Articles | Volume 11, issue 3
https://doi.org/10.5194/tc-11-1247-2017
https://doi.org/10.5194/tc-11-1247-2017
Research article
 | 
24 May 2017
Research article |  | 24 May 2017

Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland

Thomas M. Jordan, Michael A. Cooper, Dustin M. Schroeder, Christopher N. Williams, John D. Paden, Martin J. Siegert, and Jonathan L. Bamber

Related authors

A compilation of surface inherent optical properties and phytoplankton pigment concentrations from the Atlantic Meridional Transect
Thomas M. Jordan, Giorgio Dall'Olmo, Gavin Tilstone, Robert J. W. Brewin, Francesco Nencioli, Ruth Airs, Crystal S. Thomas, and Louise Schlüter
Earth Syst. Sci. Data, 17, 493–516, https://doi.org/10.5194/essd-17-493-2025,https://doi.org/10.5194/essd-17-493-2025, 2025
Short summary
Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology
Michael A. Cooper, Thomas M. Jordan, Dustin M. Schroeder, Martin J. Siegert, Christopher N. Williams, and Jonathan L. Bamber
The Cryosphere, 13, 3093–3115, https://doi.org/10.5194/tc-13-3093-2019,https://doi.org/10.5194/tc-13-3093-2019, 2019
A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Philippe Huybrechts, and Jonathan L. Bamber
The Cryosphere, 12, 2831–2854, https://doi.org/10.5194/tc-12-2831-2018,https://doi.org/10.5194/tc-12-2831-2018, 2018
Short summary
Generating synthetic fjord bathymetry for coastal Greenland
Christopher N. Williams, Stephen L. Cornford, Thomas M. Jordan, Julian A. Dowdeswell, Martin J. Siegert, Christopher D. Clark, Darrel A. Swift, Andrew Sole, Ian Fenty, and Jonathan L. Bamber
The Cryosphere, 11, 363–380, https://doi.org/10.5194/tc-11-363-2017,https://doi.org/10.5194/tc-11-363-2017, 2017
Short summary
An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data
T. M. Jordan, J. L. Bamber, C. N. Williams, J. D. Paden, M. J. Siegert, P. Huybrechts, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 10, 1547–1570, https://doi.org/10.5194/tc-10-1547-2016,https://doi.org/10.5194/tc-10-1547-2016, 2016
Short summary

Related subject area

Remote Sensing
Benchmarking passive-microwave-satellite-derived freeze–thaw datasets
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
The Cryosphere, 19, 459–483, https://doi.org/10.5194/tc-19-459-2025,https://doi.org/10.5194/tc-19-459-2025, 2025
Short summary
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
The Cryosphere, 19, 219–247, https://doi.org/10.5194/tc-19-219-2025,https://doi.org/10.5194/tc-19-219-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
The Cryosphere, 19, 37–61, https://doi.org/10.5194/tc-19-37-2025,https://doi.org/10.5194/tc-19-37-2025, 2025
Short summary

Cited articles

Aglyamov, Y., Schroeder, D. M., and Vance, S. D.: Bright prospects for radar detection of Europa's ocean, Icarus, 281, 334–337, https://doi.org/10.1016/j.icarus.2016.08.014, 2017.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013a.
Bamber, J. L., Siegert, M. J., Griggs, J. A., Marshall, S. J., and Spada, G.: Paleofluvial Mega-Canyon Beneath the Central Greenland Ice Sheet, Science, 341, 997–1000, https://doi.org/10.1126/science.1239794, 2013b.
Berry, M. V.: The Statistical Properties of Echoes Diffracted from Rough Surfaces, Philos. T. Roy. Soc. A, 273, 611–654, https://doi.org/10.1098/rsta.1973.0019, 1973.
Bingham, R. G. and Siegert, M. J.: Quantifying subglacial bed roughness in Antarctica: implications for ice-sheet dynamics and history, Quaternary Sci. Rev., 28, 223–236, https://doi.org/10.1016/j.quascirev.2008.10.014, 2009.
Download
Short summary
Using radio-echo sounding data from northern Greenland, we demonstrate that subglacial roughness exhibits self-affine (fractal) scaling behaviour. This enables us to assess topographic control upon the bed-echo waveform, and explain the spatial distribution of the degree of scattering (specular and diffuse reflections). Via comparison with a prediction for the basal thermal state (thawed and frozen regions of the bed) we discuss the consequences of our study for basal water discrimination.
Share