Articles | Volume 14, issue 8
https://doi.org/10.5194/tc-14-2607-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-2607-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermokarst lake inception and development in syngenetic ice-wedge polygon terrain during a cooling climatic trend, Bylot Island (Nunavut), eastern Canadian Arctic
Frédéric Bouchard
CORRESPONDING AUTHOR
Géosciences Paris Sud (GEOPS), Université Paris-Saclay,
Orsay, France
Centre d'études nordiques (CEN), Université Laval,
Québec, Canada
Département de géographie, Université de Montréal,
Montréal, Canada
Centre Eau Terre Environnement, Institut national de la recherche
scientifique (INRS-ETE), Québec, Canada
Daniel Fortier
Centre d'études nordiques (CEN), Université Laval,
Québec, Canada
Département de géographie, Université de Montréal,
Montréal, Canada
Michel Paquette
Department of Geography and Planning, Queen's University, Kingston,
Canada
Vincent Boucher
Département de géographie, Université Laval,
Québec, Canada
Reinhard Pienitz
Centre d'études nordiques (CEN), Université Laval,
Québec, Canada
Département de géographie, Université Laval,
Québec, Canada
Isabelle Laurion
Centre d'études nordiques (CEN), Université Laval,
Québec, Canada
Centre Eau Terre Environnement, Institut national de la recherche
scientifique (INRS-ETE), Québec, Canada
Related authors
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
F. Bouchard, I. Laurion, V. Prėskienis, D. Fortier, X. Xu, and M. J. Whiticar
Biogeosciences, 12, 7279–7298, https://doi.org/10.5194/bg-12-7279-2015, https://doi.org/10.5194/bg-12-7279-2015, 2015
Short summary
Short summary
We report on greenhouse gas (GHG) emissions in permafrost aquatic systems of the Eastern Canadian Arctic. We found strikingly different ages, sources and emission rates depending on aquatic system types. Small and shallow ponds generally emitted young (modern to a few centuries old) GHG, whereas larger and deeper lakes released much older GHG, in particular millennium-old CH4 from lake central areas. To our knowledge, this work is the first to report on GHG age from Canadian Arctic lakes.
M. Fritz, B. N. Deshpande, F. Bouchard, E. Högström, J. Malenfant-Lepage, A. Morgenstern, A. Nieuwendam, M. Oliva, M. Paquette, A. C. A. Rudy, M. B. Siewert, Y. Sjöberg, and S. Weege
The Cryosphere, 9, 1715–1720, https://doi.org/10.5194/tc-9-1715-2015, https://doi.org/10.5194/tc-9-1715-2015, 2015
Short summary
Short summary
This is a contribution about the future of permafrost research to the 3rd International Conference on Arctic Research Planning 2015 (ICARP III).
We summarize the top five research questions for the next decade of permafrost science from the perspective of early career researchers (ECRs).
We highlight the pathways and structural preconditions to address these research priorities.
This manuscript is an outcome of a community consultation conducted for and by ECRs on a global level.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Naïm Perreault, Esther Lévesque, Daniel Fortier, and Laurent J. Lamarque
Biogeosciences, 13, 1237–1253, https://doi.org/10.5194/bg-13-1237-2016, https://doi.org/10.5194/bg-13-1237-2016, 2016
Short summary
Short summary
We investigated the impacts of climate change and thawing permafrost on vegetation dynamics in Bylot Island, Nunavut. The development of gullies has created new drainage systems within the wetlands, promoting the emergence of mesic plants at the expense of hydrophilic ones within 10 years after disturbance inception. The landscape transformation from wet to mesic plant communities can have substantial consequences on food availability for herbivores and methane emissions of Arctic ecosystems.
A. Przytulska, J. Comte, S. Crevecoeur, C. Lovejoy, I. Laurion, and W. F. Vincent
Biogeosciences, 13, 13–26, https://doi.org/10.5194/bg-13-13-2016, https://doi.org/10.5194/bg-13-13-2016, 2016
Short summary
Short summary
Permafrost thaw lakes are a subject of increasing research interest given their abundance across the northern landscape. Our aim in the present study was to characterize the photosynthetic communities in a range of subarctic thaw lakes using a combination of HPLC analysis of algal and bacterial pigments, flow cytometry and molecular analysis. Our results showed that the thaw lakes contain diverse phototrophic communities and are a previously unrecognized habitat for abundant picophotoautotrophs.
F. Bouchard, I. Laurion, V. Prėskienis, D. Fortier, X. Xu, and M. J. Whiticar
Biogeosciences, 12, 7279–7298, https://doi.org/10.5194/bg-12-7279-2015, https://doi.org/10.5194/bg-12-7279-2015, 2015
Short summary
Short summary
We report on greenhouse gas (GHG) emissions in permafrost aquatic systems of the Eastern Canadian Arctic. We found strikingly different ages, sources and emission rates depending on aquatic system types. Small and shallow ponds generally emitted young (modern to a few centuries old) GHG, whereas larger and deeper lakes released much older GHG, in particular millennium-old CH4 from lake central areas. To our knowledge, this work is the first to report on GHG age from Canadian Arctic lakes.
T. Roiha, I. Laurion, and M. Rautio
Biogeosciences, 12, 7223–7237, https://doi.org/10.5194/bg-12-7223-2015, https://doi.org/10.5194/bg-12-7223-2015, 2015
Short summary
Short summary
Global warming thaws permafrost and accelerates the formation of thaw ponds in subarctic and arctic regions. These abundant ponds receive large terrestrial carbon inputs from the thawing and eroding permafrost, which is mainly used by bacterioplankton for the production of new biomass. Bacteria metabolism also produces high levels of CO2 and CH4, which make thaw ponds important sources of greenhouse gases to the atmosphere. We present carbon dynamics in thaw ponds in northern Quebec.
J. E. Vonk, S. E. Tank, W. B. Bowden, I. Laurion, W. F. Vincent, P. Alekseychik, M. Amyot, M. F. Billet, J. Canário, R. M. Cory, B. N. Deshpande, M. Helbig, M. Jammet, J. Karlsson, J. Larouche, G. MacMillan, M. Rautio, K. M. Walter Anthony, and K. P. Wickland
Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, https://doi.org/10.5194/bg-12-7129-2015, 2015
Short summary
Short summary
In this review, we give an overview of the current state of knowledge regarding how permafrost thaw affects aquatic systems. We describe the general impacts of thaw on aquatic ecosystems, pathways of organic matter and contaminant release and degradation, resulting emissions and burial, and effects on ecosystem structure and functioning. We conclude with an overview of potential climate effects and recommendations for future research.
M. Fritz, B. N. Deshpande, F. Bouchard, E. Högström, J. Malenfant-Lepage, A. Morgenstern, A. Nieuwendam, M. Oliva, M. Paquette, A. C. A. Rudy, M. B. Siewert, Y. Sjöberg, and S. Weege
The Cryosphere, 9, 1715–1720, https://doi.org/10.5194/tc-9-1715-2015, https://doi.org/10.5194/tc-9-1715-2015, 2015
Short summary
Short summary
This is a contribution about the future of permafrost research to the 3rd International Conference on Arctic Research Planning 2015 (ICARP III).
We summarize the top five research questions for the next decade of permafrost science from the perspective of early career researchers (ECRs).
We highlight the pathways and structural preconditions to address these research priorities.
This manuscript is an outcome of a community consultation conducted for and by ECRs on a global level.
Related subject area
Discipline: Frozen ground | Subject: Arctic (e.g. Greenland)
Validation of pan-Arctic soil temperatures in modern reanalysis and data assimilation systems
Characterization of atmospheric methane release in the outer Mackenzie River delta from biogenic and thermogenic sources
Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula
The importance of freeze–thaw cycles for lateral tracer transport in ice-wedge polygons
The cryostratigraphy of the Yedoma cliff of Sobo-Sise Island (Lena delta) reveals permafrost dynamics in the central Laptev Sea coastal region during the last 52 kyr
The current state and 125 kyr history of permafrost on the Kara Sea shelf: modeling constraints
Estimation of subsurface porosities and thermal conductivities of polygonal tundra by coupled inversion of electrical resistivity, temperature, and moisture content data
A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
New insights into the environmental factors controlling the ground thermal regime across the Northern Hemisphere: a comparison between permafrost and non-permafrost areas
Circumpolar patterns of potential mean annual ground temperature based on surface state obtained from microwave satellite data
Tyler C. Herrington, Christopher G. Fletcher, and Heather Kropp
The Cryosphere, 18, 1835–1861, https://doi.org/10.5194/tc-18-1835-2024, https://doi.org/10.5194/tc-18-1835-2024, 2024
Short summary
Short summary
Here we validate soil temperatures from eight reanalysis products across the pan-Arctic and compare their performance to a newly calculated ensemble mean soil temperature product. We find that most product soil temperatures have a relatively large RMSE of 2–9 K. It is found that the ensemble mean product outperforms individual reanalysis products. Therefore, we recommend the ensemble mean soil temperature product for the validation of climate models and for input to hydrological models.
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023, https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Short summary
The Mackenzie River delta (MRD) is an ecosystem with high rates of methane production from biologic and geologic sources, but little research has been done to determine how often geologic or biogenic methane is emitted to the atmosphere. Stable carbon isotope analysis was used to identify the source of CH4 at several sites. Stable carbon isotope (δ13C-CH4) signatures ranged from −42 to −88 ‰ δ13C-CH4, indicating that CH4 emission in the MRD is caused by biologic and geologic sources.
Philipp Bernhard, Simon Zwieback, and Irena Hajnsek
The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022, https://doi.org/10.5194/tc-16-2819-2022, 2022
Short summary
Short summary
With climate change, Arctic hillslopes above ice-rich permafrost are vulnerable to enhanced carbon mobilization. In this work elevation change estimates generated from satellite observations reveal a substantial acceleration of carbon mobilization on the Taymyr Peninsula in Siberia between 2010 and 2021. The strong increase occurring in 2020 coincided with a severe Siberian heatwave and highlights that carbon mobilization can respond sharply and non-linearly to increasing temperatures.
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Anatoliy Gavrilov, Vladimir Pavlov, Alexandr Fridenberg, Mikhail Boldyrev, Vanda Khilimonyuk, Elena Pizhankova, Sergey Buldovich, Natalia Kosevich, Ali Alyautdinov, Mariia Ogienko, Alexander Roslyakov, Maria Cherbunina, and Evgeniy Ospennikov
The Cryosphere, 14, 1857–1873, https://doi.org/10.5194/tc-14-1857-2020, https://doi.org/10.5194/tc-14-1857-2020, 2020
Short summary
Short summary
The geocryological study of the Arctic shelf remains insufficient for economic activity. The article presents a study of its evolution by methods of math modeling of heat transfer in rocks. As a result, a model of the evolution and current state of the cryolithozone of the Kara shelf was created based on ideas about the history of its geocryological development over the past 125 kyr. The modeling results are correlated to the available field data and are presented as a geocryological map.
Elchin E. Jafarov, Dylan R. Harp, Ethan T. Coon, Baptiste Dafflon, Anh Phuong Tran, Adam L. Atchley, Youzuo Lin, and Cathy J. Wilson
The Cryosphere, 14, 77–91, https://doi.org/10.5194/tc-14-77-2020, https://doi.org/10.5194/tc-14-77-2020, 2020
Short summary
Short summary
Improved subsurface parameterization and benchmarking data are needed to reduce current uncertainty in predicting permafrost response to a warming climate. We developed a subsurface parameter estimation framework that can be used to estimate soil properties where subsurface data are available. We utilize diverse geophysical datasets such as electrical resistance data, soil moisture data, and soil temperature data to recover soil porosity and soil thermal conductivity.
Emmanuel Léger, Baptiste Dafflon, Yves Robert, Craig Ulrich, John E. Peterson, Sébastien C. Biraud, Vladimir E. Romanovsky, and Susan S. Hubbard
The Cryosphere, 13, 2853–2867, https://doi.org/10.5194/tc-13-2853-2019, https://doi.org/10.5194/tc-13-2853-2019, 2019
Short summary
Short summary
We propose a new strategy called distributed temperature profiling (DTP) for improving the estimation of soil thermal properties through the use of an unprecedented number of laterally and vertically distributed temperature measurements. We tested a DTP system prototype by moving it sequentially across a discontinuous permafrost environment. The DTP enabled high-resolution identification of near-surface permafrost location and covariability with topography, vegetation, and soil properties.
Olli Karjalainen, Miska Luoto, Juha Aalto, and Jan Hjort
The Cryosphere, 13, 693–707, https://doi.org/10.5194/tc-13-693-2019, https://doi.org/10.5194/tc-13-693-2019, 2019
Short summary
Short summary
Using a statistical modelling framework, we examined the environmental factors controlling ground thermal regimes inside and outside the Northern Hemisphere permafrost domain. We found that climatic factors were paramount in both regions, but with varying relative importance and effect size. The relationships were often non-linear, especially in permafrost conditions. Our results suggest that these non-linearities should be accounted for in future ground thermal models at the hemisphere scale.
Christine Kroisleitner, Annett Bartsch, and Helena Bergstedt
The Cryosphere, 12, 2349–2370, https://doi.org/10.5194/tc-12-2349-2018, https://doi.org/10.5194/tc-12-2349-2018, 2018
Short summary
Short summary
Knowledge about permafrost extent is required with respect to climate change. We used borehole temperature records from across the Arctic for the assessment of surface status information (frozen or unfrozen) derived from space-borne microwave sensors for permafrost extent mapping. The comparison to mean annual ground temperature (MAGT) at the coldest sensor depth revealed that not only extent but also temperature can be obtained from C-band-derived surface state with a residual error of 2.22 °C.
Cited articles
Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major
impact: The relevance of ponds and lakes in permafrost landscapes to carbon
dioxide emissions, Global Biogeochem. Cy., 26, GB2041, https://doi.org/10.1029/2011gb004237, 2012.
Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R., and Coon, E. T.:
Feedbacks between surface deformation and permafrost degradation in ice
wedge polygons, Arctic Coastal Plain, Alaska, J. Geophys.
Res.-Earth, 125, e2019JF005349, https://doi.org/10.1029/2019JF005349, 2020.
Allard, M.: Geomorphological changes and permafrost dynamics: Key factors in
changing arctic ecosystems. An example from Bylot Island, Nunavut, Canada,
Geosci. Can., 23, 205–212, 1996.
Allard, M., Sarrazin, D., and L'Hérault, E.: Borehole and near-surface
ground temperatures in northeastern Canada, v. 1.4 (1988–2016), Nordicana,
D8, https://doi.org/10.5885/45291SL-34F28A9491014AFD, 2016.
Anderson, L., Edwards, M., Shapley, M. D., Finney, B. P., and Langdon, C.:
Holocene Thermokarst Lake Dynamics in Northern Interior Alaska: The
Interplay of Climate, Fire, and Subsurface Hydrology, Front. Earth Sci., 7,
53, https://doi.org/10.3389/feart.2019.00053, 2019.
Antoniades, D., Hamilton, P. B., Douglas, M. S. V., and Smol, J. P.: Diatoms
of North America: The freshwater floras of Prince Patrick, Ellef Ringnes and
northern Ellesmere Islands from the Canadian Arctic Archipelago, in:
Iconographia Diatomologica, Vol. 17, A. R. G. Gantner Verlag, 649 pp.,
2008.
Antoniades, D., Hamilton, P. B., Hinz, F., Douglas, M. S. V., and Smol, J. P.:
Seven new species of freshwater diatoms (Bacillariophyceae) from the
Canadian Arctic Archipelago, Nova Hedwigia, 88, 57–80, https://doi.org/10.1127/0029-5035/2009/0088-0057, 2009.
Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U.,
Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.:
Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, Annu. Rev. Earth Pl. Sc., 37, 117–134, https://doi.org/10.1146/annurev.earth.031208.100206, 2009.
ASTM: D6913-04 – Standard Test Methods for Particle-Size Distribution
(Gradation) of Soils Using Sieve Analysis, ASTM International, West
Conshohocken, PA, 2004.
ASTM: D7928-17 – Standard Test Method for Particle-Size Distribution
(Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer)
Analysis, ASTM International, West Conshohocken, PA, 2017.
Battarbee, R., Jones, V., Flower, R., Cameron, N., Bennion, H., Carvalho, L., and Juggins, S.: Diatoms, in: Tracking Environmental Change Using Lake
Sediments, Vol. 3: Terrestrial, Algal, and Siliceous Indicators, edited
by: Smol, J., Birks, J., Last, W., Bradley, R., and Alverson, K.,
Developments in Paleoenvironmental Research, 3, Springer Netherlands,
155–202, 2001.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., Zibulski, R., and Diekmann, B.: Late Holocene thermokarst variability inferred from
diatoms in a lake sediment record from the Lena Delta, Siberian Arctic,
J. Paleolimnol., 49, 155–170, https://doi.org/10.1007/s10933-012-9650-1,
2013.
Biskaborn, B. K., Smith, S. L., Noetzli, J., et al.: Permafrost is warming at
a global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Björck, S. and Wohlfarth, B.: 14C Chronostratigraphic Techniques in
Paleolimnology, in: Tracking Environmental Change Using Lake Sediments,
Vol. 1: Basin Analysis, Coring, and Chronological Techniques, edited by:
Last, W. and Smol, J., Developments in Paleoenvironmental Research, 1,
Springer Netherlands, 205–245, 2001.
Bouchard, F., Francus, P., Pienitz, R., and Laurion, I.: Sedimentology and
geochemistry of thermokarst ponds in discontinuous permafrost, subarctic
Quebec, Canada, J. Geophys. Res.-Biogeo., 116, G00M04,
https://doi.org/10.1029/2011JG001675, 2011.
Bouchard, F., Turner, K. W., MacDonald, L. A., Deakin, C., White, H.,
Farquharson, N., Medeiros, A. S., Wolfe, B. B., Hall, R. I., Pienitz, R.,
and Edwards, T. W. D.: Vulnerability of shallow subarctic lakes to evaporate
and desiccate when snowmelt runoff is low, Geophys. Res. Lett., 40,
6112–6117, https://doi.org/10.1002/2013GL058635, 2013a.
Bouchard, F., Pienitz, R., Ortiz, J. D., Francus, P., and Laurion, I.:
Palaeolimnological conditions inferred from fossil diatom assemblages and
derivative spectral properties of sediments in thermokarst ponds of
subarctic Quebec, Canada, Boreas, 42, 575–595, https://doi.org/10.1111/bor.12000,
2013b.
Bouchard, F., Laurion, I., Prėskienis, V., Fortier, D., Xu, X., and Whiticar, M. J.: Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut), Biogeosciences, 12, 7279–7298, https://doi.org/10.5194/bg-12-7279-2015, 2015a.
Bouchard, F., Fortier, D., Paquette, M., Bégin, P. N., Vincent, W. F.,
and Laurion, I.: Lake bottom imagery: a simple, fast and inexpensive method
for surveying shallow freshwater ecosystems of permafrost regions,
Proceedings of the 7th Canadian Permafrost Conference and the 68th Canadian
Geotechnical Conference, Quebec City, Canada, 21–23 September, 2015b.
Bouchard, F., MacDonald, L. A., Turner, K. W., Thienpont, J. R., Medeiros, A. S., Biskaborn, B. K., Korosi, J., Hall, R. I., Pienitz, R., and Wolfe, B. B.: Paleolimnology of thermokarst lakes: a window into permafrost landscape
evolution, Arct. Sci., 3, 91–117, https://doi.org/10.1139/as-2016-0022, 2017.
Brown, J., Ferrians, O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-Arctic map of permafrost and ground-ice conditions, Revised Feb.
2001, National Snow and Ice Data Center/World Data Center for Glaciology,
Boulder, Colorado, 1998.
Burn, C. R.: Tundra lakes and permafrost, Richards Island, western Arctic
coast, Canada, Can. J. Earth Sci., 39, 1281–1298, https://doi.org/10.1139/e02-035, 2002.
Calmels, F. and Allard, M.: Ice segregation and gas distribution in
permafrost using tomodensitometric analysis, Permafrost Periglac., 15, 367–378, https://doi.org/10.1002/ppp.508, 2004.
CEN: Climate station data from Bylot Island in Nunavut, Canada, v. 1.9
(1992–2018), available at:
http://www.cen.ulaval.ca/nordicanad/dpage.aspx?doi=45039SL-EE76C1BDAADC4890
(last access: 7 June 2019), 2018.
Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K.: Carbon Dioxide
Supersaturation in the Surface Waters of Lakes, Science, 265, 1568–1570,
https://doi.org/10.1126/science.265.5178.1568, 1994.
Côté, M. M. and Burn, C. R.: The oriented lakes of Tuktoyaktuk
Peninsula, Western Arctic Coast, Canada: a GIS-based analysis, Permafrost
Periglac., 13, 61–70, https://doi.org/10.1002/ppp.407, 2002.
Coulombe, O., Bouchard, F., and Pienitz, R.: Coupling of sedimentological
and limnological dynamics in subarctic thermokarst ponds in Northern
Québec (Canada) on an interannual basis, Sediment. Geol., 340,
15–24, https://doi.org/10.1016/j.sedgeo.2016.01.012, 2016.
Coulombe, S., Fortier, D., Lacelle, D., Kanevskiy, M., and Shur, Y.: Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada), The Cryosphere, 13, 97–111, https://doi.org/10.5194/tc-13-97-2019, 2019.
Czudek, T. and Demek, J.: Thermokarst in Siberia and its influence on the
development of lowland relief, Quaternary Res., 1, 103–120, https://doi.org/10.1016/0033-5894(70)90013-x, 1970.
Dean, J. F., Meisel, O. H., Martyn Rosco, M., et al.: East Siberian Arctic
inland waters emit mostly contemporary carbon, Nat. Commun., 11, 1627, https://doi.org/10.1038/s41467-020-15511-6, 2020.
Dowdeswell, E. K., Dowdeswell, J. A., and Cawkwell, F.: On The Glaciers of Bylot Island, Nunavut, Arctic Canada, Arct. Antarct. Alpine Res., 39, 402–411, https://doi.org/10.1657/1523-0430(05-123)[DOWDESWELL]2.0.CO;2, 2007.
Elder, C. D., Xu, X., Walker, J., Schnell, J. L., Hinkel, K. M.,
Townsend-Small, A., Arp, C. D., Pohlman, J. W., Gaglioti, B. V., and
Czimczik, C. I.: Greenhouse gas emissions from diverse Arctic Alaskan lakes
are dominated by young carbon, Nat. Clim. Change, 8, 166–171, https://doi.org/10.1038/s41558-017-0066-9, 2018.
Ellis, C. J. and Rochefort, L.: Century-scale development of
polygon-patterned tundra wetland, bylot island (73∘ N, 80∘ W), Ecology, 85, 963–978, https://doi.org/10.1890/02-0614, 2004.
Ellis, C. J. and Rochefort, L.: Long-term sensitivity of a High Arctic
wetland to Holocene climate change, J. Ecol., 94, 441–454, https://doi.org/10.1111/j.1365-2745.2005.01085.x, 2006.
Ellis, C. J., Rochefort, L., Gauthier, G., and Pienitz, R.: Paleoecological
Evidence for Transitions between Contrasting Landforms in a
Polygon-Patterned High Arctic Wetland, Arct. Antarct. Alp.
Res., 40, 624–637, https://doi.org/10.1657/1523-0430(07-059)[ellis]2.0.co;2, 2008.
Environment Canada: 1981–2010 Climate Normals and Averages, available at:
http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnName&txtStationName=Pond+Inlet&searchMethod=contains&txtCentralLatMin=0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=1774&dispBack=1,
last access: 7 June 2019.
Fallu, M. A., Allaire, N., and Pienitz, R.: Freshwater diatoms from northern
Québec and Labrador (Canada): species-environment relationships in lakes
of boreal forest, forest-tundra and tundra regions, Bibliotheca
Diatomologica, J. Cramer, Berlin, Stuttgart, 200 pp., 2000.
Farquharson, L., Anthony, K. W., Bigelow, N., Edwards, M., and Grosse, G.:
Facies analysis of yedoma thermokarst lakes on the northern Seward
Peninsula, Alaska, Sediment. Geol., 340, 25–37, https://doi.org/10.1016/j.sedgeo.2016.01.002, 2016.
Fortier, D. and Allard, M.: Late Holocene syngenetic ice-wedge polygons
development, Bylot Island, Canadian Arctic Archipelago, Can. J. Earth Sci., 41, 997–1012, https://doi.org/10.1139/e04-031, 2004.
Fortier, D. and Bouchard, F.: Computed tomography (CT) scans of a lake
sediment core, Bylot Island, Nunavut, Canada, v. 1.0 (2015–2015), Nordicana,
D54, https://doi.org/10.5885/45612CE-AB27C20EB10D4509, 2019a.
Fortier, D. and Bouchard, F.: Organic matter content and grain size
distribution in a lake sediment core, Bylot Island, Nunavut, Canada, v. 1.0
(2015–2015), Nordicana, D52, https://doi.org/10.5885/45603CE-21852993EE434926, 2019b.
Fortier, D., Allard, M., and Pivot, F.: A late-Holocene record of loess
deposition in ice-wedge polygons reflecting wind activity and ground
moisture conditions, Bylot Island, eastern Canadian Arctic, Holocene,
16, 635–646, https://doi.org/10.1191/0959683606hl960rp, 2006.
Fortier, D., Allard, M., and Shur, Y.: Observation of rapid drainage system
development by thermal erosion of ice wedges on Bylot island, Canadian
Arctic Archipelago, Permafrost Periglac., 18, 229–243, https://doi.org/10.1002/ppp.595, 2007.
Fortier, D., Paquette, M., and Bouchard, F.: Ground-penetrating radar (GPR)
survey data for a thermokarst lake, Bylot Island, Nunavut, Canada, v. 1.0
(2015–2015), Nordicana, D53, https://doi.org/10.5885/45609CE-E3573955017A4904, 2019.
Fortier, D., Bouchard, F., Laurion, I., Pienitz, R., and Allard, M.:
Radiocarbon (14C) dates in terrestrial and aquatic environments, Bylot
Island, Nunavut, Nordicana, D75, https://doi.org/10.5885/45651CE-C6FD628F45E44578, 2020.
Frauenfeld, O. W., Zhang, T., Barry, R. G., and Gilichinsky, D.:
Interdecadal changes in seasonal freeze and thaw depths in Russia, J.
Geophys. Res., 109, D05101, https://doi.org/10.1029/2003JD004245, 2004.
French, H. M.: The periglacial environment, 4th edn., John Wiley and Sons,
Chichester, UK, 515 pp., 2017.
Godin, E. and Fortier, D.: Geomorphology of a thermo-erosion gully, Bylot
Island, Nunavut, Canada, Can. J. Earth Sci., 49, 979–986,
https://doi.org/10.1139/e2012-015, 2012.
Godin, E., Fortier, D., and Coulombe, S.: Effects of thermo-erosion gullying
on hydrologic flow networks, discharge and soil loss, Environ. Res.
Lett., 9, 105010, https://doi.org/10.1088/1748-9326/9/10/105010, 2014.
Grosse, G., Jones, B., and Arp, C.: Thermokarst Lakes, Drainage, and Drained
Basins, in: Treatise on Geomorphology, edited by: Shroder, J. F., Glacial
and Periglacial Geomorphology, 8, Academic Press, San Diego, CA, 325–353,
2013.
Guiry, M. D. and Guiry, G. M.: AlgaeBase, available at:
http://www.algaebase.org, last access: 7 June 2019.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for
estimating organic and carbonate content in sediments: reproducibility and
comparability of results, J. Paleolimnol., 25, 101–110, https://doi.org/10.1023/A:1008119611481, 2001.
Hopkins, D. M.: Thaw Lakes and Thaw Sinks in the Imuruk Lake Area, Seward
Peninsula, Alaska, J. Geol., 57, 119–131, 1949.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Jones, B. M. and Arp, C. D.: Observing a Catastrophic Thermokarst Lake
Drainage in Northern Alaska, Permafrost Periglac., 26,
119–128, https://doi.org/10.1002/ppp.1842, 2015.
Jorgenson, M. T. and Shur, Y.: Evolution of lakes and basins in northern
Alaska and discussion of the thaw lake cycle, J. Geophys.
Res.-Earth, 112, F02S17, https://doi.org/10.1029/2006jf000531, 2007.
Juggins, S.: C2 version 1.7.6. Software for ecological and palaeoecological
data analysis and visualisation, Univ. of Newcastle, Newcastle upon Tyne,
2014.
Kanevskiy, M., Jorgenson, T., Shur, Y., O'Donnell, J. A., Harden, J. W.,
Zhuang, Q., and Fortier, D.: Cryostratigraphy and Permafrost Evolution in
the Lacustrine Lowlands of West-Central Alaska, Permafrost Periglac., 25, 14–34, https://doi.org/10.1002/ppp.1800, 2014.
Kanevskyi, M., Shur, Y., Jorgenson, T. Beown, D. R. N., Moskalenko, N., Brown, J., Walker, D. A., Raynolds, M. K., Bucchorn, M.: Degradation and
stabilization of ice wedges: Implications for assessing risk of thermokarst
in northern Alaska, Geomorphology, 297, 20–42, https://doi.org/10.1016/j.geomorph.2017.09.001, 2017.
Klassen, R. A.: Quaternary Geology and Glacial History of Bylot Island,
Northwest Territories, Memoir 429, no. 429, Geological
Survey of Canada, Ottawa, 1993.
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research,
Permafrost Periglac., 24, 108–119, https://doi.org/10.1002/ppp.1779,
2013.
Krammer, K.: The genus Pinnularia, in: Diatoms of Europe –
Diatoms of the European inland waters and comparable habitats, vol. 1, edited
by: Lange-Bertalot, H., A. R. G. Gantner Verlag K. G., Ruggel, 2000.
Krammer, K.: Cymbella, in: Diatoms of Europe –
Diatoms of the European inland waters and comparable habitats, vol. 3, edited
by: Lange-Bertalot, H., A. R. G. Gantner Verlag K. G., Ruggel, 2002.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae 1. Teil:
Naviculaceae, in: Süßwasserflora von Mitteleuropa, edited by: Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D., Gustav Fischer Verlag,
Stuttgart, New York, 1986.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae 2. Teil:
Bacillariaceae, Epithemiaceae, Surirellaceae, in: Süßwasserflora von
Mitteleuropa, edited by: Ettl, H., Gerloff, J., Heynig, H.,
and Mollenhauer, D., Gustav
Fischer Verlag, Stuttgart, New York, 1988.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae 3. Teil: Centrales,
Fragilariaceae, Eunotiaceae, in: Süßwasserflora von Mitteleuropa, edited by: Ettl, H., Gerloff, J., Heynig, H.,
and Mollenhauer, D., Gustav Fischer
Verlag, Stuttgart, New York, 1991a.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae 4. Teil:
Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, in: Süßwasserflora von
Mitteleuropa, edited by: Ettl, H., Gerloff, J., Heynig, H.,
and Mollenhauer, D., Gustav Fischer Verlag, Stuttgart, New York, 1991b.
Lacelle, D., Fisher, D. A., Coulombe, S., Fortier, D., and Frappier, R.:
Buried remnants of the Laurentide Ice Sheet and connections to its surface
elevation, Sci. Rep., 8, 13286–13286, https://doi.org/10.1038/s41598-018-31166-2, 2018.
Lantz, T. C. and Turner, K. W.: Changes in lake area in response to
thermokarst processes and climate in Old Crow Flats, Yukon, J.
Geophys. Res.-Biogeo., 120, 513–524, https://doi.org/10.1002/2014JG002744, 2015.
Laurion, I., Vincent, W. F., MacIntyre, S., Retamal, L., Dupont, C.,
Francus, P., and Pienitz, R.: Variability in greenhouse gas emissions from
permafrost thaw ponds, Limnol. Oceanogr., 55, 115–133, https://doi.org/10.4319/lo.2010.55.1.0115, 2010.
Lavoie, I., Hamilton, P. B., Campeau, S., Grenier, M., and Dillon, P. J.:
Guide d'identification des diatomées des rivières de l'Est du
Canada, Presses de l'Université du Québec, Québec, 241 pp.,
2008.
Lenz, J., Wetterich, S., Jones, B. M., Meyer, H., Bobrov, A., and Grosse, G.: Evidence of multiple thermokarst lake generations from an
11 800-year-old permafrost core on the northern Seward Peninsula, Alaska,
Boreas, 45, 584–603, https://doi.org/10.1111/bor.12186, 2016.
Mackay, J. R.: A full-scale field experiment (1978–1995) on the growth of
permafrost by means of lake drainage, western Arctic coast: a discussion of
the method and some results, Can. J. Earth Sci., 34, 17–33,
https://doi.org/10.1139/e17-002, 1997.
Mackay, J. R.: Thermally induced movements in ice-wedge polygons, western
arctic coast: a long-term study, Geogr. Phys. Quatern., 54,
41–68, https://doi.org/10.7202/004846ar, 2000.
Mackay, J. R. and Burn, C. R.: The first 20 years (1978–1979 to 1998–1999)
of ice-wedge growth at the Illisarvik experimental drained lake site,
western Arctic coast, Canada, Can. J. Earth Sci., 39,
95–111, https://doi.org/10.1139/e01-048, 2002.
Mann, P. J., Eglinton, T. I., McIntyre, C. P., Zimov, N., Davydova, A.,
Vonk, J. E., Holmes, R. M., and Spencer, R. G. M.: Utilization of ancient
permafrost carbon in headwaters of Arctic fluvial networks, Nat. Commun., 6,
7856, https://doi.org/10.1038/ncomms8856, 2015.
Matveev, A., Laurion, I., and Vincent, W. F.: Methane and carbon dioxide
emissions from thermokarst lakes on mineral soils, Arct. Sci., 4,
584–604, https://doi.org/10.1139/as-2017-0047, 2018.
Moorman, B. J.: Ground-Penetrating Radar Applications in Paleolimnology,
Vol. 1: Basin Analysis, Coring, and Chronological Techniques, in: Tracking
Environmental Change Using Lake Sediments, edited by: Smol, J. P. and Last, W. M.,
Springer Netherlands, 23–47, 2001.
Morgenstern, A., Grosse, G., Günther, F., Fedorova, I., and Schirrmeister, L.: Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta, The Cryosphere, 5, 849–867, https://doi.org/10.5194/tc-5-849-2011, 2011.
Morse, P. D., Burn, C. R., and Kokelj, S. V.: Influence of snow on
near-surface ground temperatures in upland and alluvial environments of the
outer Mackenzie Delta, Northwest Territories, Can. J. Earth
Sci., 49, 895–913, https://doi.org/10.1139/e2012-012, 2012.
Muster, S., Roth, K., Langer, M., Lange, S., Cresto Aleina, F., Bartsch, A., Morgenstern, A., Grosse, G., Jones, B., Sannel, A. B. K., Sjöberg, Y., Günther, F., Andresen, C., Veremeeva, A., Lindgren, P. R., Bouchard, F., Lara, M. J., Fortier, D., Charbonneau, S., Virtanen, T. A., Hugelius, G., Palmtag, J., Siewert, M. B., Riley, W. J., Koven, C. D., and Boike, J.: PeRL: a circum-Arctic Permafrost Region Pond and Lake database, Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, 2017.
Paltan, H., Dash, J., and Edwards, M.: A refined mapping of Arctic lakes
using Landsat imagery, Int. J. Remote Sens., 36, 5970–5982, https://doi.org/10.1080/01431161.2015.1110263, 2015.
Paquette, M., Fortier, D., Mueller, D. R., Sarrazin, D., and Vincent, W. F.:
Rapid disappearance of perennial ice on Canada's most northern lake,
Geophys. Res. Lett., 42, 1433–1440, https://doi.org/10.1002/2014GL062960,
2015.
Payette, S., Delwaide, A., Caccianiga, M., and Beauchemin, M.: Accelerated
thawing of subarctic peatland permafrost over the last 50 years, Geophys.
Res. Lett., 31, L18208, https://doi.org/10.1029/2004GL020358, 2004.
Pienitz, R.: Analyse des microrestes végétaux: diatomées, in:
Écologie des tourbières du Québec-Labrador, edited by: Payette, S. and Rochefort, L., Les Presses de l'Université Laval, Québec,
311–326, 2001.
Pienitz, R., Bouchard, F., and Boucher, V.: Fossil diatom abundance in a
lake sediment core, Bylot Island, Nunavut, Canada, v. 1.0 (2015–2015),
Nordicana, D51, https://doi.org/10.5885/45600CE-C0960664FE8F4038, 2019.
Pienitz, R., Doran, P. T., and Lamoureux, S. F.: Origin and geomorphology of
lakes in the polar regions, in: Polar Lakes and Rivers: Limnology of Arctic
and Antarctic Aquatic Ecosystems, edited by: Vincent, W. and
Laybourn-Parry, J., Oxford University Press, Oxford, UK, 25–41, 2008.
Pienitz, R., Smol, J. P., and Birks, H. J. B.: Assessment of freshwater
diatoms as quantitative indicators of past climatic change in the Yukon and
Northwest Territories, Canada, J. Paleolimnol., 13, 21–49, https://doi.org/10.1007/bf00678109, 1995.
Pribyl, D. W.: A critical review of the conventional SOC to SOM conversion
factor, Geoderma, 156, 75–83, https://doi.org/10.1016/j.geoderma.2010.02.003, 2010.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50 000 Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Riordan, B., Verbyla, D., and McGuire, A. D.: Shrinking ponds in subarctic
Alaska based on 1950–2002 remotely sensed images, J. Geophys.
Res.-Biogeo., 111, G04002, https://doi.org/10.1029/2005jg000150, 2006.
Roach, J., Griffith, B., Verbyla, D., and Jones, J.: Mechanisms influencing
changes in lake area in Alaskan boreal forest, Glob. Change Biol., 17,
2567–2583, https://doi.org/10.1111/j.1365-2486.2011.02446.x, 2011.
Schirrmeister, L., Kunitsky, V., Grosse, G., Wetterich, S., Meyer, H.,
Schwamborn, G., Babiy, O., Derevyagin, A., and Siegert, C.: Sedimentary
characteristics and origin of the Late Pleistocene Ice Complex on north-east
Siberian Arctic coastal lowlands and islands – A review, Quatern.
Int., 241, 3–25, https://doi.org/10.1016/j.quaint.2010.04.004, 2011.
Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Serikova, S., Pokrovsky, O. S., Laudon, H., Krickov, I. V., Lim, A. G.,
Manasypov, R. M., and Karlsson, J.: High carbon emissions from thermokarst
lakes of Western Siberia, Nat. Commun., 10, 1552, https://doi.org/10.1038/s41467-019-09592-1, 2019.
Shur, Y., Fortier, D., Jorgenson, T., Kanevskyi, M., Jones, B. M.,
Ward-Jones, M. K.: Self-organization of ice wedge systems during their
formation and degradation, American Geophysical Union Fall Meeting, San
Francisco, 9–13 December, C13E-1359, 2019.
Smith, L. C., Sheng, Y. W., and MacDonald, G. M.: A first pan-Arctic
assessment of the influence of glaciation, permafrost, topography and
peatlands on Northern Hemisphere lake distribution, Permafrost
Periglac., 18, 201–208, https://doi.org/10.1002/ppp.581, 2007.
Smith, S. and Burgess, M. M.: Ground Temperature Database for Northern
Canada, Geological Survey of Canada, Ottawa, Open File Report 3954, 28,
2000.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G.,
Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T.,
Schuur, E. A. G., Shmelev, D., Ulrich, M., and Veremeeva, A.: Deep Yedoma
permafrost: A synthesis of depositional characteristics and carbon
vulnerability, Earth-Sci. Rev., 172, 75–86, https://doi.org/10.1016/j.earscirev.2017.07.007, 2017.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 7.1, available at: http://calib.org,
last access: 23 July 2019.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, GB2023, https://doi.org/10.1029/2008GB003327, 2009.
Tank, S. E., Vonk, J. E., Walvoord, M. A., McClelland, J. W., Laurion, I.,
and Abbott, B. W.: Landscape matters: Predicting the biogeochemical effects
of permafrost thaw on aquatic networks with a state of factor approach,
Permafrost Periglac., 31, 358–370, https://doi.org/10.1002/ppp.2057, 2020.
Turner, K. W., Wolfe, B. B., and Edwards, T. W. D.: Characterizing the role
of hydrological processes on lake water balances in the Old Crow Flats,
Yukon Territory, Canada, using water isotope tracers, J. Hydrol.,
386, 103–117, https://doi.org/10.1016/j.jhydrol.2010.03.012, 2010.
van Everdingen, R.: Multi-language glossary of permafrost and related
ground-ice terms, National Snow and Ice Data Center/World Data
Center for Glaciology, Boulder (CO), 1998 (revised 2005).
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global
inventory of lakes based on high-resolution satellite imagery, Geophys.
Res. Lett., 41, 6396–6402, https://doi.org/10.1002/2014GL060641, 2014.
Vonk, J. E., Mann, P. J., Davydov, S., Davydova, A., Spencer, R. G. M.,
Schade, J., Sobczak, W. V., Zimov, N., Zimov, S., Bulygina, E., Eglinton, T. I., and Holmes, R. M.: High biolability of ancient permafrost carbon upon
thaw, Geophys. Res. Lett., 40, 2689–2693, https://doi.org/10.1002/grl.50348,
2013.
Walter, K. M., Edwards, M. E., Grosse, G., Zimov, S. A., and Chapin, F. S.:
Thermokarst lakes as a source of atmospheric CH4 during the last
deglaciation, Science, 318, 633–636, https://doi.org/10.1126/science.1142924, 2007.
Ward Jones, M. K., Pollard, W. H., and Amyot, F.: Impacts of degrading
ice-wedges on ground temperatures in a high Arctic polar desert system,
J. Geophys. Res.-Earth, 125, e2019JF005173, https://doi.org/10.1029/2019JF005173, 2020.
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.:
Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99, https://doi.org/10.1038/ngeo2578, 2016.
Williams, P. and Smith, M.: The Frozen Earth: Fundamentals of Geocryology
(Studies in Polar Research), Cambridge University Press, Cambridge (UK), 306 pp., https://doi.org/10.1017/CBO9780511564437, 1989.
Yoshikawa, K. and Hinzman, L. D.: Shrinking thermokarst ponds and
groundwater dynamics in discontinuous permafrost near council, Alaska,
Permafrost Periglac., 14, 151–160, https://doi.org/10.1002/ppp.451,
2003.
You, Y., Yu, Q., Pan, X., Wang, X., and Guo, L.: Geophysical Imaging of
Permafrost and Talik Configuration Beneath a Thermokarst Lake, Permafrost
Periglac., 28, 470–476, https://doi.org/10.1002/ppp.1938, 2017.
Zimmermann, C., Poulin, M., and Pienitz, R.: Diatoms of North America: The
Pliocene-Pleistocene freshwater flora of Bylot Island, Nunavut, Canadian
High Arctic, Iconographia Diatomologica, Vol. 21, A. R. G. Gantner Verlag,
2010.
Zubrzycki, S., Kutzbach, L., Grosse, G., Desyatkin, A., and Pfeiffer, E.-M.: Organic carbon and total nitrogen stocks in soils of the Lena River Delta, Biogeosciences, 10, 3507–3524, https://doi.org/10.5194/bg-10-3507-2013, 2013.
Short summary
We combine lake mapping, landscape observations and sediment core analyses to document the evolution of a thermokarst (thaw) lake in the Canadian Arctic over the last millennia. We conclude that temperature is not the only driver of thermokarst development, as the lake likely started to form during a cooler period around 2000 years ago. The lake is now located in frozen layers with an organic carbon content that is an order of magnitude higher than the usually reported values across the Arctic.
We combine lake mapping, landscape observations and sediment core analyses to document the...