Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC | Articles | Volume 12, issue 2
The Cryosphere, 12, 635–655, 2018
https://doi.org/10.5194/tc-12-635-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Mass balance of the Greenland Ice Sheet

The Cryosphere, 12, 635–655, 2018
https://doi.org/10.5194/tc-12-635-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 23 Feb 2018

Research article | 23 Feb 2018

NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet

Masashi Niwano et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Masashi Niwano on behalf of the Authors (03 Oct 2017)  Author's response    Manuscript
ED: Reconsider after major revisions (28 Nov 2017) by Marco Tedesco
ED: Referee Nomination & Report Request started (28 Nov 2017) by Marco Tedesco
RR by Xavier Fettweis (29 Nov 2017)
RR by Anonymous Referee #1 (09 Dec 2017)
ED: Publish as is (05 Jan 2018) by Marco Tedesco
AR by Masashi Niwano on behalf of the Authors (09 Jan 2018)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
We present a high-resolution regional climate model called NHM–SMAP applied to the Greenland Ice Sheet (GrIS). The model forced by JRA-55 reanalysis is evaluated using in situ data from automated weather stations, stake measurements, and ice core obtained from 2011 to 2014. By utilizing the model, we highlight that the choice of calculation schemes for vertical water movement in snow and firn has an effect of up to 200 Gt/year in the yearly accumulated GrIS-wide surface mass balance estimates.
We present a high-resolution regional climate model called NHM–SMAP applied to the Greenland Ice...
Citation