Articles | Volume 12, issue 11
https://doi.org/10.5194/tc-12-3565-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-3565-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the fate of surface melt on the Larsen C Ice Shelf
Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, UK
Centre for Polar Observation and Modelling, Department of Earth Sciences, UCL, London, UK
Daniel Feltham
Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, UK
Daniela Flocco
Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, UK
Related authors
No articles found.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2023-1731, https://doi.org/10.5194/egusphere-2023-1731, 2023
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used for UK contributions to CMIP7. Documentation of physical science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details of how SI3 was adapted to work with Met Office coupling methodology, along with thorough documentation of coupling processes in the model.
Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger
The Cryosphere, 17, 2509–2532, https://doi.org/10.5194/tc-17-2509-2023, https://doi.org/10.5194/tc-17-2509-2023, 2023
Short summary
Short summary
Observations show that the Arctic sea ice cover has reduced over the last 40 years. This study uses ensemble-based data assimilation in a stand-alone sea ice model to investigate the impacts of assimilating three different kinds of sea ice observation, including the novel assimilation of sea ice thickness distribution. We show that assimilating ice thickness distribution has a positive impact on thickness and volume estimates within the ice pack, especially for very thick ice.
Rebecca Caitlin Frew, Daniel Feltham, David Schroeder, and Adam William Bateson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-91, https://doi.org/10.5194/tc-2023-91, 2023
Revised manuscript under review for TC
Short summary
Short summary
As summer Arctic sea ice extent has retreated, the marginal ice zone (MIZ) has been widening and making up an increasing percentage of the summer sea ice. The MIZ is projected to become a larger percentage of the summer ice cover, as the Arctic transitions to ice free summers. Using a sea ice model we find that the processes and timing of sea ice loss differ in the MIZ to the rest of the sea cover.
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Short summary
Numerical models are used to understand the mechanisms that drive the evolution of the Arctic sea ice cover. The sea ice cover is formed of pieces of ice called floes. Several recent studies have proposed variable floe size models to replace the standard model assumption of a fixed floe size. In this study we show the need to include floe fragmentation processes in these variable floe size models and demonstrate that model design can determine the impact of floe size on size ice evolution.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Rebecca J. Rolph, Daniel L. Feltham, and David Schröder
The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020, https://doi.org/10.5194/tc-14-1971-2020, 2020
Short summary
Short summary
It is well known that the Arctic sea ice extent is declining, and it is often assumed that the marginal ice zone (MIZ), the area of partial sea ice cover, is consequently increasing. However, we find no trend in the MIZ extent during the last 40 years from observations that is consistent with a widening of the MIZ as it moves northward. Differences of MIZ extent between different satellite retrievals are too large to provide a robust basis to verify model simulations of MIZ extent.
Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, https://doi.org/10.5194/tc-14-403-2020, 2020
Short summary
Short summary
The Arctic sea ice cover has been observed to be decreasing, particularly in summer. We use numerical models to gain insight into processes controlling its seasonal and decadal evolution. Sea ice is made of pieces of ice called floes. Previous models have set these floes to be the same size, which is not supported by observations. In this study we show that accounting for variable floe size reveals the importance of sea ice regions close to the open ocean in driving seasonal retreat of sea ice.
David Schröder, Danny L. Feltham, Michel Tsamados, Andy Ridout, and Rachel Tilling
The Cryosphere, 13, 125–139, https://doi.org/10.5194/tc-13-125-2019, https://doi.org/10.5194/tc-13-125-2019, 2019
Short summary
Short summary
This paper uses sea ice thickness data (CryoSat-2) to identify and correct shortcomings in simulating winter ice growth in the widely used sea ice model CICE. Adding a model of snow drift and using a different scheme for calculating the ice conductivity improve model results. Sensitivity studies demonstrate that atmospheric winter conditions have little impact on winter ice growth, and the fate of Arctic summer sea ice is largely controlled by atmospheric conditions during the melting season.
Julienne C. Stroeve, David Schroder, Michel Tsamados, and Daniel Feltham
The Cryosphere, 12, 1791–1809, https://doi.org/10.5194/tc-12-1791-2018, https://doi.org/10.5194/tc-12-1791-2018, 2018
Short summary
Short summary
This paper looks at the impact of the warm winter and anomalously low number of total freezing degree days during winter 2016/2017 on thermodynamic ice growth and overall thickness anomalies. The approach relies on evaluation of satellite data (CryoSat-2) and model output. While there is a negative feedback between rapid ice growth for thin ice, with thermodynamic ice growth increasing over time, since 2012 that relationship is changing, in part because the freeze-up is happening later.
Alek A. Petty, Michel C. Tsamados, Nathan T. Kurtz, Sinead L. Farrell, Thomas Newman, Jeremy P. Harbeck, Daniel L. Feltham, and Jackie A. Richter-Menge
The Cryosphere, 10, 1161–1179, https://doi.org/10.5194/tc-10-1161-2016, https://doi.org/10.5194/tc-10-1161-2016, 2016
Short summary
Short summary
This study presents an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper (ATM) laser altimeter, flown as part of NASA's Operation IceBridge mission. We describe and implement a newly developed sea ice surface feature-picking algorithm and derive novel information regarding the height, volume and geometry of surface features over the western Arctic sea ice cover.
Daniela Flocco, Daniel L. Feltham, David Schroeder, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-118, https://doi.org/10.5194/tc-2016-118, 2016
Preprint withdrawn
Short summary
Short summary
Melt ponds form over the sea ice cover in the Arctic and impact the surface albedo inducing a positive feedback leading to further melting.
While they refreeze, ponds delay basal sea ice growth in Autumn impacting the internal sea ice temperature and therefore its basal growth rate. By using a numerical model we estimate an inhibited basal growth of up to 228 km3, which represents 25 % of the basal sea ice growth estimated by PIOMAS during the months of September and October.
A. A. Petty, P. R. Holland, and D. L. Feltham
The Cryosphere, 8, 761–783, https://doi.org/10.5194/tc-8-761-2014, https://doi.org/10.5194/tc-8-761-2014, 2014
Related subject area
Discipline: Ice sheets | Subject: Glacier Hydrology
Deep clustering in subglacial radar reflectance reveals subglacial lakes
Partial melting in polycrystalline ice: pathways identified in 3D neutron tomographic images
Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland
Observed and modeled moulin heads in the Pâkitsoq region of Greenland suggest subglacial channel network effects
In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Supraglacial streamflow and meteorological drivers from southwest Greenland
Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network
Challenges in predicting Greenland supraglacial lake drainages at the regional scale
Role of discrete water recharge from supraglacial drainage systems in modeling patterns of subglacial conduits in Svalbard glaciers
A confined–unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream
Modelled subglacial floods and tunnel valleys control the life cycle of transitory ice streams
Sheng Dong, Lei Fu, Xueyuan Tang, Zefeng Li, and Xiaofei Chen
The Cryosphere, 18, 1241–1257, https://doi.org/10.5194/tc-18-1241-2024, https://doi.org/10.5194/tc-18-1241-2024, 2024
Short summary
Short summary
Subglacial lakes are a unique environment at the bottom of ice sheets, and they have distinct features in radar echo images that allow for visual detection. In this study, we use machine learning to analyze radar reflection waveforms and identify candidate subglacial lakes. Our approach detects more lakes than known inventories and can be used to expand the subglacial lake inventory. Additionally, this analysis may also provide insights into interpreting other subglacial conditions.
Christopher J. L. Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas J. R. Hunter
The Cryosphere, 18, 819–836, https://doi.org/10.5194/tc-18-819-2024, https://doi.org/10.5194/tc-18-819-2024, 2024
Short summary
Short summary
As the temperature increases within a deforming ice aggregate, composed of deuterium (D2O) ice and water (H2O) ice, a set of meltwater segregations are produced. These are composed of H2O and HDO and are located in conjugate shear bands and in compaction bands which accommodate the deformation and weaken the ice aggregate. This has major implications for the passage of meltwater in ice sheets and the formation of the layering recognized in glaciers.
Laura Melling, Amber Leeson, Malcolm McMillan, Jennifer Maddalena, Jade Bowling, Emily Glen, Louise Sandberg Sørensen, Mai Winstrup, and Rasmus Lørup Arildsen
The Cryosphere, 18, 543–558, https://doi.org/10.5194/tc-18-543-2024, https://doi.org/10.5194/tc-18-543-2024, 2024
Short summary
Short summary
Lakes on glaciers hold large volumes of water which can drain through the ice, influencing estimates of sea level rise. To estimate water volume, we must calculate lake depth. We assessed the accuracy of three satellite-based depth detection methods on a study area in western Greenland and considered the implications for quantifying the volume of water within lakes. We found that the most popular method of detecting depth on the ice sheet scale has higher uncertainty than previously assumed.
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023, https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022, https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022, https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary
Short summary
We introduce a model for moulin geometry motivated by the wide range of sizes and shapes of explored moulins. Moulins comprise 10–14 % of the Greenland englacial–subglacial hydrologic system and act as time-varying water storage reservoirs. Moulin geometry can vary approximately 10 % daily and over 100 % seasonally. Moulin shape modulates the efficiency of the subglacial system that controls ice flow and should thus be included in hydrologic models.
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022, https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Short summary
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The unprecedentedly long record of discharge captures diurnal and seasonal variability. Two major findings are (1) a change in the timing of peak discharge through the melt season that could impact meltwater delivery in the subglacial system and (2) though the primary driver of stream discharge is shortwave radiation, longwave radiation and turbulent heat fluxes play a major role during high-melt episodes.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Kristin Poinar and Lauren C. Andrews
The Cryosphere, 15, 1455–1483, https://doi.org/10.5194/tc-15-1455-2021, https://doi.org/10.5194/tc-15-1455-2021, 2021
Short summary
Short summary
This study addresses Greenland supraglacial lake drainages. We analyze ice deformation associated with lake drainages over 18 summers to assess whether
precursorstrain-rate events consistently precede lake drainages. We find that currently available remote sensing data products cannot resolve these events, and thus we cannot predict future lake drainages. Thus, future avenues for evaluating this hypothesis will require major field-based GPS or photogrammetry efforts.
Léo Decaux, Mariusz Grabiec, Dariusz Ignatiuk, and Jacek Jania
The Cryosphere, 13, 735–752, https://doi.org/10.5194/tc-13-735-2019, https://doi.org/10.5194/tc-13-735-2019, 2019
Short summary
Short summary
Due to the fast melting of glaciers around the world, it is important to characterize the evolution of the meltwater circulation beneath them as it highly impacts their velocity. By using very
high-resolution satellite images and field measurements, we modelized it for two Svalbard glaciers. We determined that for most of Svalbard glaciers it is crucial to include their surface morphology to obtain a reliable model, which is not currently done. Having good models is key to predicting our future.
Sebastian Beyer, Thomas Kleiner, Vadym Aizinger, Martin Rückamp, and Angelika Humbert
The Cryosphere, 12, 3931–3947, https://doi.org/10.5194/tc-12-3931-2018, https://doi.org/10.5194/tc-12-3931-2018, 2018
Short summary
Short summary
The evolution of subglacial channels below ice sheets is very important for the dynamics of glaciers as the water acts as a lubricant. We present a new numerical model (CUAS) that generalizes existing approaches by accounting for two different flow situations within a single porous medium layer: (1) a confined aquifer if sufficient water supply is available and (2) an unconfined aquifer, otherwise. The model is applied to artificial scenarios as well as to the Northeast Greenland Ice Stream.
Thomas Lelandais, Édouard Ravier, Stéphane Pochat, Olivier Bourgeois, Christopher Clark, Régis Mourgues, and Pierre Strzerzynski
The Cryosphere, 12, 2759–2772, https://doi.org/10.5194/tc-12-2759-2018, https://doi.org/10.5194/tc-12-2759-2018, 2018
Short summary
Short summary
Scattered observations suggest that subglacial meltwater routes drive ice stream dynamics and ice sheet stability. We use a new experimental approach to reconcile such observations into a coherent story connecting ice stream life cycles with subglacial hydrology and bed erosion. Results demonstrate that subglacial flooding, drainage reorganization, and valley development can control an ice stream lifespan, thus opening new perspectives on subglacial processes controlling ice sheet instabilities.
Cited articles
Banwell, A., MacAyeal, D., and Sergienko, O.: Breakup of the Larsen B Ice
Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys.
Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. a
Bevan, S. L., Luckman, A., Hubbard, B., Kulessa, B., Ashmore, D., Kuipers
Munneke, P., O'Leary, M., Booth, A., Sevestre, H., and McGrath, D.: Centuries
of intense surface melt on Larsen C Ice Shelf, The Cryosphere, 11,
2743–2753, https://doi.org/10.5194/tc-11-2743-2017, 2017. a
Bracegirdle, T., Connolley, W., and Turner, J.: Antarctic climate change
over the twenty first century, J. Geophys. Res., 113, D03103,
https://doi.org/10.1029/2007JD008933, 2008. a
Bracegirdle, T., Barrand, N., Kusahara, K., and Wainer, I.: Predicting
Antarctic climate using climate models, Antarctic Environments Portal,
https://doi.org/10.18124/D4VC76, 2016. a
Buzzard, S.: A Mathematical Model of Melt Lake Formation on an Ice Shelf,
University of Reading, Software, https://doi.org/10.17864/1947.121, 2017. a
Buzzard, S., Feltham, D., and Flocco, D.: A mathematical model of meltlake
development on an ice shelf, J. Adv. Model. Earth Sy., 10, 262–283,
https://doi.org/10.1002/2017MS001155, 2018. a, b, c
De Angelis, H. and Skvarca, P.: Glacier surge after ice shelf collapse,
Science, 299, 1560–1562, 2003. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy,
S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette,
J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut,
J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011. a
Elvidge, A., Renfrew, I., King, J., Orr, A., Lachlan-Cope, T., Week, M., and
Gray, S.: Foehn jets over the Larsen C Ice Shelf, Antarctica, Q. J. Roy.
Meteor. Soc., 141, 698–713, https://doi.org/10.1002/qj.2382, 2015. a, b
Gourmelen, N., Shepherd, A., Jenkins, A., and Houlie, N.: Basal melt rate at
the Larsen-C Ice Shelf, Poster C21D-0473, AGU Fall meeting 2009, San
Francisco, USA, 2009. a
Hogg, A. and Gudmundsson, G.: Impacts of the Larsen-C Ice Shelf calving
event, Nature Climate Change, 7, 540–542, 2017. a
Holland, P., Corr, H. F. J., Pritchard, H. D., Vaughan, D. G., Arthern,
R. J., Jenkins, A., and Tedesco, M.: The air content of Larsen Ice Shelf,
Geophys. Res. Lett., 38, L10503, https://doi.org/10.1029/2011GL047245, 2011. a
Holland, P. R., Brisbourne, A., Corr, H. F. J., McGrath, D., Purdon, K.,
Paden, J., Fricker, H. A., Paolo, F. S., and Fleming, A. H.: Oceanic and
atmospheric forcing of Larsen C Ice-Shelf thinning, The Cryosphere, 9,
1005–1024, https://doi.org/10.5194/tc-9-1005-2015, 2015. a, b
Hubbard, B., Luckman, A., Ashmore, D., Bevan, S., Kulessa, B., Kuipers
Munneke, P., Philippe, M., Jansen, D., Booth, A., Sevestre, H., Tison, J.,
O'Leary, M., and Rutt, I.: Massive subsurface ice formed by refreezing of
ice-shelf melt ponds, Nat. Commun., 7, 1–6, https://doi.org/10.1038/ncomms11897, 2016. a, b
IPCC: Annex I: Atlas of Global and Regional Climate Projections, edited by:
van Oldenborgh, G. J., Collins, M., Arblaster, J., Christensen, J. H.,
Marotzke, J., Power, S. B., Rummukainen, M., and Zhou, T., in: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Jansen, D., Kulessa, B., Sammonds, P. R., Luckman, A., King, E. C., and
Glasser, N. F.: Present stability of the Larsen C ice shelf, Antarctic
Peninsula, J. Glaciol., 56, 593–600, 2010. a
Jansen, D., Luckman, A. J., Cook, A., Bevan, S., Kulessa, B., Hubbard, B., and Holland, P. R.: Brief Communication: Newly developing rift in Larsen C Ice Shelf presents significant risk to stability, The Cryosphere, 9, 1223–1227, https://doi.org/10.5194/tc-9-1223-2015, 2015. a
Jarvis, E. and King, E.: Seismic investigation of the Larsen Ice Shelf, Antarctica: in search of the Larsen Basin, Antarct. Sci., 7, 181–190, 1995. a
Khazendar, A., Rignot, E., and Larour, E.: Acceleration and spatial rheology of Larsen C Ice Shelf, Antarctic Peninsula, J. Geophys. Res., 38, L09502, https://doi.org/10.1029/2011GL046775, 2011. a
Krinner, G., Magand, O., Simmonds, I., Genthon, C., and Dufresne, J. L.:
Simulated Antarctic precipitation and surface mass balance at the end of the
twentieth and twenty-first centuries, Clim. Dynam., 28, 215–230,
https://doi.org/10.1007/s00382-006-0177-x, 2007. a
Kuipers Munneke, P., Picard, G., Van Den Broeke, M. R., Lenaerts, J.
T. M., and Van Meijgaard, E.: Insignificant change in Antarctic snowmelt
volume
since 1979, Geophys. Res. Lett., 39, 6–10, 2012. a
Kuipers Munneke, P., Ligtenberg, S., Van den Broeke, M., and Vaughan, D.:
Firn air depletion as a precursor of Antarctic ice-shelf collapse,
J. Glaciol., 60, 205–214, 2014. a
Kuipers Munneke, P., Luckman, A. J., Bevan, S. L., Smeets, C. J. P. P.,
Gilbert, E., and van den Broeke, M. R.: Intense winter surfacemelt on an
Antarctic ice shelf, Geophys. Res.
Lett., 45, 7615–7623, 2018. a
MacAyeal, D. R., Scambos, T. A., Hulbe, C. L., and Fahnestock, M. A.:
Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism,
J. Glaciol., 49, 22–36, https://doi.org/10.3189/172756503781830863, 2003. a
Morris, E. and Vaughan, D.: Spatial and temporal variation of surface
temperature on the Antarctic Peninsula and the limit of viability of ice
shelves, Antarctic Peninsula Climate Variability: Historical and
Paleoenvironmental Perspectives, Anarct. Res. Ser., 79, 61–68, 2003. a
Pfeffer, W. and Bretherton, C.: The effect of crevasses on the solar heating
of a glacier surface, in: The Physical Basis of Ice Sheet Modelling,
Proceedings of the Vancouver Symposium, August 1987, IAHS Publ. no. 170,
191–206, 1987. a
Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., and Grigsby, S.: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods, The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, 2016. a, b
Rack, W. and Rott, H.: Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula, Ann. Glaciol., 39, 505–510, 2004. a
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., and Thomas, R.: Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf, Geophys. Res. Lett., 31, L18401, https://doi.org/10.1029/2004GL020697, 2004. a
Rott, H., Abdel Jaber, W., Wuite, J., Scheiblauer, S., Floricioiu, D., van Wessem, J. M., Nagler, T., Miranda, N., and van den Broeke, M. R.: Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016, The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, 2018. a
Scambos, T., Bohlander, J., and Raup, B.: Images of Antarctic Ice Shelves, Larsen C Ice Shelf, January 2007, National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.7265/N5NC5Z4N, 2001. a
Scambos, T., Hulbe, C., and Fahnestock, M.: Climate-induced ice shelf
disintegration in the Antarctic Peninsula, Antarctic Peninsula Climate
Variability, Antar. Res. S., 79, 335–347, 2003. a
Scambos, T., Bohlander, J., Schuman, C., and Skvarca, P.: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophys. Res. Lett., 31, L18402, https://doi.org/10.1029/2004GL020670, 2004. a, b, c, d
Schytt, V.: A. Snow studies at Maudheim. B. Snow studies inland. C: The inner
structure of the ice shelf at Maudheim as shown by core drilling, in:
Vol. IV: Glaciology II, Norwegian-British-Swedish Antarctic Expedition,
1949-5, Norsk Palarinstitutt, Oslo, 1958. a
Sergienko, O. and MacAyeal, D.: Surface melting on Larsen Ice Shelf, Antarctica, Ann. Glaciol., 40, 215–218, 2005. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: 2012: A summary of the CMIP experiment design, B. Am. Meteorol. Soc., 93, 485–498, 1998. a
Turner, J., Lu, H., White, I., King, J., Phillips, T., Hoskingt, J.,
Bracegirdle, T., Marshall, G., Mulvaneyt, R., and Deb, P.: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability,
Nature, 535, 411–415, 2016. a
van der Veen, C. J.: Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers, Geophys. Res. Lett., 34, L01501, https://doi.org/10.1029/2006GL028385, 2007. a
van Wessem, J. M., Ligtenberg, S. R. M., Reijmer, C. H., van de Berg, W. J., van den Broeke, M. R., Barrand, N. E., Thomas, E. R., Turner, J., Wuite, J., Scambos, T. A., and van Meijgaard, E.: The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution, The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, 2016. a
Wuite, J., Rott, H., Hetzenecker, M., Floricioiu, D., De Rydt, J., Gudmundsson, G. H., Nagler, T., and Kern, M.: Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013, The Cryosphere, 9, 957–969, https://doi.org/10.5194/tc-9-957-2015, 2015. a
Short summary
Surface lakes on ice shelves can not only change the amount of solar energy the ice shelf receives, but may also play a pivotal role in sudden ice shelf collapse such as that of the Larsen B Ice Shelf in 2002.
Here we simulate current and future melting on Larsen C, Antarctica’s most northern ice shelf and one on which lakes have been observed. We find that should future lakes occur closer to the ice shelf front, they may contain sufficient meltwater to contribute to ice shelf instability.
Surface lakes on ice shelves can not only change the amount of solar energy the ice shelf...