Articles | Volume 12, issue 7
https://doi.org/10.5194/tc-12-2481-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-2481-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pore morphology of polar firn around closure revealed by X-ray tomography
Alexis Burr
Univ. Grenoble Alpes, Grenoble INP, CNRS, IRD, IGE, 38000 Grenoble, France
Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
Clément Ballot
Univ. Grenoble Alpes, Grenoble INP, CNRS, IRD, IGE, 38000 Grenoble, France
Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
Pierre Lhuissier
Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
Patricia Martinerie
Univ. Grenoble Alpes, Grenoble INP, CNRS, IRD, IGE, 38000 Grenoble, France
Christophe L. Martin
Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
Armelle Philip
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, Grenoble INP, CNRS, IRD, IGE, 38000 Grenoble, France
Related authors
No articles found.
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
The Cryosphere, 18, 4379–4397, https://doi.org/10.5194/tc-18-4379-2024, https://doi.org/10.5194/tc-18-4379-2024, 2024
Short summary
Short summary
We study the EastGRIP area, Greenland, in detail with traditional and novel techniques. Due to the compaction of the ice, at a certain depth, atmospheric gases can no longer exchange, and the atmosphere is trapped in air bubbles in the ice. We find this depth by pumping air from a borehole, modeling, and using a new technique based on the optical appearance of the ice. Our results suggest that the close-off depth lies at around 58–61 m depth and more precisely at 58.3 m depth.
Romilly Harris Stuart, Amaëlle Landais, Laurent Arnaud, Christo Buizert, Emilie Capron, Marie Dumont, Quentin Libois, Robert Mulvaney, Anaïs Orsi, Ghislain Picard, Frédéric Prié, Jeffrey Severinghaus, Barbara Stenni, and Patricia Martinerie
The Cryosphere, 18, 3741–3763, https://doi.org/10.5194/tc-18-3741-2024, https://doi.org/10.5194/tc-18-3741-2024, 2024
Short summary
Short summary
Ice core δO2/N2 records are useful dating tools due to their local insolation pacing. A precise understanding of the physical mechanism driving this relationship, however, remain ambiguous. By compiling data from 15 polar sites, we find a strong dependence of mean δO2/N2 on accumulation rate and temperature in addition to the well-documented insolation dependence. Snowpack modelling is used to investigate which physical properties drive the mechanistic dependence on these local parameters.
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Phillip Place
EGUsphere, https://doi.org/10.5194/egusphere-2024-653, https://doi.org/10.5194/egusphere-2024-653, 2024
Short summary
Short summary
Carbon monoxide (CO) plays a crucial role in the atmosphere's oxidizing capacity. In this study, we analyse how historical (1850–2014) [CO] outputs from state-of-the-art global chemistry-climate models over Greenland and Antarctica are able to capture both absolute values and trends recorded in multi-site ice archives. A disparity in [CO] growth rates emerges in the Northern Hemisphere between models and observations from 1920–1975 CE, possibly linked to uncertainties in CO emission factors.
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Short summary
We report on a 3000-year record of carbon monoxide (CO) levels in the Southern Hemisphere's high latitudes by combining ice core and firn air measurements with modern direct atmospheric samples. Antarctica [CO] remained stable (–835 to 1500 CE), decreased during the Little Ice Age, and peaked around 1985 CE. Such evolution reflects stable biomass burning CO emissions before industrialization, followed by growth from CO anthropogenic sources, which decline after 1985 due to improved combustion.
Marie Bouchet, Amaëlle Landais, Antoine Grisart, Frédéric Parrenin, Frédéric Prié, Roxanne Jacob, Elise Fourré, Emilie Capron, Dominique Raynaud, Vladimir Ya Lipenkov, Marie-France Loutre, Thomas Extier, Anders Svensson, Etienne Legrain, Patricia Martinerie, Markus Leuenberger, Wei Jiang, Florian Ritterbusch, Zheng-Tian Lu, and Guo-Min Yang
Clim. Past, 19, 2257–2286, https://doi.org/10.5194/cp-19-2257-2023, https://doi.org/10.5194/cp-19-2257-2023, 2023
Short summary
Short summary
A new federative chronology for five deep polar ice cores retrieves 800 000 years of past climate variations with improved accuracy. Precise ice core timescales are key to studying the mechanisms linking changes in the Earth’s orbit to the diverse climatic responses (temperature and atmospheric greenhouse gas concentrations). To construct the chronology, new measurements from the oldest continuous ice core as well as glaciological modeling estimates were combined in a statistical model.
Neige Calonne, Alexis Burr, Armelle Philip, Frédéric Flin, and Christian Geindreau
The Cryosphere, 16, 967–980, https://doi.org/10.5194/tc-16-967-2022, https://doi.org/10.5194/tc-16-967-2022, 2022
Short summary
Short summary
Modeling gas transport in ice sheets from surface to close-off is key to interpreting climate archives. Estimates of the diffusion coefficient and permeability of snow and firn are required but remain a large source of uncertainty. We present a new dataset of diffusion coefficients and permeability from 20 to 120 m depth at two Antarctic sites. We suggest predictive formulas to estimate both properties over the entire 100–850 kg m3 density range, i.e., anywhere within the ice sheet column.
Max Thomas, Johannes C. Laube, Jan Kaiser, Samuel Allin, Patricia Martinerie, Robert Mulvaney, Anna Ridley, Thomas Röckmann, William T. Sturges, and Emmanuel Witrant
Atmos. Chem. Phys., 21, 6857–6873, https://doi.org/10.5194/acp-21-6857-2021, https://doi.org/10.5194/acp-21-6857-2021, 2021
Short summary
Short summary
CFC gases are destroying the Earth's life-protecting ozone layer. We improve understanding of CFC destruction by measuring the isotopic fingerprint of the carbon in the three most abundant CFCs. These are the first such measurements in the main region where CFCs are destroyed – the stratosphere. We reconstruct the atmospheric isotope histories of these CFCs back to the 1950s by measuring air extracted from deep snow and using a model. The model and the measurements are generally consistent.
Kévin Fourteau, Laurent Arnaud, Xavier Faïn, Patricia Martinerie, David M. Etheridge, Vladimir Lipenkov, and Jean-Marc Barnola
Earth Syst. Sci. Data, 12, 1171–1177, https://doi.org/10.5194/essd-12-1171-2020, https://doi.org/10.5194/essd-12-1171-2020, 2020
Short summary
Short summary
Measurements of the porosity of three polar firns were conducted in the 1990s by Jean-Marc Barnola using the method of gas pycnometry. From these data, a parametrization of firn pore closure was produced and used in different published articles. However, the data have not been published in their own right yet. We have made the data publicly accessible on the PANGAEA database and here propose describing how they were obtained and used to produce the pore closure parametrization.
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Alexey A. Ekaykin, Jérôme Chappellaz, and Vladimir Lipenkov
Clim. Past, 16, 503–522, https://doi.org/10.5194/cp-16-503-2020, https://doi.org/10.5194/cp-16-503-2020, 2020
Short summary
Short summary
We quantify how the greenhouse gas records of East Antarctic ice cores (which are the oldest ice cores) might differ from the actual atmosphere history. It is required to properly interpret ice core data. For this, we measured the methane of five new East Antarctic ice core sections using a high-resolution technique. We found that in these very old ice cores, one can retrieve concentration variations occurring in only a few centuries, allowing climatologists to study climate's fast dynamics.
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019, https://doi.org/10.5194/tc-13-3383-2019, 2019
Short summary
Short summary
Understanding gas trapping in polar ice is essential to study the relationship between greenhouse gases and past climates. New data of bubble closure, used in a simple gas-trapping model, show inconsistency with the final air content in ice. This suggests gas trapping is not fully understood. We also use a combination of high-resolution measurements to investigate the effect of polar snow stratification on gas trapping and find that all strata have similar pores, but that some close in advance.
Kévin Fourteau, Xavier Faïn, Patricia Martinerie, Amaëlle Landais, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, and Jérôme Chappellaz
Clim. Past, 13, 1815–1830, https://doi.org/10.5194/cp-13-1815-2017, https://doi.org/10.5194/cp-13-1815-2017, 2017
Short summary
Short summary
We measured methane concentrations from a polar ice core to quantify the differences between the ice record and the past true atmospheric conditions. Two effects were investigated by combining data analysis and modeling: the stratification of polar snow before gas enclosure driving chronological hiatuses in the record and the gradual formation of bubbles in the ice attenuating fast atmospheric variations. This study will contribute to improving future climatic interpretations from ice archives.
Mike J. Newland, Patricia Martinerie, Emmanuel Witrant, Detlev Helmig, David R. Worton, Chris Hogan, William T. Sturges, and Claire E. Reeves
Atmos. Chem. Phys., 17, 8269–8283, https://doi.org/10.5194/acp-17-8269-2017, https://doi.org/10.5194/acp-17-8269-2017, 2017
Short summary
Short summary
We report increasing levels of alkyl nitrates in the Northern Hemisphere atmosphere between 1960 and the mid-1990s. These increases are symptomatic of large-scale changes to the chemical composition of the atmosphere, particularly with regards to the amounts of short-lived, reactive species. The observed increases are likely driven by increasing levels of nitrogen oxides. These changes have direct implications for the lifetimes of climate-relevant species in the atmosphere, such as methane.
Markella Prokopiou, Patricia Martinerie, Célia J. Sapart, Emmanuel Witrant, Guillaume Monteil, Kentaro Ishijima, Sophie Bernard, Jan Kaiser, Ingeborg Levin, Thomas Blunier, David Etheridge, Ed Dlugokencky, Roderik S. W. van de Wal, and Thomas Röckmann
Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, https://doi.org/10.5194/acp-17-4539-2017, 2017
Short summary
Short summary
Nitrous oxide is the third most important anthropogenic greenhouse gas with an increasing mole fraction. To understand its natural and anthropogenic sources
we employ isotope measurements. Results show that while the N2O mole fraction increases, its heavy isotope content decreases. The isotopic changes observed underline the dominance of agricultural emissions especially at the early part of the record, whereas in the later decades the contribution from other anthropogenic sources increases.
Johannes C. Laube, Norfazrin Mohd Hanif, Patricia Martinerie, Eileen Gallacher, Paul J. Fraser, Ray Langenfelds, Carl A. M. Brenninkmeijer, Jakob Schwander, Emmanuel Witrant, Jia-Lin Wang, Chang-Feng Ou-Yang, Lauren J. Gooch, Claire E. Reeves, William T. Sturges, and David E. Oram
Atmos. Chem. Phys., 16, 15347–15358, https://doi.org/10.5194/acp-16-15347-2016, https://doi.org/10.5194/acp-16-15347-2016, 2016
B. Lemieux-Dudon, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, M. Guillevic, P. Kindler, F. Parrenin, and P. Martinerie
Clim. Past, 11, 959–978, https://doi.org/10.5194/cp-11-959-2015, https://doi.org/10.5194/cp-11-959-2015, 2015
S. J. Allin, J. C. Laube, E. Witrant, J. Kaiser, E. McKenna, P. Dennis, R. Mulvaney, E. Capron, P. Martinerie, T. Röckmann, T. Blunier, J. Schwander, P. J. Fraser, R. L. Langenfelds, and W. T. Sturges
Atmos. Chem. Phys., 15, 6867–6877, https://doi.org/10.5194/acp-15-6867-2015, https://doi.org/10.5194/acp-15-6867-2015, 2015
Short summary
Short summary
Stratospheric ozone protects life on Earth from harmful UV-B radiation. Chlorofluorocarbons (CFCs) are man-made compounds which act to destroy this barrier.
This paper presents (1) the first measurements of the stratospheric δ(37Cl) of CFCs -11 and -113; (2) the first quantification of long-term trends in the tropospheric δ(37Cl) of CFCs -11, -12 and -113.
This study provides a better understanding of source and sink processes associated with these destructive compounds.
D. Helmig, V. Petrenko, P. Martinerie, E. Witrant, T. Röckmann, A. Zuiderweg, R. Holzinger, J. Hueber, C. Thompson, J. W. C. White, W. Sturges, A. Baker, T. Blunier, D. Etheridge, M. Rubino, and P. Tans
Atmos. Chem. Phys., 14, 1463–1483, https://doi.org/10.5194/acp-14-1463-2014, https://doi.org/10.5194/acp-14-1463-2014, 2014
V. V. Petrenko, P. Martinerie, P. Novelli, D. M. Etheridge, I. Levin, Z. Wang, T. Blunier, J. Chappellaz, J. Kaiser, P. Lang, L. P. Steele, S. Hammer, J. Mak, R. L. Langenfelds, J. Schwander, J. P. Severinghaus, E. Witrant, G. Petron, M. O. Battle, G. Forster, W. T. Sturges, J.-F. Lamarque, K. Steffen, and J. W. C. White
Atmos. Chem. Phys., 13, 7567–7585, https://doi.org/10.5194/acp-13-7567-2013, https://doi.org/10.5194/acp-13-7567-2013, 2013
L. Bazin, A. Landais, B. Lemieux-Dudon, H. Toyé Mahamadou Kele, D. Veres, F. Parrenin, P. Martinerie, C. Ritz, E. Capron, V. Lipenkov, M.-F. Loutre, D. Raynaud, B. Vinther, A. Svensson, S. O. Rasmussen, M. Severi, T. Blunier, M. Leuenberger, H. Fischer, V. Masson-Delmotte, J. Chappellaz, and E. Wolff
Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, https://doi.org/10.5194/cp-9-1715-2013, 2013
D. Veres, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, B. Lemieux-Dudon, F. Parrenin, P. Martinerie, E. Blayo, T. Blunier, E. Capron, J. Chappellaz, S. O. Rasmussen, M. Severi, A. Svensson, B. Vinther, and E. W. Wolff
Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, https://doi.org/10.5194/cp-9-1733-2013, 2013
M. Guillevic, L. Bazin, A. Landais, P. Kindler, A. Orsi, V. Masson-Delmotte, T. Blunier, S. L. Buchardt, E. Capron, M. Leuenberger, P. Martinerie, F. Prié, and B. M. Vinther
Clim. Past, 9, 1029–1051, https://doi.org/10.5194/cp-9-1029-2013, https://doi.org/10.5194/cp-9-1029-2013, 2013
E. Capron, A. Landais, D. Buiron, A. Cauquoin, J. Chappellaz, M. Debret, J. Jouzel, M. Leuenberger, P. Martinerie, V. Masson-Delmotte, R. Mulvaney, F. Parrenin, and F. Prié
Clim. Past, 9, 983–999, https://doi.org/10.5194/cp-9-983-2013, https://doi.org/10.5194/cp-9-983-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Field Studies
Ice plate deformation and cracking revealed by an in situ-distributed acoustic sensing array
A field study on ice melting and breakup in a boreal lake, Pääjärvi, in Finland
Rapid and accurate polarimetric radar measurements of ice crystal fabric orientation at the Western Antarctic Ice Sheet (WAIS) Divide ice core site
Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica
Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet
Jun Xie, Xiangfang Zeng, Chao Liang, Sidao Ni, Risheng Chu, Feng Bao, Rongbing Lin, Benxin Chi, and Hao Lv
The Cryosphere, 18, 837–847, https://doi.org/10.5194/tc-18-837-2024, https://doi.org/10.5194/tc-18-837-2024, 2024
Short summary
Short summary
Seismology can help study the mechanism of disintegration of floating ice plates. We conduct a seismic experiment on a frozen lake using a distributed acoustic sensing array. Icequakes and low-frequency events are detected with an artificial intelligence method. Our study demonstrates the merit of distributed acoustic sensing array in illuminating the internal failure process and properties of the ice shelf, which eventually contributes to the understanding and prediction of ice shelf collapse.
Yaodan Zhang, Marta Fregona, John Loehr, Joonatan Ala-Könni, Shuang Song, Matti Leppäranta, and Zhijun Li
The Cryosphere, 17, 2045–2058, https://doi.org/10.5194/tc-17-2045-2023, https://doi.org/10.5194/tc-17-2045-2023, 2023
Short summary
Short summary
There are few detailed studies during the ice decay period, primarily because in situ observations during decay stages face enormous challenges due to safety issues. In the present work, ice monitoring was based on foot, hydrocopter, and boat to get a full time series of the evolution of ice structure and geochemical properties. We argue that the rapid changes in physical and geochemical properties of ice have an important influence on regional climate and the ecological environment under ice.
Tun Jan Young, Carlos Martín, Poul Christoffersen, Dustin M. Schroeder, Slawek M. Tulaczyk, and Eliza J. Dawson
The Cryosphere, 15, 4117–4133, https://doi.org/10.5194/tc-15-4117-2021, https://doi.org/10.5194/tc-15-4117-2021, 2021
Short summary
Short summary
If the molecules that make up ice are oriented in specific ways, the ice becomes softer and enhances flow. We use radar to measure the orientation of ice molecules in the top 1400 m of the Western Antarctic Ice Sheet Divide. Our results match those from an ice core extracted 10 years ago and conclude that the ice flow has not changed direction for the last 6700 years. Our methods are straightforward and accurate and can be applied in places across ice sheets unsuitable for ice coring.
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Short summary
How ice sheets flowed in the past is written into the structure and texture of the ice sheet itself. Measuring this structure and properties of the ice can help us understand the recent behaviour of the ice sheets. We use a relatively new technique, not previously attempted in Antarctica, to measure the seismic vibrations of a fibre optic cable down a borehole. We demonstrate the potential of this technique to unravel past ice flow and see hints of these complex signals from the ice flow itself.
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Short summary
Melting of the Greenland Ice Sheet (GrIS) is a major source of uncertainty for sea level rise projections. Ice-darkening due to the growth of algae has been recognized as a potential accelerator of melting. This paper measures and models the algae-driven ice melting and maps the algae over the ice sheet for the first time. We estimate that as much as 13 % total runoff from the south-western GrIS can be attributed to these algae, showing that they must be included in future mass balance models.
Cited articles
Anderson, D. L. and Benson, C. S.: The densification and diagenesis of
snow, in: Ice and snow: properties, processes, and applications, edited by:
Kingery, W., chap. 30, Cambridge, MA, MIT Press, 391–411, 1963. a
Babin, P., Valle, G. D., Chiron, H., Cloetens, P., and Hoszowska, J.: Fast
X-ray tomography analysis of bubble growth and foam setting during
breadmaking, J. Cereal Sci., 43, 393–397, https://doi.org/10.1016/j.jcs.2005.12.002,
2006. a
Babout, L., Marrow, T. J., Mummery, P. M., and Withers, P. J.: Mapping the
evolution of density in 3D of thermally oxidised graphite for nuclear
applications, Scripta Mater., 54, 829–834,
https://doi.org/10.1016/j.scriptamat.2005.11.028, 2006. a
Barnola, J.-M., Pimienta, P., Raynaud, D., and Korotkevich, Y. S.:
CO2-climate relationship as deduced from the Vostok ice core: a
re-examination based on new measurements and on a re-evaluation of the air
dating, Tellus B, 43, 83–90, https://doi.org/10.1034/j.1600-0889.1991.t01-1-00002.x,
1991. a
Battle, M., Bender, M. L., Sowers, T., Tans, P. P., Butler, J., Elkins, J.,
Ellis, J., Conway, T. J., Zhang, N., Lang, P., and Clarke, A.: Atmospheric
gas concentrations over the past century measured in air from firn at the
South Pole, Nature, 383, 6597, https://doi.org/10.1038/383231a0, 1996. a, b
Battle, M. O., Severinghaus, J. P., Sofen, E. D., Plotkin, D., Orsi, A. J.,
Aydin, M., Montzka, S. A., Sowers, T., and Tans, P. P.: Controls on the
movement and composition of firn air at the West Antarctic Ice Sheet Divide,
Atmos. Chem. Phys., 11, 11007–11021,
https://doi.org/10.5194/acp-11-11007-2011, 2011. a, b
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H.,
Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V.,
Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O.,
Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V.,
Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic
ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9,
1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013. a
Boulos, V., Fristot, V., Houzet, D., Salvo, L., and Lhuissier, P.:
Investigating performance variations of an optimized GPU-ported granulometry
algorithm To cite this version : Investigating performance variations of an
optimized GPU-ported granulometry algorithm, 2012 Conference on Design and
Architectures for Signal and Image Processing (DASIP), Karlsruhe, Germany,
October 2012, 1–6, 2013. a, b, c
Bréant, C., Martinerie, P., Orsi, A., Arnaud, L., and Landais, A.:
Modelling firn thickness evolution during the last deglaciation: constraints
on sensitivity to temperature and impurities, Clim. Past, 13, 833–853,
https://doi.org/10.5194/cp-13-833-2017, 2017. a, b, c, d
Buizert, C., Martinerie, P., Petrenko, V. V., Severinghaus, J. P., Trudinger,
C. M., Witrant, E., Rosen, J. L., Orsi, A. J., Rubino, M., Etheridge, D. M.,
Steele, L. P., Hogan, C., Laube, J. C., Sturges, W. T., Levchenko, V. A.,
Smith, A. M., Levin, I., Conway, T. J., Dlugokencky, E. J., Lang, P. M.,
Kawamura, K., Jenk, T. M., White, J. W. C., Sowers, T., Schwander, J., and
Blunier, T.: Gas transport in firn: multiple-tracer characterisation and
model intercomparison for NEEM, Northern Greenland, Atmos. Chem. Phys., 12,
4259–4277, https://doi.org/10.5194/acp-12-4259-2012, 2012. a, b
Burr, A., Ballot, C., Lhuissier, P., Martinerie, P., Martin, C. L., Philip,
A.: Physical and morphological parameters of two Antarctic polar sites: Dome
C and Lock In, Perscido – Université Grenoble Alpes Data set,
https://doi.org/10.18709/PERSCIDO.2018.07.DS225, 2018. a
Coléou, C., Lesaffre, B., Brzoska, J. B., Ludwig, W., and Boller, E.:
Three-dimensional snow images by X-ray microtomography, Ann. Glaciol., 32,
75–81, https://doi.org/10.3189/172756401781819418, 2001. a, b
Courville, Z., Hörhold, M., Hopkins, M., and Albert, M.:
Lattice-Boltzmann modeling of the air permeability of polar firn, J.
Geophys. Res.-Earth, 115, 1–11, https://doi.org/10.1029/2009JF001549, 2010. a, b
Courville, Z. R., Albert, M. R., Fahnestock, M. A., Cathles, I. M., and
Shuman, C. A.: Impacts of an accumulation hiatus on the physical properties
of firn at a low-accumulation polar site, J. Geophys. Res.-Earth, 112,
1–11, https://doi.org/10.1029/2005JF000429, 2007. a
Domine, F., Albert, M., Huthwelker, T., Jacobi, H.-W., Kokhanovsky, A. A.,
Lehning, M., Picard, G., and Simpson, W. R.: Snow physics as relevant to snow
photochemistry, Atmos. Chem. Phys., 8, 171–208,
https://doi.org/10.5194/acp-8-171-2008, 2008. a
Fabre, A., Barnola, J. M., Arnaud, L., and Chappellaz, J.: Determination of
gas diffusivity in polar firn: Comparison between experimental measurements
and inverse modeling, Geophys. Res. Lett., 27, 557–560,
https://doi.org/10.1029/1999GL010780, 2000.
Flin, F., Brzoska, J.-B., Lesaffre, B., Coléou, C., and Pieritz, R. A.:
Full three-dimensional modelling of curvature-dependent snow metamorphism:
first results and comparison with experimental tomographic data, J. Phys. D
Appl. Phys., 36, 49–54, https://doi.org/10.1088/0022-3727/36/10A/310, 2003. a
Fourteau, K., Faïn, X., Martinerie, P., Landais, A., Ekaykin, A. A.,
Lipenkov, V. Ya., and Chappellaz, J.: Analytical constraints on layered gas
trapping and smoothing of atmospheric variability in ice under
low-accumulation conditions, Clim. Past, 13, 1815–1830,
https://doi.org/10.5194/cp-13-1815-2017, 2017. a, b
Freitag, J., Wilhelms, F., and Kipfstuhl, S.: Microstructure-dependent
densification of polar firn derived from X-ray microtomography, J. Glaciol.,
50, 243–250, https://doi.org/10.3189/172756504781830123, 2004. a
Freitag, J., Kipfstuhl, S., Laepple, T., and Wilhelms, F.:
Impurity-controlled densification: A new model for stratified polar firn,
J. Glaciol., 59, 1163–1169, https://doi.org/10.3189/2013JoG13J042, 2013. a, b
Freitag, J., Kipfstuhl, S., and Laepple, T.: Core-scale radioscopic imaging:
a new method reveals density – calcium link in Antarctic firn, J. Glaciol.,
59, 1009–1014, https://doi.org/10.3189/2013JoG13J028, 2013. a
Fujita, S., Okuyama, J., Hori, A., and Hondoh, T.: Metamorphism of
stratified firn at Dome Fuji, Antarctica: A mechanism for local insolation
modulation of gas transport conditions during bubble close off, J. Geophys.
Res., 114, 1–21, https://doi.org/10.1029/2008JF001143, 2009. a, b, c
Gautier, E., Savarino, J., Erbland, J., Lanciki, A., and Possenti, P.:
Variability of sulfate signal in ice core records based on five replicate
cores, Clim. Past, 12, 103–113, https://doi.org/10.5194/cp-12-103-2016,
2016. a
Goujon, C., Barnola, J.-M., and Ritz, C.: Modeling the densification of
polar firn including heat diffusion: Application to close-off characteristics
and gas isotopic fractionation for Antarctica and Greenland sites, J.
Geophys. Res.-Atmos., 108, 1–18, https://doi.org/10.1029/2002JD003319, 2003. a, b, c, d, e, f
Hildebrand, T. and Rüegsegger, P.: A new method for the
model-independent assessment of thickness in three-dimensional images, J.
Microsc.-Oxford, 185, 67–75, https://doi.org/10.1046/j.1365-2818.1997.1340694.x, 1997. a, b
Hörhold, M. W., Kipfstuhl, S., Wilhelms, F., Freitag, J., and Frenzel,
A.: The densification of layered polar firn, J. Geophys. Res.-Earth, 116,
1–15, https://doi.org/10.1029/2009JF001630, 2011. a, b
Hörhold, M. W., Laepple, T., Freitag, J., Bigler, M., Fischer, H., and
Kipfstuhl, S.: On the impact of impurities on the densification of polar
firn, Earth Planet. Sc. Lett., 325–326, 93–99,
https://doi.org/10.1016/j.epsl.2011.12.022, 2012. a
Kaempfer, T. U. and Schneebeli, M.: Observation of isothermal metamorphism
of new snow and interpretation as a sintering process, J. Geophys. Res.,
112, D24101, https://doi.org/10.1029/2007JD009047, 2007. a, b
Landais, A., Barnola, J. M., Kawamura, K., Caillon, N., Delmotte, M., Van
Ommen, T., Dreyfus, G., Jouzel, J., Masson-Delmotte, V., Minster, B.,
Freitag, J., Leuenberger, M., Schwander, J., Huber, C., Etheridge, D., and
Morgan, V.: Firn-air δ15N in modern polar sites and
glacial-interglacial ice: A model-data mismatch during glacial periods in
Antarctica?, Quaternary Sci. Rev., 25, 49–62,
https://doi.org/10.1016/j.quascirev.2005.06.007, 2006. a, b, c, d, e, f, g
Landais, A., Dreyfus, G., Capron, E., Jouzel, J., Masson-Delmotte, V., Roche,
D. M., Prié, F., Caillon, N., Chappellaz, J., Leuenberger, M.,
Lourantou, A., Parrenin, F., Raynaud, D., and Teste, G.: Two-phase change in
CO2, Antarctic temperature and global climate during Termination II, Nat.
Geosci., 6, 1062–1065, https://doi.org/10.1038/ngeo1985, 2013. a
Linow, S., Hörhold, M. W., and Freitag, J.: Grain-size evolution of
polar firn: a new empirical grain growth parameterization based on X-ray
microcomputer tomography measurements, J. Glaciol., 58, 1245–1252,
https://doi.org/10.3189/2012JoG11J256, 2012. a
Lomonaco, R., Albert, M., and Baker, I.: Microstructural evolution of
fine-grained layers through the firn column at Summit, Greenland, J.
Glaciol., 57, 755–762, https://doi.org/10.3189/002214311797409730, 2011. a, b
Lorensen, W. E. and Cline, H. E.: Marching cubes: A high resolution 3D
surface construction algorithm, SIGGRAPH '87 Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, ACM, New York, 21,
163–169, 1987. a
Maeno, N. and Ebinuma, T.: Pressure Sintering of Ice and Its Implication to
the Densification of Snow at Polar Glaciers and Ice Sheets, J. Phys. Chem.,
169, 4103–4110, https://doi.org/10.1021/j100244a023, 1983. a
Martin, C. F., Josserond, C., Salvo, L., Blandin, J. J., Cloetens, P., and
Boller, E.: Characterization by X-ray micro-tomography of cavity coalescence
during superplastic deformation, Scripta Mater., 42, 375–381,
https://doi.org/10.1016/S1359-6462(99)00355-3, 2000. a
Martinerie, P., Lipenkov, V. Y., and Raynaud, D.: Correction od air-content
measurements in polar ice for the effect of cut bubbles at the surface of the
sample, J. Glaciol., 36, 299–303, 1990. a
Mitchell, L. E., Buizert, C., Brook, E. J., Breton, D. J., Fegyveresi, J.,
Baggenstos, D., Orsi, A., Severinghaus, J., Alley, R. B., Albert, M., Rhodes,
R. H., McConnell, J. R., Sigl, M., Maselli, O., Gregory, S., and Ahn, J.:
Observing and modeling the influence of layering on bubble trapping in polar
firn, J. Geophys. Res.-Atmos., 120, 2558–2574, https://doi.org/10.1002/2014JD022766,
2015. a, b, c, d, e
Raynaud, D., Delmas, R., Ascencio, J. M., and Legrand, M.: Gas extraction
from polar ice cores: a critical issue for studying the evolution of
atmospheric CO2 and ice-sheet surface elevation, Ann. Glaciol., 3,
265–268, 1982. a
Rhodes, R. H., Faïn, X., Brook, E. J., McConnell, J. R., Maselli, O. J.,
Sigl, M., Edwards, J., Buizert, C., Blunier, T., Chappellaz, J., and Freitag,
J.: Local artifacts in ice core methane records caused by layered bubble
trapping and in situ production: a multi-site investigation, Clim. Past, 12,
1061–1077, https://doi.org/10.5194/cp-12-1061-2016, 2016. a
Rolland du Roscoat, S., Decain, M., Thibault, X., Geindreau, C., and Bloch,
J. F.: Estimation of microstructural properties from synchrotron X-ray
microtomography and determination of the REV in paper materials, Acta
Mater., 55, 2841–2850, https://doi.org/10.1016/j.actamat.2006.11.050, 2007. a
Salmon, P. L., Ohlsson, C., Shefelbine, S. J., and Doube, M.: Structure
model index does not measure rods and plates in trabecular bone,
Front.Endocrinol., 6, 1–10, https://doi.org/10.3389/fendo.2015.00162, 2015. a
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,
Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez,
J. Y., White, D. J., hartenstein, V., Eliceiri, K., Tomanacak, P., and
Cardona, A.: Fiji: an open-source platform for biological-image analysis,
Nat. Methods, 9, 676–682, 2012. a, b
Schneebeli, M. and Sokratov, S. A.: Tomography of temperature gradient
metamorphism of snow and associated changes in heat conductivity, Hydrol.
Proc., 18, 3655–3665, https://doi.org/10.1002/hyp.5800, 2004. a, b
Schwander, J.: The Transformation of Snow to Ice and the Occlusion of
Gases, in: The Environmental Record in Glaciers and Ice Sheets, John Wiley,
New York, 53–67, 1989. a
Schwander, J. and Stauffer, B.: Age difference between polar ice and the air
trapped in its bubbles, Nature, 311, 45–47, https://doi.org/10.1038/311045a0, 1984. a, b
Schwander, J., Stauffer, B., and Sigg, A.: Air mixing in firn and the age of
the air at pore close-off, Ann. Glaciol., 10, 141–145, 1988. a
Schwander, J., Barnola, J.-M., Andrié, C., Leuenberger, M., Ludin, A.,
Raynaud, D., and Stauffer, B.: The age of the air in the firn and the ice at
Summit, Greenland, J. Geophys. Res., 98, 2831–2838,
https://doi.org/10.1029/92JD02383, 1993. a, b
Scott, G. D. and Kilgour, D. M.: The density of random close packing of
spheres, J. Phys. D Appl. Phys., 2, 863–866, 1969. a
Severinghaus, J. P. and Battle, M. O.: Fractionation of gases in polar ice
during bubble close-off: New constraints from firn air Ne, Kr and Xe
observations, Earth Planet. Sc. Lett., 244, 474–500,
https://doi.org/10.1016/j.epsl.2006.01.032, 2006. a
Severinghaus, J. P., Albert, M. R., Courville, Z. R., Fahnestock, M. A.,
Kawamura, K., Montzka, S. A., Mühle, J., Scambos, T. A., Shields, E.,
Shuman, C. A., Suwa, M., Tans, P., and Weiss, R. F.: Deep air convection in
the firn at a zero-accumulation site, central Antarctica, Earth Planet. Sc.
Lett., 293, 359–367, https://doi.org/10.1016/j.epsl.2010.03.003, 2010. a, b
Sowers, T., Bender, M., Raynaud, D., and Korotkevich, Y.: δ15N of
N2 in air trapped in polar ice: A tracer of gas transport in the firn and
a possible constraint on ice age-gas age differences, J. Geophys.
Res.-Atmos., 97, 15683–15697, 1992. a
Stauffer, B., Schwander, J., and Oeschger, H.: Enclosure of air during
metamorphosis of dry firn to ice, Ann. Glaciol., 6, 108–112,
https://doi.org/10.3189/1985AoG6-1-108-112, 1985. a, b
Sturges, W., McIntyre, H., Penkett, S., Chappellaz, J., Barnola, J.-M.,
Mulvaney, R., Atlas, E., and Stroud, V.: Methyl bromide, other brominated
methanes, and methyl iodide in polar firn air, J. Geophys. Res.-Atmos., 106,
1595–1606, 2001. a
Sweeney, S. M. and Martin, C. L.: Pore size distributions calculated from
3-D images of DEM-simulated powder compacts, Acta Mater., 51, 3635–3639,
https://doi.org/10.1016/S1359-6454(03)00183-6, 2003. a
Trudinger, C. M., Enting, I. G., Etheridge, D. M., Francey, R., Levchenko,
V. A., and Steele, L. P.: Modeling air movement and bubble trapping in
firn, J. Geophys. Res., 102, 6747–6763, 1997. a
Trudinger, C. M., Enting, I. G., Rayner, P. J., Etheridge, D. M., Buizert,
C., Rubino, M., Krummel, P. B., and Blunier, T.: How well do different
tracers constrain the firn diffusivity profile?, Atmos. Chem. Phys., 13,
1485–1510, https://doi.org/10.5194/acp-13-1485-2013, 2013. a
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H.,
Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T.,
Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A.,
Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012):
an optimized multi-parameter and multi-site dating approach for the last 120
thousand years, Clim. Past, 9, 1733–1748,
https://doi.org/10.5194/cp-9-1733-2013, 2013. a
Verfaillie, D., Fily, M., Le Meur, E., Magand, O., Jourdain, B., Arnaud, L.,
and Favier, V.: Snow accumulation variability derived from radar and firn
core data along a 600 km transect in Adelie Land, East Antarctic plateau,
The Cryosphere, 6, 1345–1358, https://doi.org/10.5194/tc-6-1345-2012, 2012.
a
Wautier, A., Geindreau, C., and Flin, F.: Linking snow microstructure to its
macroscopic elastic stiffness tensor: A numerical homogenization method and
its application to 3-D images from X-ray tomography, Geophys. Res. Lett.,
42, 8031–8041, https://doi.org/10.1002/2015GL065227, 2015. a
Witrant, E., Martinerie, P., Hogan, C., Laube, J. C., Kawamura, K., Capron,
E., Montzka, S. A., Dlugokencky, E. J., Etheridge, D., Blunier, T., and
Sturges, W. T.: A new multi-gas constrained model of trace gas
non-homogeneous transport in firn: evaluation and behaviour at eleven polar
sites, Atmos. Chem. Phys., 12, 11465–11483,
https://doi.org/10.5194/acp-12-11465-2012, 2012. a, b, c
Short summary
Three-dimensional imaging of the pore network of polar firn from Antarctica was realized in order to relate the morphological evolution of pores with their progressive closure with depth. Evaluating the closed porosity was found to be very dependent on the size of samples and image reconstructions. A connectivity index, which is a parameter less dependent on such issues, was proposed and proved to accurately predict the close-off depths and densities of two polar sites.
Three-dimensional imaging of the pore network of polar firn from Antarctica was realized in...