Articles | Volume 12, issue 2
https://doi.org/10.5194/tc-12-635-2018
https://doi.org/10.5194/tc-12-635-2018
Research article
 | 
23 Feb 2018
Research article |  | 23 Feb 2018

NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet

Masashi Niwano, Teruo Aoki, Akihiro Hashimoto, Sumito Matoba, Satoru Yamaguchi, Tomonori Tanikawa, Koji Fujita, Akane Tsushima, Yoshinori Iizuka, Rigen Shimada, and Masahiro Hori

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Masashi Niwano on behalf of the Authors (03 Oct 2017)  Author's response   Manuscript 
ED: Reconsider after major revisions (28 Nov 2017) by Marco Tedesco
ED: Referee Nomination & Report Request started (28 Nov 2017) by Marco Tedesco
RR by Xavier Fettweis (29 Nov 2017)
RR by Anonymous Referee #1 (09 Dec 2017)
ED: Publish as is (05 Jan 2018) by Marco Tedesco
AR by Masashi Niwano on behalf of the Authors (09 Jan 2018)  Author's response   Manuscript 
Download
Short summary
We present a high-resolution regional climate model called NHM–SMAP applied to the Greenland Ice Sheet (GrIS). The model forced by JRA-55 reanalysis is evaluated using in situ data from automated weather stations, stake measurements, and ice core obtained from 2011 to 2014. By utilizing the model, we highlight that the choice of calculation schemes for vertical water movement in snow and firn has an effect of up to 200 Gt/year in the yearly accumulated GrIS-wide surface mass balance estimates.