Articles | Volume 12, issue 4
https://doi.org/10.5194/tc-12-1531-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/tc-12-1531-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ground thermal and geomechanical conditions in a permafrost-affected high-latitude rock avalanche site (Polvartinden, northern Norway)
Norwegian Geotechnical Institute NGI, Oslo, 0806 Norway
Ketil Isaksen
The Norwegian Meteorological Institute, Oslo, 0313, Norway
Matthew J. Lato
BGC Engineering Inc., Ottawa ON, Canada
Formerly at: Norwegian Geotechnical Institute NGI, Oslo, 0806 Norway
Jeannette Noetzli
WSL-Institute for Snow and Avalanche Research SLF, Davos, 7260, Switzerland
Formerly at: University of Zurich, Zurich, 8057, Switzerland
Related authors
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Regula Frauenfelder, Anders Solheim, Ketil Isaksen, Bård Romstad, Anita V. Dyrrdal, Kristine H. H. Ekseth, Alf Harbitz, Carl B. Harbitz, Jan Erik Haugen, Hans Olav Hygen, Hilde Haakenstad, Christian Jaedicke, Árni Jónsson, Ronny Klæboe, Johanna Ludvigsen, Nele M. Meyer, Trude Rauken, Reidun G. Skaland, Kjetil Sverdrup-Thygeson, Asbjørn Aaheim, Heidi Bjordal, and Per-Anton Fevang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-437, https://doi.org/10.5194/nhess-2017-437, 2017
Preprint withdrawn
Short summary
Short summary
We present results from the project
Impacts of extreme weather events on infrastructure in Norway. Our analyses document an increase in frequency and intensity of e.g. precipitation and wind during the last decades, and that these observed changes will continue throughout the 21st century. We could show that ≥ 27 % of main roads and 31 % of railroads are exposed to rockfall and avalanches. Pro-actively facing such risks will increase resilience and cost-efficiency of the transport infrastructure.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2950, https://doi.org/10.5194/egusphere-2023-2950, 2023
Preprint archived
Short summary
Short summary
This study looked at under the ground on Svalbard, an archipelago close to the North Pole. We found something very surprising – there is water under the all year around frozen soil. This was not known before. This water could be used for drinking if we manage it carefully. This is important because getting clean drinking water is very difficult in Svalbard, and other Arctic places. Also, because the climate is getting warmer, there might be even more water underground in the future.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023, https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary
Short summary
We assess spatio-temporal permafrost variations in selected rock walls in Norway over the last 120 years. Ground temperature is modelled using the two-dimensional ground heat flux model CryoGrid 2D along nine profiles. Permafrost probably occurs at most sites. All simulations show increasing ground temperature from the 1980s. Our simulations show that rock wall permafrost with a temperature of −1 °C at 20 m depth could thaw at this depth within 50 years.
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Short summary
One of the reasons for lower ground temperatures in coarse, blocky terrain is a low or varying soil moisture content, which most permafrost modelling studies did not take into account. We used the CryoGrid community model to successfully simulate this effect and found markedly lower temperatures in well-drained, blocky deposits compared to other set-ups. The inclusion of this drainage effect is another step towards a better model representation of blocky mountain terrain in permafrost regions.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Anita Verpe Dyrrdal, Ketil Isaksen, Jens Kristian Steen Jacobsen, and Irene Brox Nilsen
Nat. Hazards Earth Syst. Sci., 20, 1847–1865, https://doi.org/10.5194/nhess-20-1847-2020, https://doi.org/10.5194/nhess-20-1847-2020, 2020
Short summary
Short summary
We have studied changes in winter weather known to trigger road closures and isolation of small seaside communities in northern Norway. We find that snow amounts and heavy snowfall events have increased in the past, while future projections for 2040–2100 show a decrease in snow-related indices. Events of heavy water supply and zero crossings are expected to increase. Our results imply fewer dry-snow-related access disruptions in the future, while wet-snow avalanches and slushflows may increase.
Florence Magnin, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, Paula Hilger, and Reginald L. Hermanns
Earth Surf. Dynam., 7, 1019–1040, https://doi.org/10.5194/esurf-7-1019-2019, https://doi.org/10.5194/esurf-7-1019-2019, 2019
Short summary
Short summary
This study proposes the first permafrost (i.e. ground with temperature permanently < 0 °C) map covering the steep rock slopes of Norway. It was created by using rock temperature data collected at the near surface of 25 rock walls spread across the country between 2010 and 2018. The map shows that permafrost mostly exists above 1300–1400 m a.s.l. in southern Norway and close to sea level in northern Norway. The results have strong potential for the study of rock wall sliding and failure.
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Short summary
A new permafrost mapping method distinguishes between ice-poor and ice-rich permafrost. The approach was tested for the entire Swiss Alps and highlights the dominating influence of the factors elevation and solar radiation on the distribution of ice-poor permafrost. Our method enabled the indication of mean annual ground temperatures and the cartographic representation of permafrost-free belts, which are bounded above by ice-poor permafrost and below by permafrost-containing excess ice.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018, https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Short summary
Due to the effects of wind, precipitation gauges typically underestimate the amount of precipitation that occurs as snow. Measurements recorded during a World Meteorological Organization intercomparison of precipitation gauges were used to evaluate and improve the adjustments that are available to address this issue. Adjustments for specific types of precipitation gauges and wind shields were tested and recommended.
Regula Frauenfelder, Anders Solheim, Ketil Isaksen, Bård Romstad, Anita V. Dyrrdal, Kristine H. H. Ekseth, Alf Harbitz, Carl B. Harbitz, Jan Erik Haugen, Hans Olav Hygen, Hilde Haakenstad, Christian Jaedicke, Árni Jónsson, Ronny Klæboe, Johanna Ludvigsen, Nele M. Meyer, Trude Rauken, Reidun G. Skaland, Kjetil Sverdrup-Thygeson, Asbjørn Aaheim, Heidi Bjordal, and Per-Anton Fevang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-437, https://doi.org/10.5194/nhess-2017-437, 2017
Preprint withdrawn
Short summary
Short summary
We present results from the project
Impacts of extreme weather events on infrastructure in Norway. Our analyses document an increase in frequency and intensity of e.g. precipitation and wind during the last decades, and that these observed changes will continue throughout the 21st century. We could show that ≥ 27 % of main roads and 31 % of railroads are exposed to rockfall and avalanches. Pro-actively facing such risks will increase resilience and cost-efficiency of the transport infrastructure.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen
Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, https://doi.org/10.5194/hess-21-3525-2017, 2017
Short summary
Short summary
Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.
John Kochendorfer, Roy Rasmussen, Mareile Wolff, Bruce Baker, Mark E. Hall, Tilden Meyers, Scott Landolt, Al Jachcik, Ketil Isaksen, Ragnar Brækkan, and Ronald Leeper
Hydrol. Earth Syst. Sci., 21, 1973–1989, https://doi.org/10.5194/hess-21-1973-2017, https://doi.org/10.5194/hess-21-1973-2017, 2017
Short summary
Short summary
Snowfall measurements recorded using precipitation gauges are subject to significant underestimation due to the effects of wind. Using measurements recorded at two different precipitation test beds, corrections for unshielded gauges and gauges within different types of windshields were developed and tested. Using the new corrections, uncorrectable errors were quantified, and measurement biases were successfully eliminated.
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017, https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
A. Hasler, M. Geertsema, V. Foord, S. Gruber, and J. Noetzli
The Cryosphere, 9, 1025–1038, https://doi.org/10.5194/tc-9-1025-2015, https://doi.org/10.5194/tc-9-1025-2015, 2015
Short summary
Short summary
In this paper we describe surface and thermal offsets derived from distributed measurements at seven field sites in British Columbia. Key findings are i) a small variation of the surface offsets between surface types; ii) small thermal offsets at all sites; iii) a clear influence of the micro-topography due to snow cover effects; iv) a north--south difference of the surface offset of 4°C in vertical bedrock and of 1.5–-3°C on open gentle slopes; v) only small macroclimatic differences.
M. A. Wolff, K. Isaksen, A. Petersen-Øverleir, K. Ødemark, T. Reitan, and R. Brækkan
Hydrol. Earth Syst. Sci., 19, 951–967, https://doi.org/10.5194/hess-19-951-2015, https://doi.org/10.5194/hess-19-951-2015, 2015
Short summary
Short summary
The article reports on measurements, analysis and results of a Norwegian field study aimed to adjust automatic precipitation measurements for under-catch during windy conditions. An unique data set could be collected, documenting the under-catch of snow at very high wind speeds for the first time. A new continuous adjustment function for precipitation measured by an automated gauge covering all three precipitation types (snow, mixed and rain) was established.
F. Magnin, P. Deline, L. Ravanel, J. Noetzli, and P. Pogliotti
The Cryosphere, 9, 109–121, https://doi.org/10.5194/tc-9-109-2015, https://doi.org/10.5194/tc-9-109-2015, 2015
K. Gisnås, S. Westermann, T. V. Schuler, T. Litherland, K. Isaksen, J. Boike, and B. Etzelmüller
The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014, https://doi.org/10.5194/tc-8-2063-2014, 2014
Related subject area
Discipline: Frozen ground | Subject: Natural Hazards
Frost quakes in wetlands in northern Finland during extreme winter weather conditions and related hazard to urban infrastructure
Nikita Afonin, Elena Kozlovskaya, Kari Moisio, Emma-Riikka Kokko, and Jarkko Okkonen
The Cryosphere, 18, 2223–2238, https://doi.org/10.5194/tc-18-2223-2024, https://doi.org/10.5194/tc-18-2223-2024, 2024
Short summary
Short summary
Our study shows that seismic events in the wetlands in Arctic and sub-Arctic areas are capable of producing ground motions strong enough to damage the infrastructures like roads and basements of buildings located at distances of several hundreds of metres from the wetlands. That is why this phenomenon deserves further studies.
Cited articles
Allen, S. and Huggel, C.: Extremely warm temperatures as a potential cause of recent high mountain rockfall, Global Planet. Change, 107, 59–69, 2013.
Allen, S., Cox, S. C., and Owens, I. F.: Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts, Landslides, 8, 33–48, https://doi.org/10.1007/s10346-010-0222-z, 2011.
Andresen, A.: Caledonian Terranes of Northern Norway and their characteristics: Trabajos de Geologia, Univ. de Oviedo, 17, 103–117, 1988.
Arenson, L. and Jakob, M.: Permafrost-Related Geohazards and Infrastructure Construction in Mountainous Environments, Oxford Research Encyclopedia of Natural Hazard Science, Oxford University Press, USA, https://doi.org/10.1093/acrefore/9780199389407.013.292, 2017.
Arenson, L. and Springman, S.: Triaxial constant stress and constant strain rate test on ice-rich permafrost samples, Can. Geotech. J., 42, 412–430, 2005.
Arenson, L., Springman, S., and Sego, D. C.: The rheology of frozen soils, Appl. Rheol., 17, 1–14, 2007.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisseline, J. M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.: HISTALP – Historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46, 2007.
Ballantyne, C. K.: The Holocene glacial history of Lyngshalvøya, northern Norway – chronology and climatic implications, Boreas, 19, 93–117, 1990.
Ballantyne, C. K.: Paraglacial geomorphology, Quaternary Sci. Rev., 21, 1935–2017, 2002.
Bakke, J., Dahl, S. O., Paasche, O., Lovlie, R., and Nesje, A.: Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during the Lateglacial and Holocene, Holocene, 15, 518–540, 2005.
Barla, G., Dutto, F., and Mortara, G.: Brenva Glacier rock avalanche of 18 January 1997 on the Mont Blanc range, northwest Italy, Landslide News, 13, 2–5, 2000.
Bergh, S. G., Eig, K., Kløvjan, O. S., Henningsen, T., Olesen, O., and Hansen, J.: The Lofoten-Vesterålen continental margin: a multiphase Mesozoic-Palaeogene rifted shelf by offshore-onshore brittle fault-fracture analysis, Norw. J. Geol., 87, 29–58, 2007.
Blandford, T. R., Humes, K. S., Harshburger, B. J., Moore, B. C., Walden, V. P., and Ye, H.: Seasonal and Synoptic Variations in Near-Surface Air Temperature Lapse Rates in a Mountainous Basin, J. Appl. Meteorol. Clim., 47, 249–261, https://doi.org/10.1175/2007JAMC1565.1, 2008.
Blikra, L. H. and Christiansen, H. H.: A field-based model of permafrost-controlled rockslide deformation in northern Norway, Geomorphology, 208, 34–49, https://doi.org/10.1016/j.geomorph.2013.11.014, 2014.
Blikra, L. H., Longva, O., Braathen, A., Anda, E., Dehls, J. F., and Stalsberg, K.: Rock slope failures in Norwegian fjord areas; examples, spatial distribution and temporal pattern, Landslides From Massive Rock Slope Failure, Springer Dordrecht, the Netherlands, 475–496, 2006.
Blikra, L. H., Christensen, H. H., Kristensen, L., and Lovisolo M.: Characterization, Geometry, Temporal Evolution and Controlling Mechanisms of the Jettan Rock-Slide, Northern Norway, Engineering Geology for Society and Territory, vol. 2, Springer International Publishing, 273–278, 2015.
Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., and Schöner, W.: Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series, Int. J. Climatol., 21, 1779–1801, 2001.
Bolstad, P. V., Swift, L., Collins, F., and Régnière, J.: Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains, Agr. Forest Meteorol., 91, 161–176, https://doi.org/10.1016/S0168-1923(98)00076-8, 1998.
Christiansen, H. H., Etzelmüller, B., Isaksen, K., Juliussen, H., Farbrot, H., Humlum, O., Johansson, M., Ingeman-Nielsen, T., Kristensen, L., Hjort, J., Holmlund, P., Sannel, A. B. K., Sigsgaard, C., Åkerman, H. J., Foged, N., Blikra, L. H., Pernosky, M. A., and Ødegård, R.: The Thermal State of Permafrost in the Nordic area during the IPY 2007–2009, Permafrost Periglac., 21, 156–181, https://doi.org/10.1002/ppp.687, 2010.
Cola, G.: The large landslide of the south-east face of Thurwieser peak (Thurwieser-Spitze) 3658 m (Upper Valtellina, Italy), Terra Glacialis, 8, 38–45, 2005.
Crosta, G. B., Chen, H., and Lee, C. F.: Replay of the 1987 Val Pola Landslide, Italian Alps, Geomorphology, 60, 127–146, 2004.
Davies, M. C. R., Hamza, O., and Harris, C.: The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities, Permafrost Periglac., 12, 137–144. https://doi.org/10.1002/ppp.378, 2001.
Dehls, J. F., Olesen, O., Olsen, L., and Blikra, L. H.: Neotectonic faulting in northern Norway, the Stuoragurra and Nordmannvikdalen postglacial faults, Quaternary Sci. Rev., 19, 1447–1460, 2000.
Deline, P., Alberto, W., Broccolato, M., Hungr, O., Noetzli, J., Ravanel, L., and Tamburini, A.: The December 2008 Crammont rock avalanche, Mont Blanc massif area, Italy, Nat. Hazards Earth Syst. Sci., 11, 3307–3318, https://doi.org/10.5194/nhess-11-3307-2011, 2011.
Dräbing, D., Krautblatter, M., and Dikau, R.: Interaction of thermal and mechanical processes in steep permafrost rock walls: A conceptual approach, Geomorphology, 226, 226–235, dio:10.1016/j.geomorph.2014.08.009, 2014.
Dräbing, D., Haberkorn, A., Krautblatter, M., Kenner, R., and Phillips, M.: Thermal and Mechanical Responses Resulting From Spatial and Temporal Snow Cover Variability in Permafrost Rock Slopes, Steintaelli, Swiss Alps, Permafrost Periglac., 28, 140–157, https://doi.org/10.1002/ppp.1921, 2016.
Dwivedi, R. D., Singh, P. K., Singh, T. N., and Singh, D. P.: Compressive strength and tensile strength of rocks at sub-zero temperature, Indian J. Eng. Mater. S., 5, 43–48, 1998.
Dwivedi, R. D., Soni, A. K., Goel, R. K., and Dube, A. K.: Fracture toughness of rocks under sub-zero temperature conditions, Int. J. Rock Mech. Min., 37, 1267–1275, 2000.
Engeset, R., Tveito, O. E., Alfnes, E., Mengistu, Z., Udnæs, H.-C., Isaksen, K., and Førland, E. J.: Snow map system for Norway, 23rd Nordic Hydrological Conference, Tallin, Estonia, NHP Report, 48, 112–121, 2004.
Etzelmüller, B., Berthling, I., and Sollid, J. L.: Aspects and concepts on the geomorphological significance of Holocene permafrost in southern Norway, Geomorphology, 52, 87–104, https://doi.org/10.1016/S0169-555X(02)00250-7, 2003.
Evans, S. G. and Clague, J. J.: Recent climatic change and catastrophic geomorphic processes in mountain environments, Geomorphology, 10, 107–128, 1994.
Farbrot, H., Isaksen, K., and Etzelmüller, B.: Present and past distribution of mountain permafrost in the Gaissane Mountains, northern Norway, Proceedings of the Ninth International Conference on Permafrost, edited by: Kane, D. L. and Hinkel, K. M., Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA, 427–432, 2008.
Farbrot, H., Hipp, T., Etzelmüller, B., Isaksen, K., Ødegård, R. S., Schuler, T. V., and Humlum, O.: Air and ground temperature variations observed along elevation and continentality gradients in Southern Norway, Permafrost Periglac., 22, 343–360, https://doi.org/10.1002/ppp.733, 2011.
Farbrot, H., Isaksen, K., Etzelmüller, B., and Gisnås, K.: Ground Thermal Regime and Permafrost Distribution under a Changing Climate in Northern Norway, Permafrost Periglac., 24, 20–38, https://doi.org/10.1002/ppp.1763, 2013.
Fischer, L., Purves, R. S., Huggel, C., Noetzli, J., and Haeberli, W.: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas, Nat. Hazards Earth Syst. Sci., 12, 241–254, https://doi.org/10.5194/nhess-12-241-2012, 2012.
Fischer, L., Huggel, C., Kääb, A., and Haeberli, W.: Slope failures and erosion rates on a glacierized high-mountain face under climatic changes, Earth Surf. Proc. Land., 38, 836–846, 2013.
Fossen, H., Pedersen, R. B., Bergh, S., and Andresen, A.: En fjellkjede blir til, Oppbygningen av Kaledonidene; ca. 500–450 millioner år, in: Landet blir til, Norges Geologi, chap. 6, edited by: Ramberg, I. B., Bryhni, I., Nøttvedt, A., and Rangsnes, K., Norwegian Geological Society, 178–229, 2007 (in Norwegian).
Gardner, A. S., Sharp, M. J., Koerner, R. M., Labine, C., Boon, S., Marshall, S. J., Burgess, D. O., and Lewis, D.: Near-Surface Temperature Lapse Rates over Arctic Glaciers and Their Implications for Temperature Downscaling, J. Climate, 22, 4281–4298, https://doi.org/10.1175/2009JCLI2845.1, 2009.
Geertsema, M., Clague, J. J, Schwab, J. W., and Evans, S. G.: An overview of recent large catastrophic landslides in northern British Columbia, Canada, Eng. Geol., 83, 120–143, 2006.
Gisnås, K., Etzelmüller, B., Farbrot, H., Schuler, T., and Westermann, S.: CryoGRID 1.0: Permafrost distribution in Norway estimated by a spatial numerical model, Permafrost Periglac., 24, 2–19, 2013.
Gisnås, K., Etzelmüller, B., Lussana, C., Hjort, J., Sannell, A. B. K., Isaksen, K., Westermann, S., Kuhry, P., Christiansen, H. H.: Permafrost map for Norway, Sweden and Finland, Permafrost Periglac., 28, 359–378, 2017.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.: 21st century climate changes in the European Alps – A review, Sci. Total Environ., 493, 1138–1151, 2014.
Goodman, R. E.: Block theory and its application, Geotechnique, 45, 383–423, 1995.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Gruber, S., Hoelzle, M., and Haeberli, W.: Rock wall temperatures in the Alps – modelling their topographic distribution and regional differences, Permafrost Periglac., 15, 299–307, 2004a.
Gruber, S., Hoelzle, M., and Haeberli, W.: Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003, Geophys. Res. Lett., 31, L13504, https://doi.org/10.1029/2004GL020051, 2004b.
Gruber, S., Peter, M., Hoelzle, M., Woodhatch, I., and Haeberli, W.: Surface temperatures in steep Alpine rock faces – a strategy for regional-scale measurement and modelling, Proceedings of the 8th International Conference on Permafrost 2003, Zurich, Switzerland, 325–330, 2003.
Günzel, F.: Shear strength of ice-filled rock joints, Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, International Permafrost Association, 581–586, 2008.
Haberkorn, A., Hoelzle, M., Phillips, M., and Kenner, R.: Snow as driving factor of rock surface temperatures in steep rough rock walls, Cold Reg. Sci. Technol., 118, 64–75, https://doi.org/10.1016/j.coldregions.2015.06.013, 2015a.
Haberkorn, A., Phillips, M., Kenner, R., Rhyner, H., Bavay, M., Galos, S. P., and Hoelzle, M.: Thermal Regime of Rock and its Relation to Snow Cover in Steep Alpine Rock Walls: Gemsstock, Central Swiss Alps, Geogr. Ann. A, 97, 579–597, https://doi.org/10.1111/geoa.12101, 2015b.
Haberkorn, A., Wever, N., Hoelzle, M., Phillips, M., Kenner, R., Bavay, M., and Lehning, M.: Distributed snow and rock temperature modelling in steep rock walls using Alpine3D, The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, 2017.
Haeberli, W., Huggel, C., Kääb, A., Polkvoj, A., Zotikov I., and Osokin, N.: The Kolka-Karmadon rock/ice slide of 20 September 2002: An extraordinary event of historical dimensions in North Ossetia, Russian Caucasus, J. Glaciol., 50, 533–546, 2004.
Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gärtner-Roer, I., Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M., and Phillips, M.: Mountain permafrost: development and challenges of a young research field, J. Glaciol., 56, 1043–1058, 2010.
Hansen, J. A.: Onshore-offshore tectonic relations on the Lofoten and Vesterålen Margin: Mesozoic to early Cenozoic structural evolution and morphological implications, University of Tromsø, Norway, Faculty of Science, Dept. of Geology, 229, 2009.
Hanssen-Bauer, I., Førland, E. J., Haddeland, I., Hisdal, H., Mayer, S., Nesje, A., Nilsen, J. E. Ø., Sandven, S., Sandø, A. B., Sorteberg, A., and Ådlandsvik, B. (Eds.): Klima i Norge 2100 – Kunnskapsgrunnlag for klimatilpasning oppdatert i 2015, NCCS report no. 2/2015, https://klimaservicesenter.no/, 2015 (in Norwegian).
Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Hölzle, M., Humlum, O., Isaksen, K., Kääb, A., Kern-Lütschg, M. A., Lehning, M., Matsuoka, N., Murton, J. B., Nötzli, J., Phillips, M., Ross, N., Seppälä, M., Springman, S. M., and Vonder Mühll, D.: Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Sci. Rev., 92, 117–171, 2009.
Hasler, A., Gruber, S., and Haeberli, W.: Temperature variability and offset in steep alpine rock and ice faces, The Cryosphere, 5, 977–988, https://doi.org/10.5194/tc-5-977-2011, 2011.
Hasler, A., Gruber, S., and Beutel, J.: Kinematics of steep bedrock permafrost, J. Geophys. Res., 117, F01016, https://doi.org/10.1029/2011JF001981, 2012.
Heggem, E. S. F., Juliussen, H., and Etzelmüller, B.: Mountain permafrost in Central-Eastern Norway, Norsk Geogr. Tidsskr., 59, 94–108, 2005.
Hermanns, R. L., Oppikofer, T., Anda, E., Blikra, L. H., Böhme, M., Bunkholt, H., Crosta, G. B., Dahle, H., Devoli, G., Fischer, L., Jaboyedoff, M., Loew, S., Sætre, S., and Yugsi Molina, F. X.: Recommended hazard and risk classification system for large unstable rock slopes in Norway, NGU rapport 2012.029, Norwegian Geological Survey, Trondheim, Norway, 2012.
Hermanns, R. L., Blikra, L. H., Anda, E., Saintot, A., Dahle, H., Oppikofer, T., Fischer, L., Bunkholt, H., Böhme, M., Dehls, J. F., Lauknes, T. R., Redfield, T. F., Osmundsen, P. T., and Eiken, T.: Systematic Mapping of Large Unstable Rock Slopes in Norway, Landslide Science and Practice, Springer, Berlin Heidelberg, https://doi.org/10.1007/978-3-642-31325-7_3, 2013.
Hermanns, R. L., Oppikofer, T., Böhme, M., Dehls, J. F., Yugsi Molina, F. X., and Penna, I. M.: Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes from northern, western and southern Norway, Landslides and Engineered Slopes, Experience, Theory and Practice, Associazione Geotecnica Italiana, Rome, Italy, ISBN 978-1-138-02988-0, 2016.
Hermanns, R. L, Schleier, M., Böhme, M., Blikra, L. H., Gosse, J., Ivy-Ochs, S., and Hilger, P.: Rock-Avalanche Activity in W and S Norway Peaks After the Retreat of the Scandinavian Ice Sheet, in: Advancing Culture of Living with Landslides, Mikoš M., Vilímek V., Yin Y., and Sassa K., Springer International Publishing AG, 331–338, https://doi.org/10.1007/978-3-319-53483-1_39, 2017.
Hipp, T. F., Etzelmüller, B., and Westermann, S.: Permafrost in Alpine Rock Faces from Jotunheimen and Hurrungane, Southern Norway, Permafrost Periglac., 25, 1–13, https://doi.org/10.1002/ppp.1799, 2014.
Huggel, C., Salzmann, N., Allen, S., Caplan-Auerbach, J., Fischer, L., Haeberli, W., Larsen, C., Schneider, D., and Wessels, R.: Recent and future warm extreme events and high-mountain slope stability, Philos. T. R. Soc. S.-A, 368, 2435–2459, 2010.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194, https://doi.org/10.1007/s10346-013-0436-y, 2014.
Inada, Y. and Yokota, K.: Some studies of low-temperature rock strength, Int. J. Rock Mech. Min., 21, 145–153, 1984.
International Organization for Standardization (ISO): Standard Atmosphere, ISO 2533, 1975.
Isaksen, K., Sollid, J. L., Holmlund, P., and Harris, C.: Recent warming of mountain permafrost in Svalbard and Scandinavia, J. Geophys. Res., 112, F02S04, https://doi.org/10.1029/2006JF000522, 2007.
Isaksen, K., Farbrot, H., Blikra, L. H. Johansen, B., and Sollid, J. L.: Five-year ground surface temperature measurements in Finnmark, northern Norway, Proceedings of the Ninth International Conference on Permafrost, edited by: Kane, D. L. and Hinkel, K. M., Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA, 789–794, 2008.
Isaksen, K., Ødegård, R. S., Etzelmüller, B., Hilbich, C., Hauck, C., Farbrot, H., Eiken, T., Hygen, H. O., and Hipp, T. F.: Degrading mountain permafrost in southern Norway: Spatial and temporal variability of mean ground temperatures, 1999–2009, Permafrost Periglac., 22, 361–377, https://doi.org/10.1002/ppp.728, 2011.
Jia, H., Leith, K., and Krautblatter, M.: Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze-thaw cycles, Permafrost Periglac., 26, 368–377, 2016.
Jia, H., Xiang, W., and Krautblatter, M.: Path-Dependent Frost-Wedging Experiments in Fractured, Low-Permeability Granite, Permafrost Periglac., 28, 698–709, 2017.
Jin, H., Li, S., Cheng, G., Wang, S., and Li, X.: Permafrost and climatic change in China, Global Planet. Change, 26, 387–404, 2000.
Juliussen, H., Christiansen, H. H., Strand, G. S., Iversen, S., Midttømme, K., and Rønning, J. S.: NORPERM, the Norwegian Permafrost Database – a TSP NORWAY IPY legacy, Earth Syst. Sci. Data, 2, 235–246, https://doi.org/10.5194/essd-2-235-2010, 2010.
King, L.: Zonation and Ecology of High Mountain Permafrost in Scandinavia, Geogr. Ann. A, 68, 131–139, https://doi.org/10.2307/521452, 1986.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space, Earth Surf. Proc. Land., 38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
Lato, M., Diederichs, M., and Hutchinson, D. J.: Bias correction for static LiDAR scanning of rock outcrops for structural characterization, Rock Mech. Rock Eng., 43, 615–628, 2010.
Lato, M., Hutchinson, D. J., Gauthier, D., Edwards, T., and Ondercin, M.: Comparison of ALS, TLS and terrestrial photogrammetry for mapping differential slope change in mountainous terrain, Can. Geotech. J., 52, 129–140, https://doi.org/10.1139/cgj-2014-0051, 2014.
Lato, M., Diederichs, M. S., Hutchinson, D. J., and Harrap, R.: Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols, Nat. Hazards, 60, 831–864, 2012.
Lilleøren, K., Etzelmüller, B., Gisnås, K., and Humlum, O.: The relative age of mountain permafrost-estimation of Holocene permafrost limits in Norway, Global Planet. Change, 92–93, 209–223, 2012.
Lüthi, R., Gruber, S., and Ravanel, L.: Modelling transient ground surface temperatures of past rockfall events: towards a better understanding of failure mechanisms in changing periglacial environments, Geogr. Ann. A, 97, 753–767, https://doi.org/10.1111/geoa.12114, 2015.
Lussana, C., Tveito, O. E., and Uboldi, F.: Three-dimensional spatial interpolation of 2 m temperature over Norway, Q. J. Roy. Meteorol. Soc., 144, 344–364, https://doi.org/10.1002/qj.3208, 2018.
Magnin, F., Deline, P., Ravanel, L., Noetzli, J., and Pogliotti, P.: Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l), The Cryosphere, 9, 109–121, https://doi.org/10.5194/tc-9-109-2015, 2015.
Marchenko, S. S., Gorbunov, A. P., and Romanovsky, V. E.: Permafrost warming in the Tien Shan mountains, Central Asia, Global Planet. Change, 56, 311–327, 2007.
Mellor, M.: Mechanical properties of rocks at low temperatures, 2nd International Conference on Permafrost, Yakutsk, International Permafrost Association, Postdam, 334–344, 1973.
Minder, J. R., Mote, P. W., and Lundquist, J. D.: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains, J. Geophys. Res., 115, D14122, https://doi.org/10.1029/2009JD013493, 2010.
Mottaghy, D. and Rath, V.: Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions, Geophys. J. Int., 164, 236–245, https://doi.org/10.1111/j.1365-246x.2005.02843.x, 2006.
Myhra, K. S., Westermann, S., and Etzelmüller, B.: Modelled Distribution and Temporal Evolution of Permafrost in Steep Rock Walls Along a Latitudinal Transect in Norway by CryoGrid 2D, Permafrost Periglac., 28, 172–182, https://doi.org/10.1002/ppp.1884, 2015.
Nesje, A.: Brelære, Kristiansand, Høyskoleforlaget AS, Norwegian Academic Press, 2012 (in Norwegian).
NGU: Produktspesifikasjon ND Løsmasser, Norges Geologiske Undersøkelser, 2010 (in Norwegian).
Noetzli, J. and Gruber, S.: Transient thermal effects in Alpine permafrost, The Cryosphere, 3, 85–99, https://doi.org/10.5194/tc-3-85-2009, 2009.
Noetzli, J., Gruber, S., Kohl, T., Salzmann, N., and Haeberli, W.: Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography, J. Geophys. Res.-Earth, 112, F02S13, https://doi.org/10.1029/2006JF000545, 2007a.
Noetzli, J., Gruber, S., and Friedel, S.: Modeling transient permafrost temperatures below steep alpine topography, COMSOL User Conference, Grenoble, 139–143, 2007b.
Noetzli, J., Lüthi, R., and Staub, B. (Eds.): PERMOS: Permafrost in Switzerland 2010/2011 to 2013/2014, Glaciological Report (Permafrost) no. 12–15 of the Cryospheric Commission of the Swiss Academy of Sciences, 85 pp., 2016.
Norwegian Meteorological Institute: Archive of historical weather and climate data, https://frost.met.no/index.html, last access: 5 December 2017.
Oppikofer, T., Jaboyedoff, M., and Keusen, H.-R.: Collapse at the eastern Eiger flank in the Swiss Alps, Nat. Geosci., 1, 31–535, 2008.
Ødegård, R. S., Hoelzle, M., Vedel Johansen, K., and Sollid, J. L.: Permafrost mapping and prospecting in southern Norway, Norsk Geogr. Tidsskr., 50, 41–53, https://doi.org/10.1080/00291959608552351, 1996.
Phillips, M., Wolter, A., Lüthi, R., Amann, F., Kenner, R., and Bühler, Y.: Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014, Earth Surf. Proc. Land., 42, 426–438, https://doi.org/10.1002/esp.3992, 2016.
Ravanel, L. and Deline, P.: Climate influence on rockfalls in high-Alpine steep rockwalls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the Little Ice Age, Holocene, 21, 357–365, https://doi.org/10.1177/0959683610374887, 2010.
Roberts, D.: The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues, Tectonophysics, 365, 283–299, 2002.
Roberts, D. and Gee, D.: An introduction to the structure of the Scandinavian Caledonides, in: The Caledonide Orogen – Scandinavia and Related Areas, edited by: Gee, D. G. and Sturt, B. A., John Wiley and Sons Ltd., Chichester, 55–68, 1985.
Rolland, C.: Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions, J. Climate, 16, 1032–1046, https://doi.org/10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2, 2003.
Romanovsky, V. E., Smith, S. L., Isaksen, K., Shiklomanov, N. I., Streletskiy, D. A., Kholodov, A. L., Christiansen, H. H., Drozdov, D. S., Malkova, G. V., and Marchenko, S. S.: Terrestrial permafrost, in "State of the Climate in 2015", B. Am. Meteorol. Soc., 97, S149–S152, 2016.
Saloranta, T. M.: Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model, The Cryosphere, 6, 1323–1337, https://doi.org/10.5194/tc-6-1323-2012, 2012.
Schleier, M., Hermanns, R. L., Gosse, J. C., Oppikofer, T., and Tønnesen, J. F.: Subaqueous rock-avalanche deposits exposed by post-glacial isostatic rebound, Innfjorddalen, Western Norway, Geomorphology, 289, 117–133, doi.org/10.1016/j.geomorph.2016.08.024, 2017.
Slagstad, T., Balling, N., Elvebakk, H., Midttømme, K., Olesen, O., Olsen, L., and Pascal, C.: Heat-flow measurements in Late Palaeoproterozoic to Permian geological provinces in south and central Norway and a new heat-flow map of Fennoscandia and the Norwegian–Greenland Sea, Tectonophysics, 473, 341–361, 2009.
Steenburgh, W. J., Mass, C. F., and Ferguson, S. A.: The Influence of Terrain-Induced Circulations on Wintertime Temperature and Snow Level in the Washington Cascades, Weather Forecast., 12, 208–227, https://doi.org/10.1175/1520-0434(1997)012<0208:TIOTIC>2.0.CO;2, 1997.
Stoffel, M. and Huggel, C.: Mass Movements in Periglacial Environments, in International Encyclopedia of Geography: People, the Earth, Environment and Technology, edited by: Richardson, D., Castree, N., Goodchild, M. F., Kobayashi, A., Liu, W., and Marston, R. A., John Wiley and Sons, Ltd, Oxford, last access: 22 June 2017.
Stoffel, M., Tiranti, D., and Huggel, C.: Climate change impacts on mass movements – case studies from the European Alps, Sci. Total Environ., 493, 1255–1266, 2014.
Sveian, H.: Isen kom – og forsvant, in: Ka dokker mein førr stein!, edited by: Dahl, R. and Sveian, H., Norwegian Geological Survey, 2004 (in Norwegian).
Sveian, H. and Corner, G.: Lyngens isbreer før og nå, in: Ka dokker mein førr stein!, edited by: Dahl, R. and Sveian, H., Norwegian Geological Survey, 2004 (in Norwegian).
Tang, Z. and Fang, J.: Temperature variation along the northern and southern slopes of Mt. Taibai, China, Agr. Forest Meteorol., 139, 200–207, https://doi.org/10.1016/j.agrformet.2006.07.001, 2006.
Thoresen, M.: Kvartærgeologisk kart over Norge, tema jordarter, Norwegian Geological Survey, Trondheim, Norge, 1990 (in Norwegian).
Tveito, O. E., Førland, E. J., Heino, R., Hanssen- Bauer, I., Alexandersson, H., Dahlstrøm, B., Drebs, A., Kern-Hansen, C., Vaarby Laursen, E., and Westman, Y.: Nordic temperature maps, DNMI, Oslo, Report no. 09/00, available at: http://met.no/filestore/09_00.pdf, 2000.
Vavrus, S.: The role of terrestrial snow cover in the climate system, Clim. Dynam., 29, 73–88, https://doi.org/10.1007/s00382-007-0226-0, 2007.
Vorren, T. O. and Mangerud, J.: Istider kommer og går, chap. 15, in: Landet blir til, Norsk geologisk forening, edited by: Ramberg, I. B., Bryhni, I., Nøttvedt, A., and Rangsnes, K., Trondheim, 478–531, 2007 (in Norwegian).
Wang, Q., Fan, X., and Wang, M.: Recent warming amplification over high elevation regions across the globe, Clim. Dynam., 43, 87–101, https://doi.org/10.1007/s00382-013-1889-3, 2014.
Westermann, S., Schuler, T. V., Gisnås, K., and Etzelmüller, B.: Transient thermal modeling of permafrost conditions in Southern Norway, The Cryosphere, 7, 719–739, https://doi.org/10.5194/tc-7-719-2013, 2013.
Short summary
On 26 June 2008, a rock avalanche with a volume of ca. 500 000 m3 detached in the north-east facing slope of Polvartinden, a high-alpine peak in northern Norway. Ice was observed in the failure zone shortly after the rock avalanche, leading to the assumption that degrading permafrost might have played an important role in the detaching of the Signaldalen rock avalanche. Here, we present a four-year series of temperature measurements from the site and subsequent temperature modelling results.
On 26 June 2008, a rock avalanche with a volume of ca. 500 000 m3 detached in the north-east...
Special issue