Articles | Volume 13, issue 8
https://doi.org/10.5194/tc-13-2221-2019
https://doi.org/10.5194/tc-13-2221-2019
Research article
 | 
27 Aug 2019
Research article |  | 27 Aug 2019

Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations

Yvan Orsolini, Martin Wegmann, Emanuel Dutra, Boqi Liu, Gianpaolo Balsamo, Kun Yang, Patricia de Rosnay, Congwen Zhu, Wenli Wang, Retish Senan, and Gabriele Arduini

Related authors

Total ozone trends at three northern high-latitude stations
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys., 23, 4165–4184, https://doi.org/10.5194/acp-23-4165-2023,https://doi.org/10.5194/acp-23-4165-2023, 2023
Short summary
Impacts of snow assimilation on seasonal snow and meteorological forecasts for the Tibetan Plateau
Wei Li, Jie Chen, Lu Li, Yvan J. Orsolini, Yiheng Xiang, Retish Senan, and Patricia de Rosnay
The Cryosphere, 16, 4985–5000, https://doi.org/10.5194/tc-16-4985-2022,https://doi.org/10.5194/tc-16-4985-2022, 2022
Short summary
Impact of Eurasian autumn snow on the winter North Atlantic Oscillation in seasonal forecasts of the 20th century
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021,https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Validation of SMILES HCl profiles over a wide range from the stratosphere to the lower thermosphere
Seidai Nara, Tomohiro O. Sato, Takayoshi Yamada, Tamaki Fujinawa, Kota Kuribayashi, Takeshi Manabe, Lucien Froidevaux, Nathaniel J. Livesey, Kaley A. Walker, Jian Xu, Franz Schreier, Yvan J. Orsolini, Varavut Limpasuvan, Nario Kuno, and Yasuko Kasai
Atmos. Meas. Tech., 13, 6837–6852, https://doi.org/10.5194/amt-13-6837-2020,https://doi.org/10.5194/amt-13-6837-2020, 2020
Short summary
A note on the statistical evidence for an influence of geomagnetic activity on Northern Hemisphere seasonal-mean stratospheric temperatures using the Japanese 55-year Reanalysis
Nazario Tartaglione, Thomas Toniazzo, Yvan Orsolini, and Odd Helge Otterå
Ann. Geophys., 38, 545–555, https://doi.org/10.5194/angeo-38-545-2020,https://doi.org/10.5194/angeo-38-545-2020, 2020
Short summary

Related subject area

Discipline: Snow | Subject: Atmospheric Interactions
Identifying airborne snow metamorphism with stable water isotopes
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024,https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Seasonal snow–atmosphere modeling: let's do it
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024,https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
On the importance to consider the cloud dependence in parameterizing the albedo of snow on sea ice
Lara Foth, Wolfgang Dorn, Annette Rinke, Evelyn Jäkel, and Hannah Niehaus
The Cryosphere, 18, 4053–4064, https://doi.org/10.5194/tc-18-4053-2024,https://doi.org/10.5194/tc-18-4053-2024, 2024
Short summary
Understanding snow saltation parameterizations: lessons from theory, experiments and numerical simulations
Daniela Brito Melo, Armin Sigmund, and Michael Lehning
The Cryosphere, 18, 1287–1313, https://doi.org/10.5194/tc-18-1287-2024,https://doi.org/10.5194/tc-18-1287-2024, 2024
Short summary
A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024,https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary

Cited articles

Basang, D., Barthel, K., and Olseth, J. A.: Satellite and Ground Observations of Snow Cover in Tibet during 2001–2015, Remote Sensing, 9, 1201, https://doi.org/10.3390/rs9111201, 2017. 
Basang, D. K.: Snow Cover Distribution and Variation in Tibet, PhD thesis, University of Bergen, Bergen, Norway, ISBN 978-82-308-3713-9, 2018. 
Brun, E., Vionnet, V., Boone, A., Decharme, B., Peings, Y., Valette, R., Karbou, F., and Morin, S.: Simulation of Northern Eurasian Local Snow Depth, Mass, and Density Using a Detailed Snowpack Model and Meteorological Reanalyses, J. Hydrometeorol., 14, 203–219, 2013. 
Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T.: Snow depth derived from passive microwave remote-sensing data in China, Ann.Glaciol., 49, 145–153, 2008. 
Download
Short summary
The Tibetan Plateau region exerts a considerable influence on regional climate, yet the snowpack over that region is poorly represented in both climate and forecast models due a large precipitation and snowfall bias. We evaluate the snowpack in state-of-the-art atmospheric reanalyses against in situ observations and satellite remote sensing products. Improved snow initialisation through better use of snow observations in reanalyses may improve medium-range to seasonal weather forecasts.