Articles | Volume 12, issue 4
https://doi.org/10.5194/tc-12-1387-2018
https://doi.org/10.5194/tc-12-1387-2018
Research article
 | 
17 Apr 2018
Research article |  | 17 Apr 2018

Grounding line migration through the calving season at Jakobshavn Isbræ, Greenland, observed with terrestrial radar interferometry

Surui Xie, Timothy H. Dixon, Denis Voytenko, Fanghui Deng, and David M. Holland

Related authors

Toward Long-Term Monitoring of Regional Permafrost Thaw with Satellite InSAR
Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon
EGUsphere, https://doi.org/10.5194/egusphere-2023-2605,https://doi.org/10.5194/egusphere-2023-2605, 2023
Short summary
Characterization of Ocean Mixing and Dynamics during the 2017 Maud Rise Polynya Event
Jhon F. Mojica, Daiane Faller, Diana Francis, Clare Eayrs, and David Holland
Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-41,https://doi.org/10.5194/os-2019-41, 2019
Revised manuscript not accepted
Short summary
A meandering polar jet caused the development of a Saharan cyclone and the transport of dust toward Greenland
Diana Francis, Clare Eayrs, Jean-Pierre Chaboureau, Thomas Mote, and David M. Holland
Adv. Sci. Res., 16, 49–56, https://doi.org/10.5194/asr-16-49-2019,https://doi.org/10.5194/asr-16-49-2019, 2019
Short summary
GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica
David E. Shean, Knut Christianson, Kristine M. Larson, Stefan R. M. Ligtenberg, Ian R. Joughin, Ben E. Smith, C. Max Stevens, Mitchell Bushuk, and David M. Holland
The Cryosphere, 11, 2655–2674, https://doi.org/10.5194/tc-11-2655-2017,https://doi.org/10.5194/tc-11-2655-2017, 2017
Short summary
Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
Xylar S. Asay-Davis, Stephen L. Cornford, Gaël Durand, Benjamin K. Galton-Fenzi, Rupert M. Gladstone, G. Hilmar Gudmundsson, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, Daniel F. Martin, Pierre Mathiot, Frank Pattyn, and Hélène Seroussi
Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016,https://doi.org/10.5194/gmd-9-2471-2016, 2016
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ocean Interactions
Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024,https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary
Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0)
Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland
The Cryosphere, 17, 3203–3228, https://doi.org/10.5194/tc-17-3203-2023,https://doi.org/10.5194/tc-17-3203-2023, 2023
Short summary
Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023,https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Can rifts alter ocean dynamics beneath ice shelves?
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023,https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Large-eddy simulations of the ice-shelf–ocean boundary layer near the ice front of Nansen Ice Shelf, Antarctica
Ji Sung Na, Taekyun Kim, Emilia Kyung Jin, Seung-Tae Yoon, Won Sang Lee, Sukyoung Yun, and Jiyeon Lee
The Cryosphere, 16, 3451–3468, https://doi.org/10.5194/tc-16-3451-2022,https://doi.org/10.5194/tc-16-3451-2022, 2022
Short summary

Cited articles

Aðalgeirsdóttir, G., Smith, A. M., Murray, T., King, M. A., Makinson, K., Nicholls, K. W., and Behar, A. E.: Tidal influence on Rutford Ice Stream, West Antarctica: observations of surface flow and basal processes from closely spaced GPS and passive seismic stations, J. Glaciol., 54, 715–724, https://doi.org/10.3189/002214308786570872, 2008.
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
An, L., Rignot, E., Elieff, S., Morlighem, M., Millan, R., Mouginot, J., Holland, D. M., Holland, D., and Paden, J.: Bed elevation of Jakobshavn Isbræ, West Greenland, from high-resolution airborne gravity and other data, Geophys. Res. Lett., 44, 3728–3736, https://doi.org/10.1002/2017GL073245, 2017.
Anandakrishnan, S. and Alley, R. B.: Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102, 15183–15196, https://doi.org/10.1029/97JB01073, 1997.
Clarke, T. S. and Echelmeyer, K.: Seismic-reflection evidence for a deep subglacial trough beneath Jakobshavns Isbræ, West Greenland, J. Glaciol., 42, 219–232, https://doi.org/10.1017/S0022143000004081, 1996.
Download
Short summary
Time-varying velocity and topography of the terminus of Jakobshavn Isbræ were observed with a terrestrial radar interferometer in three summer campaigns (2012, 2015, 2016). Surface elevation and tidal responses of ice speed suggest a narrow floating zone in early summer, while in late summer the entire glacier is likely grounded. We hypothesize that Jakobshavn Isbræ advances a few km in winter to form a floating zone but loses this floating portion in the subsequent summer through calving.