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Abstract. Quantifying the spatial distribution of snow is cru-
cial to predict and assess its water resource potential and un-
derstand land–atmosphere interactions. High-resolution re-
mote sensing of snow depth has been limited to terrestrial
and airborne laser scanning and more recently with applica-
tion of structure from motion (SfM) techniques to airborne
(manned and unmanned) imagery. In this study, photogra-
phy from a small unmanned aerial vehicle (UAV) was used
to generate digital surface models (DSMs) and orthomosaics
for snow cover at a cultivated agricultural Canadian prairie
and a sparsely vegetated Rocky Mountain alpine ridgetop site
using SfM. The accuracy and repeatability of this method to
quantify snow depth, changes in depth and its spatial variabil-
ity was assessed for different terrain types over time. Root
mean square errors in snow depth estimation from differenc-
ing snow-covered and non-snow-covered DSMs were 8.8 cm
for a short prairie grain stubble surface, 13.7 cm for a tall
prairie grain stubble surface and 8.5 cm for an alpine moun-
tain surface. This technique provided useful information on
maximum snow accumulation and snow-covered area deple-
tion at all sites, while temporal changes in snow depth could
also be quantified at the alpine site due to the deeper snow-
pack and consequent higher signal-to-noise ratio. The appli-
cation of SfM to UAV photographs returns meaningful in-
formation in areas with mean snow depth > 30 cm, but the
direct observation of snow depth depletion of shallow snow-
packs with this method is not feasible. Accuracy varied with
surface characteristics, sunlight and wind speed during the

flight, with the most consistent performance found for wind
speeds < 10 m s−1, clear skies, high sun angles and surfaces
with negligible vegetation cover.

1 Introduction

Accumulation, redistribution, sublimation and melt of sea-
sonal or perennial snow cover are defining features of cold
region environments. The dynamics of snow have incredi-
bly important impacts on land–atmosphere interactions and
can constitute significant proportions of the water resources
necessary for socioeconomic and ecological functions (Arm-
strong and Brun, 2008; Gray and Male, 1981; Jones et al.,
2001). Snow is generally quantified in terms of its snow wa-
ter equivalent (SWE) through measurements of its depth and
density. Since density varies less than depth (López-Moreno
et al., 2013; Shook and Gray, 1996) much of the spatial vari-
ability of SWE can be described by the spatial variability of
snow depth. Thus, the ability to measure snow depth and its
spatial distribution is crucial to assess and predict how the
snow water resource responds to meteorological variability
and landscape heterogeneity. Observation and prediction of
the spatial distribution of snow depth is even more relevant
with the anticipated and observed changes occurring due to
a changing climate and land use (Dumanski et al., 2015;
Harder et al., 2015; Milly et al., 2008; Mote et al., 2005;
Stewart et al., 2004).
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The many techniques and sampling strategies employed
to quantify snow depth all have strengths and limitations
(Pomeroy and Gray, 1995). Traditionally, manual snow sur-
veys have been used to quantify snow depth and density
along a transect. The main benefit of manual snow survey-
ing is that the observations are a direct measurement of the
SWE; however, it requires significant labour, is a destructive
sampling method and can be impractical in complex, remote
or hazardous terrain (DeBeer and Pomeroy, 2009; Dingman,
2002). Many sensors exist that can measure detailed snow
properties nondestructively, with a comprehensive review
found in Kinar and Pomeroy (2015), but nondestructive auto-
mated sensors, such as acoustic snow depth rangers (Camp-
bell Scientific SR50) or SWE analyzers (Campbell Scien-
tific CS275 Snow Water Equivalent Sensor), typically only
provide point-scale information and may require significant
additional infrastructure or maintenance to operate properly.
Remote sensing of snow from satellite and aerial platforms
quantify snow extent at large scales. Satellite platforms can
successfully estimate snow-covered area (SCA) but problems
remain in quantifying snow depth, largely due to the hetero-
geneity of terrain complexity and vegetation cover. To date,
light detection and ranging (lidar) techniques have provided
the highest-resolution estimates of snow depth spatial dis-
tribution from both terrestrial (Grünewald et al., 2010) and
airborne (Hopkinson et al., 2012) platforms. The main limi-
tations encountered are easily observable areas (sensor view-
shed) for the terrestrial scanner and the prohibitive expense
and long lead time needed for planning repeat flights for
the aerial scanner (Deems et al., 2013). Typically, airborne
lidar provides data with a ground sampling of nearly 1 m
and a vertical accuracy of 15 cm (Deems and Painter, 2006;
Deems et al., 2013). While detailed, this resolution still does
not provide observations of the spatial variability of snow
distributions that can address microscale processes such as
snow–vegetation interactions or wind redistribution in areas
of shallow snow cover, and the frequency of airborne lidar
observations are typically low, except for NASA’s Airborne
Snow Observatory applications in California (Mattmann et
al., 2014).

An early deployment of a high-resolution digital camera
on a remote-controlled, gasoline-powered model helicopter
in 2004 permitted unmanned digital aerial photography to
support studies of shrub emergence and SCA depletion in a
Yukon mountain shrub tundra environment (Bewley et al.,
2007). Since then, unmanned aerial vehicles (UAVs) have
become increasingly popular for small-scale high-resolution
remote sensing applications in the earth sciences. The cur-
rent state of the technology is due to advances in the ca-
pabilities and miniaturization of the hardware comprising
UAV platforms (avionics/autopilots, Global Positioning Sys-
tem (GPS), inertial momentum units (IMUs) and cameras)
and the increases in computational power for processing im-
agery. The conversion of raw images to orthomosaics and
digital surface models (DSMs) takes advantage of structure

from motion (SfM) algorithms (Westoby et al., 2012). These
computationally intensive algorithms simultaneously resolve
camera pose and scene geometry through automatic identifi-
cation and matching of common features in multiple images.
With the addition of information on the respective camera
location, or if feature locations are known, then georefer-
enced point clouds, orthomosaics and DSMs can be gener-
ated (Westoby et al., 2012). Snow is a challenging surface
for SfM techniques due to its relatively uniform surface and
high reflectance relative to snow-free areas, which limit iden-
tifiable features (Nolan et al., 2015). The resolution of the
data products produced by UAVs depends largely on flight
elevation and sensor characteristics but can promise accu-
racies of 2.6 cm in the horizontal and 3.1 cm in the vertical
(Roze et al., 2014). The unprecedented spatial resolution of
these products may be less important than the fact that these
platforms are deployable at a high user-defined frequencies
below cloud cover, which can be problematic for airborne or
satellite platforms. Manned aerial platforms have the advan-
tage of covering much larger areas (Nolan et al., 2015) with a
more mature and clear regulatory framework (Marris, 2013;
Rango and Laliberte, 2010) than small UAVs. However, the
greater expenses associated with acquisition, maintenance,
operation and training required for manned platforms (Mar-
ris, 2013), relative to small UAVs, are significant (Westoby et
al., 2012). Many snow scientists have expressed great enthu-
siasm in the opportunities UAVs present and speculate that
they may drastically change the quantification of snow accu-
mulation and ablation (Sturm, 2015).

The roots of SfM are found in stereoscopic photogramme-
try, which has a long history in topographic mapping (Col-
lier, 2002). Relative to traditional photogrammetry, major
advances in the 1990s in computer vision (Boufama et al.,
1993; Spetsakis and Aloimonost, 1991; Szeliski and Kang,
1994) have automated and simplified the data requirements
to go from a collection of overlapping 2-D images to 3-D
point clouds. Significant work by the geomorphology com-
munity has pushed the relevance, application and further de-
velopment of this technique into the earth sciences (Westoby
et al., 2012). Recent application of this technique to snow
depth estimation has used imagery captured by manned aerial
platforms (Bühler et al., 2015; Nolan et al., 2015) and in-
creasingly with small UAVs (Vander Jagt et al., 2015; Bühler
et al., 2016; De Michele et al., 2016). The manned aircraft ex-
amples have reported vertical accuracies of 10 cm (Nolan et
al., 2015) and 30 cm (Bühler et al., 2015) with horizontal res-
olutions of 5–20 cm (Nolan et al., 2015) and 2 m (Bühler et
al., 2015). Unmanned aircraft examples have shown similar
accuracies and resolution with vertical errors of reported to
be ∼ 10 cm with horizontal resolutions between 50 cm (Van-
der Jagt et al., 2015) and 10 cm (Bühler et al., 2016). The ac-
curacy assessments of the De Michele et al. (2016), Vander
Jagt et al. (2015) and Bühler et al. (2016) studies were limited
to a small number of snow depth maps. Bühler et al. (2016)
had the most with four maps, but more are needed to get a
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complete perspective on the performance of this technique
and its repeatability under variable conditions.

The overall objective of this paper is to assess the accu-
racy of snow depth as estimated by imagery collected by
small UAVs and processed with SfM techniques. Specifi-
cally, this paper will (1) assess the accuracy of UAV-derived
snow depths with respect to the deployment conditions and
heterogeneity of the earth surface, specifically variability in
terrain relief, vegetation characteristics and snow depth; and
(2) identify and assess opportunities for UAV generated data
to advance understanding and prediction of snow cover and
snow depth dynamics.

2 Sites and methodology

2.1 Sites

The prairie field site (Fig. 1a) is representative of agricultural
regions on the cold, windswept Canadian Prairies, where
agriculture management practices control the physical char-
acteristics of the vegetation which, in turn, influence snow
accumulation (Pomeroy and Gray, 1995). There is little ele-
vation relief and the landscape is interspersed with wooded
bluffs and wetlands. Snow cover is typically shallow (max-
imum depth < 50 cm) with development of a patchy and
dynamic SCA during melt. Data collection occurred at a
field site near Rosthern, Saskatchewan, Canada (52◦42′ N,
106◦27′W), in spring 2015 as part of a larger project study-
ing the influence of grain stubble exposure on snowmelt pro-
cesses. The 0.65 km2 study site was divided into areas of
tall stubble (35 cm) and short stubble (15 cm). The wheat
stubble (Fig. 1c), clumped in rows ∼ 30 cm apart, remained
erect throughout the snow season, which has implications for
blowing snow accumulation, melt energetics and snow cover
depletion. Pomeroy et al. (1993, 1998) describe the snow ac-
cumulation dynamics and snowmelt energetics of similar en-
vironments.

The alpine site, located in Fortress Mountain Snow
Laboratory in the Canadian Rocky Mountains (50◦50′ N,
115◦13′W), is characterized by a ridge oriented in the SW–
NE direction (Fig. 1b and d) at an elevation of approximately
2300 m. The average slope at the alpine site is ∼ 15◦ with
some slopes > 35◦. Large areas of the ridge were kept bare
by wind erosion during the winter of 2014/2015 and wind
redistribution caused the formation of deep snowdrifts on
the leeward (SE) side of the ridge, in surface depressions
and downwind of krummholz. Vegetation is limited to short
grasses on the ridgetop while shrubs and coniferous trees be-
come more prevalent in gullies on the shoulders of the ridge.
Mean snow depth of the SCA at the start of the observation
period (13 May 2015) was 2 m (excluding snow-free areas)
with maximum depths over 5 m. The 0.32 km2 study area was
divided between a northern and a southern area (red polygons
in Fig. 1b) due to UAV battery and hence flight area limi-

tations. DeBeer and Pomeroy (2009, 2010) and MacDonald
et al. (2010) describe the snow accumulation dynamics and
snowmelt energetics of the area.

2.2 Methodology

2.2.1 Unmanned aerial vehicle – flight planning –
operation – data processing

A senseFly Ebee Real Time Kinematic (RTK) UAV (ver-
sion 01) was used to collect imagery over both sites (Fig. 2a).
The platform is bundled with flight control and image pro-
cessing software to provide a complete system capable of
survey-grade accuracy without the use of ground control
points (GCPs) (Roze et al., 2014). The Ebee RTK is a hand-
launched, fully autonomous, battery-powered, fixed-wing
UAV with a wingspan of 96 cm and a weight of ∼ 0.73 kg
including payload. Maximum flight time is up to 45 min with
cruising speeds of 40–90 km h−1. A modified consumer-
grade camera, a Canon PowerShot ELPH 110 HS, captures
red, green and blue band imagery as triggered by the autopi-
lot. The camera, fixed in the UAV body, lacks a stabilizing
gimbal as often seen on multirotor UAVs and upon image
capture levels the entire platform and shuts off the motor to
minimize vibration, resulting in consistent nadir image ori-
entation. The camera has a 16.1 MP 1/2.3 in. CMOS sensor
and stores images as JPEGs, resulting in images with 8 bit
depth for the three colour channels. Exposure settings are au-
tomatically adjusted based on a centre-weighted light meter-
ing. Images are geotagged with location and camera orienta-
tion information supplied by RTK-corrected Global Naviga-
tion Satellite System (GNSS) positioning and IMU, respec-
tively. A Leica GS15 base station supplied the RTK correc-
tions to the Ebee to resolve image locations to an accuracy of
±2.5 cm. The Ebee was able to fly in all wind conditions at-
tempted but image quality, location and orientation became
inconsistent when wind speed at the flight altitude (as ob-
serve by an onboard pitot tube) approached 14 m s−1.

At the prairie site, the UAV was flown 22 times over
the course of the melt period (6 to 30 March 2015) with
three flights over the snow-free surface between 2 and
9 April 2015. A loaner Ebee, from Spatial Technologies, the
Ebee distributor, performed the first 11 flights at the prairie
site due to technical issues with the Ebee RTK. The geotag
errors of the non-RTK loaner Ebee were ±5 m (error of GPS
Standard Positioning Service) and therefore required GCPs
to generate georeferenced data products. At the alpine site, to
reduce variations in the height of the UAV above the surface
in complex terrain, flight plans were adjusted using a 1 m
resolution DEM, derived from a lidar DEM. The UAV was
flown 18 times over melt from 15 May to 24 June 2015 with
four flights over bare ground on 24 July 2015. Table 1 sum-
marizes flight plan attributives of the respective sites. Fig-
ure 2b shows a typical flight plan generated by the eMotion
flight control software for the prairie site.
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Figure 1. Orthomosaics of (a) the prairie site located near Rosthern, Saskatchewan, and (b) the alpine site at Fortress Mountain Snow
Laboratory, Kananaskis, Alberta. The prairie site image (19 March 2015) has polygons depicting areas used for peak snow depth estimation
over short (yellow) and tall (green) stubble. The alpine site image (22 May 2015) was split into two separately processed subareas (red
polygons). Red points in (a) and (b) are locations of manual snow depth measurements while green points at the alpine site (b) were used
to test the accuracy of the DSM over the bare surface. Ground control point (GCP) locations are identified as blue points. Axes are UTM
coordinates for the prairie site (UTM zone 13N) and alpine site (UTM zone 11N). The defining features were (c) the wheat stubble (tall)
exposed above the snow surface at the prairie site and (d) the complex terrain as depicted by the generated point cloud at the alpine site (view
from NE to SW).

Table 1. Flight plan specifications.

Variable Prairie site Alpine site

Flight altitude 90 m 90 m
Lateral overlap 70 % 85 %
Longitudinal overlap 70 % 75 %
Ground resolution 3 cm pixel−1 3 cm pixel−1

Number of flights (over snow/over non-snow) 22/3 18/4
Approximate area surveyed per flight 1 km2 0.32 km2

Postflight Terra 3D 3 (version 3.4.46) processed the im-
agery to generate DSMs and orthomosaics. Though the man-
ufacturer suggested that they are unnecessary with RTK-
corrected geotags (error of±2.5 cm), all processing included
GCPs. At the prairie site, 10 GCPs comprised of five tarps
and five utility poles were distributed throughout the study
area (blue points in Fig. 1a). At the alpine site, the north-
ern and southern areas had five and six GCPs (blue points in
Fig. 1b), respectively, comprised of tarps (Fig. 3a) and easily
identifiable rocks (Fig. 3b) spread over the study area.

Processing involved three steps. First, initial processing
extracted features common to multiple images, optimized ex-
ternal and internal camera parameters for each image and
generated a sparse point cloud. The second step densified the

point cloud and the third step generated a georeferenced or-
thomosaic and a DSM. Preferred processing options varied
between the sites, with the semi-global matching algorithm
in the point densification used to minimize erroneous points
encountered at the alpine site (see Sect. 3.3). Generated or-
thomosaics and DSMs had a horizontal resolution of 3.5 cm
at the prairie site and between 3.5 and 4.2 cm at the alpine
site.

2.2.2 Ground truth and snow depth data collection

To assess the accuracy of the generated DSMs and their
ability to measure snow depth, detailed observations of the
land surface elevation and snow depth were collected. At the
prairie site a GNSS survey, utilizing a Leica GS15 as a base
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Figure 2. (a) A senseFly Ebee RTK; (b) a typical flight over the prairie site, where red lines represent the flight path of UAV and the white
placemarks represent photo locations.

Figure 3. Examples of ground control points that included (a) tarps (2.2 m× 1.3 m) and (b) identifiable rocks at the same magnification as
the tarp.

station and another GS15 acting as a RTK-corrected rover,
measured the location (x, y and z) of 17 snow stakes on
each stubble treatment to an accuracy of less than ±2.5 cm.
This gives 34 observation points at the prairie site (locations
identified as red dots in Fig. 1a). Over the melt period, the
snow depth was measured with a ruler at each point (error of
±1 cm). Adding the manually measured snow depths to the
corresponding land surface elevations from the GNSS sur-
vey gives snow surface elevations at each observation point
directly comparable to the UAV-derived DSM. At the alpine
site, 100 land surface elevations were measured at points
with negligible vegetation (bare soil or rock outcrops) with a
GNSS survey to determine the general quality of the DSMs.
For eight flights a GNSS survey was also performed on the
snow cover (all measurement locations over the course of
campaign are highlighted in Fig. 1b). To account for the sub-
stantial terrain roughness and to avoid measurement errors
in deep alpine snowpacks, snow surface elevation was mea-
sured via GNSS survey and snow depth estimated from the
average of five snow depth measurements in a 0.4 m× 0.4 m
square at that point. Time constraints and inaccessible steep
snow patches limited the number of snow depth measure-
ments to between 3 and 19 measurements per flight. While
the number of accuracy assessment points over snow is lim-
ited for each flight the cumulative number of points over
the course of the campaigns used to assess accuracy over all
flights is not; at the alpine site there were 101 GNSS surface
measurements and 83 averaged snow depth measurements

available, and at the prairie site there were 323 measurements
on each stubble treatment.

At both the prairie and alpine site, the same GNSS RTK
surveying method established GCP locations. Snow surveys
(maximum one per day) and DSMs (multiple per day) are
only compared if they are from the same days.

2.2.3 Snow depth estimation

Subtracting a DSM of a snow-free surface from a DSM of a
snow-covered surface estimates snow depth, assuming snow
ablation is the only process changing the surface elevations
between observation times. Vegetation is limited over the ar-
eas of interest at the alpine site and any spring up of grasses
or shrubs is insignificant, based upon local observations, with
respect to the large snow depths observed (up to 5 m). The
wheat stubble at the prairie site is unaffected by snow accu-
mulation or ablation. The snow-free DSMs corresponded to
imagery collected for the prairie site and 24 July 2015 for the
alpine site.

2.2.4 Accuracy assessment

The accuracy of the UAV-derived DSM and snow depth was
estimated by calculating the root mean square error (RMSE),
mean error (bias) and standard deviation of the error (SD)
with respect to the manual measurements. The RMSE quan-
tifies the overall difference between manually measured and
UAV-derived values, bias quantifies the mean magnitude of
the over (positive values) or under (negative values) predic-
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tion of the DSM with respect to manual measurements, and
SD quantifies the variability of the error.

2.2.5 Signal-to-noise calculation

The signal-to-noise ratio (SNR) compares the level of the
snow depth signal with respect to the measurement error to
inform when meaningful information is available. The SNR
is calculated as the mean measured snow depth value divided
by the standard deviation of the error between the observed
and estimated snow depths. The Rose criterion (Rose, 1973),
commonly used in the image processing literature, is used to
define the threshold SNR where the UAV returns meaning-
ful snow depth information. The Rose criterion proposes a
SNR≥ 4 for the condition at which the signal is sufficiently
large to avoid mistaking it for a fluctuation in noise. Ulti-
mately, the acceptable SNR depends upon the user’s error
tolerance (Rose, 1973).

3 Results and discussion

3.1 Absolute surface accuracy

The accuracy of the DSMs relative to the measured surface
points varies with respect to light conditions at time of pho-
tography and differences in snow surface characteristics and
extent. This is seen in the RMSE for individual flights vary-
ing from 4 to 19 cm (Fig. 4). Only a few problematic flights,
which will be discussed in Sect. 3.3.1, showed larger RM-
SEs, which are marked in blue in Fig. 4. In general, the
accuracy of the DSMs as represented by the mean RMSEs
in Table 2 was comparable among the prairie short stubble
(8.1 cm), alpine-bare (8.7 cm) and alpine-snow (7.5 cm) sites
and was greater over the prairie tall stubble (11.5 cm). Be-
sides the 5 (out of a total of 43) problematic flights, accuracy
was relatively consistent over time at all sites. More specif-
ically, the prairie flights simultaneously sampled the short
and tall stubble areas; thus there were only three problem-
atic flights at the prairie site in addition to the two at the
alpine site (Fig. 4). The larger error at the tall stubble is due to
snow and vegetation surface interactions. Over the course of
melt, the DSM gradually became more representative of the
stubble surface rather than the snow surface. More points are
matched on the high contrast stubble than the low contrast
snow, leading to the DSM being biased to reflect the stubble
surface. This is apparent in the increasing tall stubble bias as
the snow surface drops below the stubble height. By com-
paring the many alpine-bare points to the limited number of
alpine-snow points (3 to 19) the relative difference in errors
between the snow and non-snow surfaces was assessed. The
benefit of the large number of alpine-bare points (100) re-
vealed the general errors, offsets and tilts in the DSM. It was
concluded that the snow surface errors are not appreciably
different from the non-snow surface errors.

Table 2. Absolute surface accuracy summarya.

Area Variable Mean Maximum Minimum Total
(cm) (cm) (cm) pointsc

Apine-bare RMSE 8.7 15 4 1120
Alpine-bare Biasb 5.6 11 1 1120
Alpine-bare SD 6.2 12 3 1120
Alpine-snow RMSE 7.5 14 3 101
Alpine-snow Biasb 4.4 13 1 101
Alpine-snow SD 5.4 13 3 101
Short RMSE 8.1 12.5 4.4 357
Short Biasb 4.4 11.2 0 357
Short SD 6.3 9.5 3.2 357
Tall RMSE 11.5 18.4 4.9 357
Tall Biasb 6.6 17.5 0.3 357
Tall SD 8.4 14.2 3.1 357

a Summary excludes five flights identified to be problematic; b mean of absolute bias values;
c cumulative points used to assess accuracy over all assessed flights.

Table 3. Absolute snow depth accuracy summarya.

Area Variable Mean Maximum Minimum Total
(cm) (cm) (cm) pointsc

Alpine RMSE 8.5 14.0 3 83
Alpine Biasb 4.1 11.0 0 83
Alpine SD 7.1 12.0 3 83
Short RMSE 8.8 15.8 0 323
Short Biasb 5.4 15.2 0 323
Short SD 6.1 10.3 0 323
Tall RMSE 13.7 27.2 0 323
Tall Biasb 9.8 26.4 0 323
Tall SD 8.3 13.9 0 323

a Summary excludes two flights identified to be problematic; b mean of absolute bias
values; c cumulative points used to assess accuracy over all assessed flights.

The RTK level accuracy of the camera geotags should
produce products with similar accuracy, without the use of
GCPs, as those generated with standard GPS positioning
and the use of GCPs (Roze et al., 2014). DSMs created
with and without GCPs for flights where the Ebee’s cam-
era geotags had RTK-corrected positions with an accuracy
of ±2.5 cm tested this claim. Nine flights from the prairie
site and 22 flights from the alpine site met the requirements
for this test. Inclusion of GCPs had little effect on the stan-
dard deviation of error with respect to surface observations
but resulted in a reduction of the mean absolute error of the
bias from 27 to 10 cm and from 14 to 6 cm at the prairie and
alpine sites, respectively.

3.2 Snow depth accuracy

The snow depth errors were similar to the surface errors, with
the alpine and short stubble sites having very similar errors,
with mean RMSEs of 8.5 and 8.8 cm, but much larger er-
rors over tall stubble, with a mean RMSE of 13.7 cm (Fig. 5
and Table 3). Snow depth errors were larger than the surface
errors as the errors from the snow-free and snow-covered
DSMs are additive in the DSM differencing. The usability

The Cryosphere, 10, 2559–2571, 2016 www.the-cryosphere.net/10/2559/2016/



P. Harder et al.: Accuracy of snow depth estimation in mountain and prairie environments 2565

Figure 4. Root mean square error (RMSE, top row panels), bias (middle row panels) and standard deviation (SD, bottom row panels) of DSMs
with respect to surface over alpine-bare, alpine-snow, and short and tall stubble at prairie site, respectively. Blue bars highlight problematic
flights and are excluded from summarization in Table 2. The x axis labels represent month–day–flight number of the day (to separate flights
that occurred on the same day). Alpine-bare accuracies are separated into northern or southern areas, reflected with an N or S suffix. The last
number in the alpine-snow x axis label is the number of observations used to assess accuracy as the number of surface observations varied
between 3 and 20.

of snow depth determined from DSM differencing requires
comparison of SNR. SNR, in Fig. 5, clearly demonstrates
that the deep alpine snowpacks have a large signal relative to
noise and provide useable information on snow depth both
at maximum accumulation and during most of the snowmelt
period (SNR > 7). In contrast, the shallow snowpack at the
prairie site, despite a similar absolute error to the alpine site,
demonstrates decreased ability to retrieve meaningful snow
depth information over the course of snowmelt; the signal be-
came smaller than the noise. Applying the Rose criterion of
a SNR≥ 4, it is apparent that only the first flight at the short
stubble and the first two flights at the tall stubble provided
useful information on the snow depth signal. This is relevant
when applying this technique to other areas with shallow,
wind redistributed seasonal snow cover such as those that
cover prairie, steppe and tundra in North and South America,
Europe and Asia. This is in contrast to other studies which
do not limit where this technique can be reasonably applied
(Bühler et al., 2016; Nolan et al., 2015).

3.3 Challenges

3.3.1 UAV deployment challenges

An attractive attribute of UAVs vs. manned aerial or satel-
lite platforms is that they allow “on-demand” responsive data
collection. While deployable under most conditions encoun-
tered, the variability in the DSM RMSEs is likely due to the
environmental factors at time of flight including wind condi-
tions, sun angle, flight duration, cloud cover and cloud cover
variability. In high wind conditions (> 14 m s−1) the UAV
struggled to maintain its preprogrammed flight path as it was
blown off course when cutting power to take photos. This re-
sulted in missed photos and inconsistent density in the gener-
ated point clouds. Without a gimballed camera, windy con-
ditions also resulted in images that deviated from the ideal
nadir orientation. The flights for the DSMs with the great-
est RMSEs had the highest wind speeds as measured by the
UAV. Four of the five problematic flights were due to high
winds (> 10 m s−1) and were identified by relatively low-
density point clouds with significant gaps which rendered
DSMs that did not reflect the snow surface characterized.

As the system relies on a single camera traversing the
areas of interest, anything that may cause a change in the
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Figure 5. Estimated UAV snow depth error with respect to observed snow depth at the alpine site and the short and tall stubble treatments at
the prairie site. Blue bars highlight problematic flights and are excluded from summarization in Table 3. The x axis labels represent month–
day. The last number in prairie labels is the flight of the day (to separate flights that occurred on the same day). Alpine labels separate the
northern or southern flight areas suffixed as N or S, respectively, and the last value is the number of observations used to assess accuracy as
they vary between 3 and 19. Horizontal line in the SNR plots is the Rose criterion (SNR≥ 4) that is used to identify flights with a meaningful
snow depth signal.

reflectance properties of the surface will complicate post-
processing and influence the overall accuracy. Consistent
lightning is important with a preference for clear skies and
high solar angles to minimize changes in shadows. Diffuse
lighting during cloudy conditions results in little contrast
over the snow surface and large gaps in the point cloud over
snow, especially when the snow cover was homogeneous.
Three flights under these conditions could not be used and
were not included in the previously shown statistics. Clear
conditions and patchy snow cover led to large numbers of
overexposed pixels (see Sect. 3.3.2). Low sun angles should
be avoided as orthomosaics from these times are difficult
to classify due to the large and dynamic surface shadows
present and the relatively limited reflectance range.

It is suggested that multirotor UAVs may be more stable
and return better data products in windy conditions (Büh-
ler et al., 2016). There have not been any direct compari-
son studies that the authors are aware of that validate such
assertions. A general statement regarding the use of fixed
wing vs. multirotor is also impossible with the broad spec-
trum of UAVs and their respective capabilities on the market.
The only clear benefit of using a multirotor platform is that
larger, potentially more sophisticated, sensors can be carried

Table 4. Summary of areas excluded due to erroneous points with
respect to snow-covered area at the alpine site.

Flight∗ Snow-covered Percentage of snow-covered
area (%) area excluded (%)

5-19_N 45.9 0.0
5-20_S 32.6 2.0
5-22_N 39.8 0.0
6-01_N 24.0 0.0
6-08_N 12.5 3.2
6-18_N 5.3 19.3
6-24_N 3.1 21.9
6-24_S 3.7 18.9

∗ Month–day portion of study area.

and landing accuracy is greater. That being said, the Ebee
RTK returns data at resolutions that are more than sufficient
for the purposes of this study (3 cm pixel−1), can cover much
larger areas and has a higher wind resistance (> 14 m s−1)
than many multirotor UAVs. Landing accuracy (±5 m) was
also sufficient to locate a landing location in the complex to-
pography of the alpine site. The more important issue rel-
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Figure 6. Bias corrected distributed snow depth (m) for (a) short and (b) tall stubble treatments at peak snow depth (10 March 2015) at the
prairie site.

ative to any comparison between platform types is that all
UAVs will have limited flight times and results are compro-
mised if conditions are windy and light is inconsistent. Until
a direct platform comparison study is conducted, this experi-
ence, as well as results of other recent studies (Vander Jagt et
al., 2015; Bühler et al., 2016; De Michele et al., 2016), sug-
gests that fixed-wing platforms, relative to multirotor plat-
forms, have similar accuracy and deployment constraints but
a clear range advantage.

3.3.2 Challenges applying structure from motion over
snow

Erroneous points over snow were generated in post-
processing with the default software settings at the alpine
site. These points were up to several metres above the ac-
tual snow surface and were mainly located at the edge of
snow patches, but also on irregular and steep snow surfaces
in the middle of a snow patch. The worst cases occurred dur-
ing clear sunny days over south-facing snow patches, which
were interspersed with these erroneous points. These points
are related to the overexposure of snow pixels in the images
which had bare ground in the centre and small snow patches
on the edges. This is a consequence of the automatically ad-
justed exposure based on centre-weighted light metering of
the Canon ELPH camera. It is recommended that erroneous
points could be minimized with the removal of overexposed
images; however, this increased the bias and led to gaps in
the point cloud, which made this approach inappropriate.

The semi-global matching (SGM) option with optimiza-
tion for 2.5-D point clouds (point clouds with no overlapping
points) proved to be the best parameter setting within the
post-processing software Postflight Terra 3D. Semi-global
matching was employed to improve results on projects with
low or uniform texture images, while the optimization for
2.5-D removes points from the densified point cloud (sense-
Fly, 2015). The SGM option removed most of the erroneous
points with best results if processing was limited to individ-
ual flights. Including images from additional flights resulted
in a rougher surface with more erroneous points. This may be

caused by changes in the surface lighting conditions between
flights. Biases did not change when using SGM though some
linear artefacts were visible when compared to default set-
tings. These linear artefacts caused the SD to increase from
1 to 3 cm on bare ground. Areas with remaining erroneous
points were identified and excluded from the presented anal-
ysis. Table 4 summarizes the extent of the areas removed
with respect to the SCA at the alpine site. The fifth prob-
lematic flight identified (1 June 2015 flight over the northern
area of alpine site) had a much larger bias with the inclu-
sion of GCPs and the reason for this cannot be determined.
The “black box” nature of this proprietary software and small
number of adjustable parameters clearly limits the applica-
tion of this post-processing tool for scientific purposes.

3.4 Applications of UAVs and structure from motion
over snow

The distributed snow depth maps generated from UAV im-
agery are of great utility for understanding snow processes at
previously unrealized resolutions, spatial coverages and fre-
quencies. Figure 6 provides examples of UAV-derived dis-
tributed snow depth maps. The identification of snow dune
structures, which correspond to in-field observations, is a
qualitative validation that UAV-derived DSM differencing
does indeed provide reasonable information on the spatial
variability of snow depth. Actual applications will depend
upon the surface, snow depth and other deployment consid-
erations as discussed.

Applications at the alpine site also include the ability to
estimate the spatial distribution of snow depth change due to
ablation (Fig. 7). To obtain ablation rates, the spatial distri-
bution of snow density is still needed but it may be estimated
with a few point measurements or with parameterizations de-
pendent upon snow depth (Jonas et al., 2009; Pomeroy and
Gray, 1995). In Fig. 7 the mean difference in snow depth be-
tween the two flights was 0.9 m; this gives an SNR of ∼ 11,
which is more than sufficient to confidently assess the spatial
variability of melt.
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Figure 7. Rate of snow depth change (dHS day−1) between 19 May
and 1 June 2015 in the northern portion of the alpine site.

Despite the limitations and deployment considerations dis-
cussed, the Ebee RTK was capable of providing accurate data
at very high spatial and temporal resolutions. A direct com-
parison between fixed-wing and multirotor platforms is nec-
essary to determine how snow depth errors may respond to
variations in wind speed and lighting conditions. Until then,
based on this experience and results of other recent studies
(Vander Jagt et al., 2015; Bühler et al., 2016; De Michele
et al., 2016), we do not expect there to be large differences
in errors between platform types. Rather, the most important
consideration when planning to map snow depth with a UAV
should be whether the anticipated SNR will allow for direct
estimates of snow depth or snow depth change. The SNR is-
sue limits the use of this technique to areas with snow depths
or observable changes sufficiently larger than the SD of the
error. We propose a mean snow depth threshold of 30 cm is
necessary to obtain meaningful information on snow depth
distribution with current technology. This threshold is equal
to 4 times the mean observed SD (Rose criterion) but will
vary with the application, site and user’s error tolerance.

The use of SfM in shallow snow environments, such as on
the Canadian Prairies, is therefore limited to measuring near-
maximum snow depths. Besides providing an estimate of the
total snow volume, this information can also inform snow
cover depletion curve estimation and description (Pomeroy
et al., 1998). Simple snow cover depletion models can be pa-
rameterized with estimates of snow depth mean and coeffi-
cient of variation (Essery and Pomeroy, 2004), which other-
wise need to be obtained from snow surveying. For 2015,
coefficients of variation from the peak snow depth maps
were 0.255 and 0.173, at the short and tall stubble sites, re-
spectively, which are similar to previous observations from
corresponding landforms/surfaces (Pomeroy et al., 1998).

In addition to parameterizing snow cover depletion mod-
els, UAV data could also be used to test the performance of
these same models as SfM processing of UAV images pro-
duces orthomosaics in addition to DSMs. Sequences of or-

thomosaics are especially useful to quantify the spatiotem-
poral dynamics of SCA depletion processes. Orthomosaics
are complementary products to DSMs and their quality is
subject to the same deployment conditions as DSMs. Ortho-
mosaics have the same horizontal accuracy and resolution
as the DSMs, but without a vertical component; any DSM
vertical errors are irrelevant. Interpretation of SCA from or-
thomosaics is therefore possible regardless of surface char-
acteristics or snow depth. The classification of orthomosaics
to quantify surface properties will introduce error and can be
challenging in changing light conditions, which changes the
spectral response of snow or non-snow-covered areas across
the surface. Typical supervised and unsupervised pixel based
classification procedures can be readily applied. Since UAV
imagery is at a much higher resolution than satellite or air-
borne imagery, classification differences in spectral response
due to varying light conditions can be compensated for by
using object-oriented classification which also takes into ac-
count shape, size, texture, pattern and context (Harayama and
Jaquet, 2004).

An example of a snow-covered depletion curve for the
prairie site is presented in Fig. 8. A simple unsupervised clas-
sification of the orthomosaic into snow and non-snow classes
quantifies the earlier exposure of the tall wheat stubble rela-
tive to the short wheat stubble. The tall stubble surface is an
illustrative example of the advantages UAVs offer for SCA
quantification. Tall stubble is a challenging surface on which
to quantify SCA as snow is prevalent below the exposed stub-
ble surface rendering other remote sensing approaches in-
appropriate. From an oblique perspective, the exposed stub-
ble obscures the underlying snow and prevents the classifi-
cation of SCA from georectification of terrestrial photogra-
phy (Fig. 9). Due to the surface heterogeneity on small scales
(stubble, soil and snow all regularly occurring within 30 cm),
satellite, and most aerial, imagery struggles with clearly iden-
tifying SCA. To identify features accurately, in this case ex-
posed stubble vs. snow, multiple pixels are needed per fea-
ture (Horning and DuBroff, 2004). The 3.5 cm resolution of
the orthomosaic corresponds to approximately three pixels
to span the 10 cm stubble row which is sufficient for accurate
SCA mapping over a tall stubble surface. The advantages of
high-resolution UAV orthomosaics are obviously not limited
to SCA mapping of snow between wheat stubble and can be
readily applied to other challenging heterogeneous surfaces
where SCA quantification was previously problematic. Snow
cover data at this resolution can quantify the role of vege-
tation on melt processes at a microscale, which can in turn
inform and validate snowmelt process understanding.

4 Conclusions

The accuracy of DSMs and orthomosaics, generated through
application of SfM techniques to imagery captured by a small
fixed-wing UAV, was evaluated in two different environ-
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Figure 8. Estimation of snow-covered area requires (a) an orthomosaic which is then (b) classified into snow and non-snow-covered area.
This produces (c) a snow cover depletion curve when a sequence of orthomosaics is available. The short and tall stubble surface snow-covered
areas at the prairie site are contrasted, with a snowfall event evident on 23 March 2015.

Figure 9. (a) An oblique photograph demonstrates the issue of tall stubble obscuring underlying snow cover when considered in contrast to
(b) a UAV orthomosaic of the same area on the same date that clearly shows widespread snow cover.

ments, mountain and prairie, to verify its ability to quantify
snow depth and its spatial variability over the ablation pe-
riod. The introduction of functional UAVs to the scientific
community requires a critical assessment of what can rea-
sonably be expected from these devices over seasonal snow
cover. Snow represents one of the more challenging surfaces
for UAVs and SfM techniques to resolve due to the lack of
contrast and high surface reflectance. Field campaigns as-
sessed the accuracy of the Ebee RTK system over flat prairie
and complex terrain alpine sites subject to wind redistribu-
tion and spatially variable ablation associated with varying
surface vegetation and terrain characteristics. The mean ac-
curacies of the DSMs were 8.1 cm for the short stubble sur-
face, 11.5 cm for the tall surface and 8.7 cm for the alpine
site. These DSM errors translate into mean snow depth errors
of 8.8, 13.7 and 8.5 cm over the short, tall and alpine sites,
respectively. Ground control points were needed to achieve
this level of accuracy. The SfM technique provided mean-
ingful information on maximum snow depth at all sites, and
snow depth depletion could also be quantified at the alpine
site due to the deeper snowpack and consequent higher SNR.
These findings demonstrate that SfM can be applied to accu-
rately estimate snow depth and its spatial variability only in

areas with snow depth > 30 cm. This restricts SfM applica-
tions with shallow, windblown snow cover. Snow depth esti-
mation accuracy varied with wind speed, surface characteris-
tics and sunlight; the most consistent performance was found
for wind speeds < 10 m s−1, surfaces with insignificant veg-
etation cover, clear skies and high sun angles. The ability
to generate good results declined over especially homoge-
nous snow surfaces and southerly slope aspects in mountain
terrain. Clear sky conditions were favourable for high snow-
covered fractions with limited snow surface brightness con-
trast. During snowmelt with reduced snow-covered fraction,
clear sky conditions caused overexposure of snow pixels and
erroneous points in the point clouds.

The challenges of applying SfM to imagery collected by
a small UAV over snow complicate the generation of DSMs
and orthomosaics relative to other surfaces with greater con-
trast and identifiable features. Regardless, the unprecedented
spatial resolution of the DSMs and orthomosaics, low costs
and “on-demand” deployment provide exciting opportunities
to quantify previously unobservable small-scale variability
in snow depth that will only improve the ability to quantify
snow properties and processes.
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5 Data availability

The data used in this analysis (original UAV imagery, pro-
cessed DSMs and orthomosaics, snow surveys and GNSS
measurements) can be accessed by contacting the corre-
sponding author Phillip Harder (phillip.harder@usask.ca) di-
rectly.
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