Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-2559-2016
https://doi.org/10.5194/tc-10-2559-2016
Research article
 | 
02 Nov 2016
Research article |  | 02 Nov 2016

Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle

Phillip Harder, Michael Schirmer, John Pomeroy, and Warren Helgason

Related authors

Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024,https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023,https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020,https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Hydrometeorological data from Marmot Creek Research Basin, Canadian Rockies
Xing Fang, John W. Pomeroy, Chris M. DeBeer, Phillip Harder, and Evan Siemens
Earth Syst. Sci. Data, 11, 455–471, https://doi.org/10.5194/essd-11-455-2019,https://doi.org/10.5194/essd-11-455-2019, 2019
Short summary
A simple model for local-scale sensible and latent heat advection contributions to snowmelt
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
Hydrol. Earth Syst. Sci., 23, 1–17, https://doi.org/10.5194/hess-23-1-2019,https://doi.org/10.5194/hess-23-1-2019, 2019
Short summary

Related subject area

Remote Sensing
Grounded ridge detection and characterization along the Alaska Arctic coastline using ICESat-2 surface height retrievals
Kennedy A. Lange, Alice C. Bradley, Kyle Duncan, and Sinéad L. Farrell
The Cryosphere, 19, 2045–2065, https://doi.org/10.5194/tc-19-2045-2025,https://doi.org/10.5194/tc-19-2045-2025, 2025
Short summary
Importance of ice elasticity in simulating tide-induced grounding line variations along prograde bed slopes
Natalya Ross, Pietro Milillo, Kalyana Nakshatrala, Roberto Ballarini, Aaron Stubblefield, and Luigi Dini
The Cryosphere, 19, 1995–2015, https://doi.org/10.5194/tc-19-1995-2025,https://doi.org/10.5194/tc-19-1995-2025, 2025
Short summary
Evaluation of the Snow Climate Change Initiative (Snow CCI) snow-covered area product within a mountain snow water equivalent reanalysis
Haorui Sun, Yiwen Fang, Steven A. Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
The Cryosphere, 19, 2017–2036, https://doi.org/10.5194/tc-19-2017-2025,https://doi.org/10.5194/tc-19-2017-2025, 2025
Short summary
Multiple modes of shoreline change along the Alaskan Beaufort Sea observed using ICESat-2 altimetry and satellite imagery
Marnie B. Bryant, Adrian A. Borsa, Eric J. Anderson, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, and Adam P. Young
The Cryosphere, 19, 1825–1847, https://doi.org/10.5194/tc-19-1825-2025,https://doi.org/10.5194/tc-19-1825-2025, 2025
Short summary
Mapping seasonal snow melting in Karakoram using SAR and topographic data
Shiyi Li, Lanqing Huang, Philipp Bernhard, and Irena Hajnsek
The Cryosphere, 19, 1621–1639, https://doi.org/10.5194/tc-19-1621-2025,https://doi.org/10.5194/tc-19-1621-2025, 2025
Short summary

Cited articles

Armstrong, R. and Brun, E.: Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, Cambridge University Press, Cambridge, UK, 222 pp., 2008.
Bewley, D., Pomeroy, J. W., and Essery, R.: Solar Radiation Transfer Through a Subarctic Shrub Canopy, Arct. Antarct. Alp. Res., 39, 365–374, 2007.
Boufama, B., Mohr, R., and Veillon, F.: Euclidean Constraints for Uncalibrated Reconstruction, in: 4th International Conference on Computer Vision (ICCV '93), IEEE Computer Society, Berlin, Germany, 466–470, 1993.
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015.
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016.
Download
Short summary
This paper assesses the accuracy of high-resolution snow depth maps generated from unmanned aerial vehicle imagery. Snow depth maps are generated from differencing snow-covered and snow-free digital surface models produced from structure from motion techniques. On average, the estimated snow depth error was 10 cm. This technique is therefore useful for observing snow accumulation and melt in deep snow but is restricted to observing peak snow accumulation in shallow snow.
Share