Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-2559-2016
https://doi.org/10.5194/tc-10-2559-2016
Research article
 | 
02 Nov 2016
Research article |  | 02 Nov 2016

Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle

Phillip Harder, Michael Schirmer, John Pomeroy, and Warren Helgason

Related authors

Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024,https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023,https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020,https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Hydrometeorological data from Marmot Creek Research Basin, Canadian Rockies
Xing Fang, John W. Pomeroy, Chris M. DeBeer, Phillip Harder, and Evan Siemens
Earth Syst. Sci. Data, 11, 455–471, https://doi.org/10.5194/essd-11-455-2019,https://doi.org/10.5194/essd-11-455-2019, 2019
Short summary
A simple model for local-scale sensible and latent heat advection contributions to snowmelt
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
Hydrol. Earth Syst. Sci., 23, 1–17, https://doi.org/10.5194/hess-23-1-2019,https://doi.org/10.5194/hess-23-1-2019, 2019
Short summary

Related subject area

Remote Sensing
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
The Cryosphere, 19, 37–61, https://doi.org/10.5194/tc-19-37-2025,https://doi.org/10.5194/tc-19-37-2025, 2025
Short summary
Temporal stability of a new 40-year daily AVHRR land surface temperature dataset for the pan-Arctic region
Sonia Dupuis, Frank-Michael Göttsche, and Stefan Wunderle
The Cryosphere, 18, 6027–6059, https://doi.org/10.5194/tc-18-6027-2024,https://doi.org/10.5194/tc-18-6027-2024, 2024
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
The Pléiades Glacier Observatory: high-resolution digital elevation models and ortho-imagery to monitor glacier change
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquín Muñoz-Cobo Belart, Fanny Brun, Liss M. Andreassen, Brian Menounos, and Charlotte Blondel
The Cryosphere, 18, 5551–5571, https://doi.org/10.5194/tc-18-5551-2024,https://doi.org/10.5194/tc-18-5551-2024, 2024
Short summary

Cited articles

Armstrong, R. and Brun, E.: Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, Cambridge University Press, Cambridge, UK, 222 pp., 2008.
Bewley, D., Pomeroy, J. W., and Essery, R.: Solar Radiation Transfer Through a Subarctic Shrub Canopy, Arct. Antarct. Alp. Res., 39, 365–374, 2007.
Boufama, B., Mohr, R., and Veillon, F.: Euclidean Constraints for Uncalibrated Reconstruction, in: 4th International Conference on Computer Vision (ICCV '93), IEEE Computer Society, Berlin, Germany, 466–470, 1993.
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015.
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016.
Download
Short summary
This paper assesses the accuracy of high-resolution snow depth maps generated from unmanned aerial vehicle imagery. Snow depth maps are generated from differencing snow-covered and snow-free digital surface models produced from structure from motion techniques. On average, the estimated snow depth error was 10 cm. This technique is therefore useful for observing snow accumulation and melt in deep snow but is restricted to observing peak snow accumulation in shallow snow.