–1761, 2012.
Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S. H., Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schröder, M.: Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability, Science, 343, 174–178, https://doi.org/10.1126/science.1244341, 2014.
Evans, J., Dowdeswell, J. A., Ó Cofaigh, C., Benham, T. J., and
Anderson, J. B.: Extent and dynamics of the West Antarctic Ice Sheet on the
outer continental shelf of Pine Island Bay during the last glaciation,
Mar. Geol., 230, 53–72, 2006.
Falcini, F. M., Rippin, D. M., Krabbendam, M., and Selby, K. A.: Quantifying
bed roughness beneath contemporary and palaeo-ice streams, J. Glaciol., 64, 822–834, 2018.
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini,
O., Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M.:
Retreat of Pine Island Glacier controlled by marine ice-sheet instability,
Nat. Clim. Change, 4, 117–121, 2014.
Favier, L., Pattyn, F., Berger, S., and Drews, R.: Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica, The Cryosphere, 10, 2623–2635, https://doi.org/10.5194/tc-10-2623-2016, 2016.
Ferrigno, J. G., Lucchitta, B. K., Mullins, K. F., Allison, A. L., Allen, R.
J., and Gould, W. G.: Velocity measurements and changes in position of
Thwaites Glacier/iceberg tongue from aerial photography, Landsat images and
NOAA AVHRR data, Ann. Glaciol., 17, 239–244, 1993.
Fowler, A. C. and Nye, J. F.: A sliding law for glaciers of constant
viscosity in the presence of subglacial cavitation, P. R. Soc.-Math. Phys. Sc., 407, 147–170,
1986.
Gales, J. A., Larter, R. D., Mitchell, N. C., and Dowdeswell, J. A.:
Geomorphic signature of Antarctic submarine gullies: Implications for
continental slope processes, Mar. Geol., 337, 112–124, 2013.
Glen, J. W. and Perutz, M. F.: The creep of polycrystalline ice, P. R. Soc.-Math. Phys. Sc., 228, 519–538, 1955.
Gohl, K.: Basement control on past ice sheet dynamics in the Amundsen Sea
Embayment, West Antarctica, Palaeogeogr. Palaeocl., 335–336, 35–41, 2012.
Gohl, K., Denk, A., Eagles, G., and Wobbe, F.: Deciphering tectonic phases
of the Amundsen Sea Embayment shelf, West Antarctica, from a magnetic
anomaly grid, Tectonophysics, 585, 113–123, 2013.
Graham, A. G. C. and Hogan, K. A.: Crescentic scours on palaeo-ice stream
beds, edited by: Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A., Memoirs, Geological Society, London, 46, 221–222, https://doi.org/10.1144/M46.166, 2016.
Graham, A. G. C., Larter, R. D., Gohl, K., Hillenbrand, C.-D., Smith, J. A.,
and Kuhn, G.: Bedform signature of a West Antarctic palaeo-ice stream
reveals a multi-temporal record of flow and substrate control, Quaternary Sci. Rev., 28, 2774–2793, 2009.
Graham, A. G. C., Larter, R. D., Gohl, K., Dowdeswell, J. A., Hillenbrand, C.-D., Smith, J. A., Evans, J., Kuhn, G., and
Deen, T.: Flow and retreat of the Late Quaternary Pine Island‐Thwaites palaeo‐ice stream, West Antarctica, J. Geophys.
Res., 115, F03025, https://doi.org/10.1029/2009JF001482, 2010.
Greenwood, S. L., Simkins, L. M., Halberstadt, A. R. W., Prothro, L. O., and
Anderson, J. B.: Holocene reconfiguration and readvance of the East
Antarctic Ice Sheet, Nat. Commun., 9, 3176, 2018.
Ha, H. K., Wåhlin, A. K., Kim, T. W., Lee, S. H., Lee, J. H., Lee, H.
J., Hong, C. S., Arneborg, L., Björk, G., and Kalén, O.: Circulation
and Modification of Warm Deep Water on the Central Amundsen Shelf, J. Phys. Oceanogr., 44, 1493–1501, 2014.
Heywood, K. J., Biddle, L. C., Boehme, L., Dutrieux, P., Fedak, M., Jenkins,
A., Jones, R. W., Kaiser, J., Mallett, H., Garabato, A. C. N., Renfrew, I.
A., Stevens, D. P., and Webber, B. G. M.: Between the Devil and the Deep Blue Sea: The Role of the Amundsen Sea Continental Shelf in Exchanges Between Ocean and Ice Shelves, Oceanography, 29, 118–129, 2016.
Hillenbrand, C.-D., Kuhn, G., Smith, J. A., Gohl, K., Graham, A. G. C.,
Larter, R. D., Klages, J. P., Downey, R., Moreton, S. G., Forwick, M., and
Vaughan, D. G.: Grounding-line retreat of the West Antarctic Ice Sheet from
inner Pine Island Bay, Geology, 41, 35–38, 2013.
Hogan, K. A., Dowdeswell, J. A., and Mienert, J.: New insights into slide
processes and seafloor geology revealed by side-scan imagery of the massive
Hinlopen Slide, Arctic Ocean margin, Geo-Mar. Lett., 33, 325–343, 2013.
Hogan, K. A., Larter, R. D., Graham, A. G. C., Nitsche, F. O., Kirkham, J. D., Totten Minzoni, R., Clark, R., Fitzgerald, V., Anderson, J. B., Hillenbrand, C.-D., Simkins, L., Smith, J. A., Gohl, K., Arndt, J. E., Hong, J., Heywood, K. J., Abrahamsen, E. P., Thompson, A. F., Dunbar, R., and Wellner, J. S.: A multibeam-bathymetric compilation for the southern Amundsen Sea shelf, 1999–2019 (Version 1.0) [Data set], UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation, https://doi.org/10.5285/F2DFEDA9-BF44-4EF5-89A3-EE5E434A385C, 2020.
Holschuh, N., Christianson, K., Paden, J., Alley, R. B., and Anandakrishnan,
S.: Linking postglacial landscapes to glacier dynamics using swath radar
imaging at Thwaites Glacier, Antarctica, Geology, 48, 268–272, 2020.
Holt, J. W., Blankenship, D. D., Morse, D. L., Young, D. A., Peters, M. E.,
Kempf, S. D., Richter, T. G., Vaughan, D. G., and Corr, H. F. J.: New
boundary conditions for the West Antarctic Ice Sheet: Subglacial topography
of the Thwaites and Smith glacier catchments, Geophys. Res. Lett.,
33, L09502, https://doi.org/10.1029/2005GL025561, 2006.
Hubbard, B., Siegert, M. J., and McCarroll, D.: Spectral roughness of
glaciated bedrock geomorphic surfaces: Implications for glacier sliding,
J. Geophys. Res.-Sol. Ea., 105, 21295–21303, 2000.
Hughes, T. J.: The weak underbelly of the West Antarctic ice sheet, J. Glaciol., 27, 518–525, 1981.
Jacobs, S., Giulivi, C., Dutrieux, P., Rignot, E., Nitsche, F., and
Mouginot, J.: Getz Ice Shelf melting response to changes in ocean forcing,
J. Geophys. Res.-Oceans, 118, 4152–4168, 2013.
Jacobs, S., Jenkins, A., Hellmer, H., Giulivi, C., Nitsche, F., Huber, B.,
and Guerrero, R.: The Amundsen Sea and the Antarctic Ice Sheet,
Oceanography, 25, 154–163, 2012.
Jacobs, S. S., Hellmer, H. H., and Jenkins, A.: Antarctic Ice Sheet melting
in the southeast Pacific, Geophys. Res. Lett., 23, 957–960, 1996.
Jakobsson, M., Anderson, J. B., Nitsche, F. O., Gyllencreutz, R., Kirshner,
A. E., Kirchner, N., O'Regan, M., Mohammad, R., and Eriksson, B.: Ice sheet
retreat dynamics inferred from glacial morphology of the central Pine Island
Bay Trough, West Antarctica, Quaternary Sci. Rev., 38, 1–10, 2012.
Jakobsson, M., Nilsson, J., O'Regan, M., Backman, J., Löwemark, L.,
Dowdeswell, J. A., Mayer, L., Polyak, L., Colleoni, F., Anderson, L.,
Björk, G., Darby, D., Eriksson, B., Hanslik, D., Hell, B., Marcussen,
C., Sellén, E., and Wallin, Å.: An Arctic Ocean ice shelf during MIS
6 constrained by new geophysical and geological data, Quaternary Sci. Rev., 29, 3505–3517, 2010.
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R.,
Webb, A. T., and White, D.: Observations beneath Pine Island Glacier in
West Antarctica and implications for its retreat, Nat. Geosci., 3,
468–472, 2010.
Jenkins, A., Dutrieux, P., Jacobs, S., Steig, E. J., Gudmundsson, G. H.,
Smith, J., and Heywood, K. J.: Decadal Ocean Forcing and Antarctic Ice Sheet Response: Lessons from the Amundsen Sea, Oceanography, 29, 106–117, 2016.
Jezek, K., Wu, X., Gogineni, P., Rodríguez, E., Freeman, A.,
Rodriguez-Morales, F., and Clark, C. D.: Radar images of the bed of the
Greenland Ice Sheet, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2010GL045519, 2011.
Johnson, J. S., Smith, J. A., Schaefer, J.
M., Young, N. E., Goehring, B. M., Hillenbrand, C.-D., Lamp, J. L., Finkel,
R. C., and Gohl, K.: The last glaciation of Bear Peninsula, central Amundsen
Sea Embayment of Antarctica: Constraints on timing and duration revealed by
in situ cosmogenic 14C and 10Be dating, Quaternary Sci. Rev., 178,
77–88, 2017.
Jordan, T. A., Porter, D., Tinto, K., Millan, R., Muto, A., Hogan, K., Larter, R. D.,
Graham, A. G. C., and Pade, J. D.:
New gravity-derived bathymetry for the Thwaites, Crosson, and
Dotson ice shelves revealing two ice shelf populations,
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, 2020.
Jordan, T. M., Cooper, M. A., Schroeder, D. M., Williams, C. N., Paden, J. D., Siegert, M. J., and Bamber, J. L.: Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland, The Cryosphere, 11, 1247–1264, https://doi.org/10.5194/tc-11-1247-2017, 2017.
Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt, J. W., Scambos, T., and Vaughan, D. G.: Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data, J. Glaciol., 55, 245–257, 2009.
Joughin, I., Smith, B. E., and Holland, D. M.: Sensitivity of 21st century
sea level to ocean-induced thinning of Pine Island Glacier, Antarctica,
Geophys. Res. Lett., 37, L20502, https://doi.org/10.1029/2010GL044819, 2010.
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse
Potentially Under Way for the Thwaites Glacier Basin, West Antarctica,
Science, 344, 735, 2014.
Kamb, B.: Sliding motion of glaciers: theory and observation, Reviews of
Geophysics and Space Physics, 8, 673–728, 1970.
Kim, J.-W., Kim, D.-j., Kim, S. H., Ha, H. K., and Lee, S. H.:
Disintegration and acceleration of Thwaites Ice Shelf on the Amundsen Sea
revealed from remote sensing measurements, Gisci. Remote Sens.,
52, 498–509, 2015.
King, E. C., Pritchard, H. D., and Smith, A. M.: Subglacial landforms
beneath Rutford Ice Stream, Antarctica: detailed bed topography from
ice-penetrating radar, Earth Syst. Sci. Data, 8, 151–158, 2016.
Kirkham, J. D., Hogan, K. A., Larter, R. D., Arnold, N. S., Nitsche, F. O., Golledge, N. R., and Dowdeswell, J. A.: Past water flow beneath Pine Island and Thwaites glaciers, West Antarctica, The Cryosphere, 13, 1959–1981, https://doi.org/10.5194/tc-13-1959-2019, 2019.
Kirshner, A., Anderson, J.B., Jakobsson, M., O'Regan, M., Majewski, W., and
Nitsche, F.: Post-LGM deglaciation in Pine island Bay, west Antarctica.
Quaternary Sci. Rev., 38, 11–26, 2012.
Kuhn, G., Hillenbrand, C.-D., Kasten, S., Smith, J. A., Nitsche, F. O.,
Frederichs, T., Wiers, S., Ehrmann, W., Klages, J. P., and Mogollón, J.
M.: Evidence for a palaeo-subglacial lake on the Antarctic continental
shelf, Nat. Commun., 8, 15591, https://doi.org/10.1038/ncomms15591, 2017.
Larter, R. D., Gohl, K., Hillenbrand, C.-D., Kuhn, G., Deen, T. J., Dietrich, R., Eagles, G., Johnson, J. S., Livermore, R. A., Nitsche, F. O., Pudsey, C. J., Schenke, H.-W., Smith, J. A., Udintsev, G., and Uenzelmann-Neben, G.: West Antarctic Ice Sheet change since the Last Glacial Period, Eos T. Am. Geophys. Un., 88, 189–190, 2007.
Larter, R. D., Graham, A. G. C., Gohl, K., Kuhn, G., Hillenbrand, C.-D.,
Smith, J. A., Deen, T. J., Livermore, R. A., and Schenke, H.-W.: Subglacial
bedforms reveal complex basal regime in a zone of paleo–ice stream
convergence, Amundsen Sea embayment, West Antarctica, Geology, 37, 411–414,
2009.
Larter, R. D., Anderson, J. B., Graham, A. G. C., Gohl, K., Hillenbrand, C-.
D., Jakobsson, M., Johnson, J. S., Kuhn, G., Nitsche, F. O., Smith, J. A.,
Witus, A. E., Bentley, M. J., Dowdeswell, J. A., Ehrmann, W., Klages, J. P.,
Lindow, J., O Cofaigh, C., and Spiegel, C.: Reconstruction of changes in the
Amundsen Sea ad Bellingshausen Sea sector of the West Antarctic Ice Sheet
since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 55–86,
2014.
Larter, R. D., Queste, B. Y., Boehme, L., Braddock, S., Wåhlin, A. K.,
Graham, A. G. C., Hogan, K. A., Totten Minzoni, R., Barham, M., Bortolotto
de'Oliveira, G., Clark, R., Fitzgerald, V., Karam, S., Kirkham, J. D.,
Mazur, A., Sheehan, P., Spoth, M., Stedt, P., Welzenbach, L. Zheng, Y.,
Andersson, J., Rolandsson, J., Beeler, C., Goodell, J., Rush, and Snow, T.:
CRUISE REPORT RV/IB Nathaniel B. Palmer Cruise NBP19-02, January-March 2019: First research cruise of the International Thwaites
Glacier Collaboration,
http://get.rvdata.us/cruise/NBP1902/doc/NBP1902_report_final.pdf (last access: 11 June 2020), 2020.
Larter, R. D. and Vanneste, L. E.: Relict subglacial deltas on the Antarctic
Peninsula outer shelf, Geology, 23, 33–36, 1995.
Livingstone, S. J., Cofaigh, C. Ó., Stokes, C. R., Hillenbrand, C.-D.,
Vieli, A., and Jamieson, S. S. R.: Glacial geomorphology of Marguerite Bay
Palaeo-Ice stream, western Antarctic Peninsula, J. Maps, 9, 558–572,
2013.
Liu, E. W., Räss, L., Suckale, J., Herman, F., and Podladchikov, Y.:
Spontaneous Formation of Internal Shear Zone in Ice Flowing over a
Topographically Variable Bed, EGU General Assembly 2020, Online, 4–8 May
2020, EGU2020-12602,
https://doi.org/10.5194/egusphere-egu2020-12602, 2020.
Lowe, A. L. and Anderson, J. B.: Evidence for abundant subglacial meltwater
beneath the paleo-ice sheet in Pine Island Bay, Antarctica, J. Glaciol., 49, 125–138, 2003.
Lowe, A. L. and Anderson, J. B.: Reconstruction of the West Antarctic ice
sheet in Pine Island Bay during the Last Glacial Maximum and its subsequent
retreat history, Quaternary Sci. Rev., 21, 1879–1897, 2002.
MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment: Theory
and application to ice stream B, Antarctica, J. Geophys. Res.-Sol. Ea., 94, 4071–4087, 1989.
MacGregor, J. A., Catania, G. A., Markowski, M. S., and Andrews, A. G.:
Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen
Sea Embayment between 1972 and 2011, J. Glaciol., 58, 458–466,
2012.
MacLean, B., Blasco, S., Bennett, R., Hughes Clarke, J. E., and Patton, E.:
Crag-and-tail features, Amundsen Gulf, Canadian Arctic Archipelago, edited by: Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A., Memoirs, Geological Society, London, 46, 53–54, https://doi.org/10.1144/M46.84, 2016.
Matsuoka, K., Hindmarsh, R. C. A., Moholdt, G., Bentley, M. J., Pritchard,
H. D., Brown, J., Conway, H., Drews, R., Durand., G., Goldberg, D.,
Hattermann, T., Kingslake, J., Lenaerts, J. T. M., Martín, C.,
Mulvaney, R., Nicholss, K. W., Pattyn, F., Ross, N., Scambos, T., and
Whitehouse, P. L.: Antarctic ice rises and rumples: Their properties and
significance for ice-sheet dynamics and evolution, Earth Sci. Rev.,
150, 724–745, 2015.
Mayer, L. A., Paton, M., Gee, L., Gardner, S. V., and Ware, C.: Interactive
3-D visualization: a tool for seafloor navigation, exploration and
engineering, in: Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence, USA, 11–14 September 200, 913–919, 2000.
McMillan, M., Shepherd, A., Sundal, A., Briggs, K., Muir, A., Ridout, A.,
Hogg, A., and Wingham, D.: Increased ice losses from Antarctica detected by
CryoSat-2, Geophys. Res. Lett., 41, 3899–3905, 2014.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J.,
Bueso-Bello, J., and Prats-Iraola, P.: Heterogeneous retreat and ice melt of
Thwaites Glacier, West Antarctica, Science Advances, 5, eaau3433, https://doi.org/10.1126/sciadv.aau3433, 2019.
Millan, R., Rignot, E., Bernier, V., Morlighem, M., and Dutrieux, P.:
Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from
Operation IceBridge gravity and other data, Geophys. Res. Lett.,
44, 1360–1368, 2017.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles,
G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V.,
Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat,
I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S.,
Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., Broeke, M.
R. v. d., Ommen, T. D. v., Wessem, M. v., and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of the Antarctic
ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2019.
Mouginot, J., Rignot, E., and Scheuchl, B.: Continent-Wide, Interferometric
SAR Phase, Mapping of Antarctic Ice Velocity, Geophys. Res. Lett.,
46, 9710–9718, 2019.
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained increase in ice
discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to
2013, Geophys. Res. Lett., 41, 1576–1584, 2014.
Muto, A., Alley, R. B., Parizek, B. R., and Anandakrishnan, S.: Bed-type
variability and till (dis)continuity beneath Thwaites Glacier, West
Antarctica, Ann. Glaciol., 60, 82–90, https://doi.org/10.1017/aog.2019.32, 2019a.
Muto, A., Anandakrishnan, S., Alley, R. B., Horgan, H. J., Parizek, B. R.,
Koellner, S., Christianson, K., and Holschuh, N.: Relating bed character and
subglacial morphology using seismic data from Thwaites Glacier, West
Antarctica, Earth Planet Sc. Lett., 507, 199–206, 2019b.
Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S.,
Klein, P., Seroussi, H., Schodlok, M., Rignot, E., and Menemenlis, D.:
Pathways of ocean heat towards Pine Island and Thwaites grounding lines,
Sci. Rep., 9, 16649, https://doi.org/10.1038/s41598-019-53190-6, 2019.
Nakayama, Y., Schröder, M., and Hellmer, H. H.: From circumpolar deep
water to the glacial meltwater plume on the eastern Amundsen Shelf, Deep-Sea
Res. Pt. I, 77, 50–62, 2013.
Nitsche, F. O., Gohl, K., Larter, R. D., Hillenbrand, C.-D., Kuhn, G., Smith, J. A., Jacobs, S., Anderson, J. B., and Jakobsson, M.: Paleo ice flow and subglacial meltwater dynamics in Pine Island Bay, West Antarctica, The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, 2013.
Nitsche, F. O., Jacobs, S. S., Larter, R. D., and Gohl, K.: Bathymetry of
the Amundsen Sea continental shelf: Implications for geology, oceanography,
and glaciology, Geochem. Geophy. Geosy., 8, Q10009, https://doi.org/10.1029/2007GC001694, 2007.
Nitsche, F. O., Larter, R. D., Gohl, K., Graham, A. G. C., and Kuhn, G.:
Crag-and-tail features on the Amundsen Sea continental shelf, West
Antarctica, edited by: Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A., Memoirs, Geological Society, London, 46, 199–200, https://doi.org/10.1144/M46.2, 2016.
Noormets, R., Dowdeswell, J. A., Larter, R. D., Ó Cofaigh, C., and
Evans, J.: Morphology of the upper continental slope in the Bellingshausen
and Amundsen Seas - Implications for sedimentary processes at the shelf edge
of West Antarctica, Mar. Geol., 258, 100–114, 2009.
Noormets, R., Kirchner, N., Flink, A. E., and Dowdeswell, J. A.: Possible
iceberg-produced submarine terraces in Hambergbukta, Spitsbergen, edited by: Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A., Memoirs, Geolhttps://doi.org/10.1144/M46.121, 2016.
Nye, J. F.: Glacier sliding without cavitation in a linear viscous
approximation, P. Roy. Soc. A-Math. Phy., 315, 381–403,
1970.
Ó Cofaigh, C., Dowdeswell, J. A., Allen, C. S., Hiemstra, J. F., Pudsy,
C., J., Evans, J., Evans, D. J. A.: Flow dynamics and till genesis
associated with a marine-based Antarctic palaeo-ice stream, Quaternary Sci. Rev., 24, 709–740, 2005.
Paden, J., Akins, T., Dunson, D., Allen, C., and Gogineni, P.: Ice-sheet bed
3-D tomography, J. Glaciol., 56, 3–11, https://doi.org/10.3189/002214310791190811, 2010.
Parizek, B. R. and Walker, R. T.: Implications of initial conditions and
ice–ocean coupling for grounding-line evolution, Earth Planet Sc. Lett., 300, 351–358, 2010.
Pattyn, F. and Van Huele, W.: Power law or power flaw?, Earth Surface
Processes and Landforms, 23, 761–767, 1998.
Post, A. L., O'Brien, P. E., Edwards, S., Carroll, A. G., Malakoff, K., and
Armand, L. K.: Upper slope processes and seafloor ecosystems on the Sabrina
continental slope, East Antarctica, Mar. Geol., 422, 106091,
https://doi.org/10.1016/j.margeo.2019.106091, 2020.
Rabus, B. T., Lang, O., and Adolphs, U.: Interannual velocity variations and
recent calving of Thwaites Glacier Tongue, West Antarctica, Ann. Glaciol., 36, 215–224, 2003.
Rignot, E.: Evidence for rapid retreat and mass loss of Thwaites Glacier,
West Antarctica, J. Glaciol., 47, 213–222, 2001.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 341, 266–270, 2013.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502–3509, 2014.
Rignot, E., Mouginot, J., and Scheuchl, B.: Antarctic grounding line mapping
from differential satellite radar interferometry, Geophys. Res. Lett., 38, L10504, https://doi.org/10.1029/2011GL047109, 2011.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095,
2019.
Rippin, D. M., Vaughan, D. G., and Corr, H. F. J.: The basal roughness of
Pine Island Glacier, West Antarctica, J. Glaciol., 57, 67–76,
2011.
Scambos, T. A., Bell, R. E., Alley, R. B., Anandakrishnan, S., Bromwich, D.
H., Brunt, K., Christianson, K., Creyts, T., Das, S. B., DeConto, R.,
Dutrieux, P., Fricker, H. A., Holland, D., MacGregor, J., Medley, B.,
Nicolas, J. P., Pollard, D., Siegfried, M. R., Smith, A. M., Steig, E. J.,
Trusel, L. D., Vaughan, D. G., and Yager, P. L.: How much, how fast?: A
science review and outlook for research on the instability of Antarctica's
Thwaites Glacier in the 21st century, Global Planet. Change, 153,
16–34, 2017.
Schoof, C.: Basal perturbations under ice streams: form drag and surface
expression, J. Glaciol., 48, 407–416, 2002.
Schoof, C.: The effect of cavitation on glacier sliding, P. Roy. Soc. A-Math. Phy., 461,
609–627, 2005.
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth, 112, F03S28,
https://doi.org/10.1029/2006JF000664, 2007.
Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water
system transition beneath Thwaites Glacier, West Antarctica, P. Natl. Acad. Sci. USA, 110, 12225, 2013.
Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E., and
Anderson, J. B.: Airborne radar sounding evidence for deformable sediments
and outcropping bedrock beneath Thwaites Glacier, West Antarctica,
Geophys. Res. Lett., 41, 7200–7208, 2014.
Shepherd, A., Gilbert, L., Muir, A. S., Konrad, H., McMillan, M., Slater,
T., Briggs, K. H., Sundal, A. V., Hogg, A. E., and Engdahl, M. E.: Trends in
Antarctic Ice Sheet Elevation and Mass, Geophys. Res. Lett., 46,
8174–8183, 2019.
Siegert, M. J., Taylor, J., Payne, A. J., and Hubbard, B.: Macro-scale bed
roughness of the Siple Coast ice streams in west Antarctica, Earth Surface
Processes and Landforms, 29, 1591–1596, 2004.
Spagnolo, M., Clark, C. D., Ely, J. C., Stokes, C. R., Anderson, J. B.,
Andreassen, K., Graham, A. G. C., and King, E. C.: Size, shape and spatial
arrangement of mega-scale glacial lineations from a large and diverse
dataset, Earth Surface Processes and Landforms, 39, 1432–1448, 2014.
Spagnolo, M., Bartholomaus, T. C., Clark, C. D., Stokes, C. R., Atkinson,
N., Dowdeswell, J. A., Ely, J. C., Graham, A. G. C., Hogan, K. A., King, E.
C., Larter, R. D., Livingstone, S. J., and Pritchard, H. D.: The periodic
topography of ice stream beds: Insights from the Fourier spectra of
mega-scale glacial lineations, J. Geophys. Res.-Earth, 122, 1355–1373, 2017.
Spiegel, C., Lindow, J., Kamp, P. J. J., Meisel, O., Mukasa, S., Lisker, F.,
Kuhn, G., and Gohl, K.: Tectonomorphic evolution of Marie Byrd Land –
Implications for Cenozoic rifting activity and onset of West Antarctic
glaciation, Global Planet. Change, 145, 98–115, 2016.
Tinto, K. J. and Bell, R. E.: Progressive unpinning of Thwaites Glacier from
newly identified offshore ridge: Constraints from aerogravity, Geophys. Res. Lett., 38, L20503, https://doi.org/10.1029/2011GL049026, 2011.
Tinto, K., Bell, R. E., and Cochran, J. R.: IceBridge Sander AIRGrav L1B Geolocated Free Air Gravity Anomalies, Version 1.05, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, https://doi.org/10.5067/R1RQ6NRIJV89, 2010 (updated 2019).
Vanneste, M., Mienert, J., and Bünz, S.: The Hinlopen Slide: A giant,
submarine slope failure on the northern Svalbard margin, Arctic Ocean, Earth Planet Sc. Lett., 245, 373–388, 2006.
Vaughan, D. G. and Arthern, R.: Why Is It Hard to Predict the Future of Ice
Sheets?, Science, 315, 1503, 2007.
Vaughan, D. G., Smith, A.M., Corr, H. F. J., Jenkins, A., Bentley, C. R., Stenoien, M. D., Jacobs, S. S., Kellogg, T. B., Rignot, E., and Lucchitta, B. K.: A Review of Pine Island Glacier, West Antarctica: Hypotheses of Instability vs. Observations of Change, American Geophysical Union, Washington, D.C., Antarctic Research Series, 77, 237–256, 2001.
Vogt, P. R., Crane, K., and Sundvor, E.: Deep Pleistocene iceberg plowmarks
on the Yermak Plateau: sidescan and 3.5 kHz evidence for thick calving ice
fronts and a possible marine ice sheet in the Arctic Ocean, Geology, 22,
403–406, 1994.
Walker, D. P., Brandon, M. A., Jenkins, A., Allen, J. T., Dowdeswell, J. A.,
and Evans, J.: Oceanic heat transport onto the Amundsen Sea shelf through a
submarine glacial trough, Geophys. Res. Lett., 34, L02602, https://doi.org/10.1029/2006GL028154, 2007.
Weertman, J.: On the Sliding of Glaciers, J. Glaciol., 3, 33–38,
1957.
Weertman, J.: Stability of the junction between an ice sheet and an ice
shelf, J. Glaciol., 13, 3–11, 1974.
Welch, P. D.: The Use of Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms,
IEEE T. Acoust. Speech., 15, 70–73, 1967.
Wellner, J. S., Heroy, D. C., and Anderson, J. B.: The death mask of the
Antarctic ice sheet: Comparison of glacial geomorphic features across the
continental shelf, Geomorphology, 75, 157–171, 2006.
Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A. and Thomas, I.
D.: A new glacial isostatic adjustment model for Antarctica: calibrated and
tested using observations of relative sea-level change and present-day
uplift rates, Geophys. J. Int., 190, 1464–1482, 2012.
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm...