Articles | Volume 10, issue 3
The Cryosphere, 10, 1339–1359, 2016
https://doi.org/10.5194/tc-10-1339-2016
The Cryosphere, 10, 1339–1359, 2016
https://doi.org/10.5194/tc-10-1339-2016

Research article 01 Jul 2016

Research article | 01 Jul 2016

A Maxwell elasto-brittle rheology for sea ice modelling

Véronique Dansereau et al.

Related authors

On the statistical properties of sea-ice lead fraction and heat fluxes in the Arctic
Einar Ólason, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021,https://doi.org/10.5194/tc-15-1053-2021, 2021
Short summary
Ice bridges and ridges in the Maxwell-EB sea ice rheology
Véronique Dansereau, Jérôme Weiss, Pierre Saramito, Philippe Lattes, and Edmond Coche
The Cryosphere, 11, 2033–2058, https://doi.org/10.5194/tc-11-2033-2017,https://doi.org/10.5194/tc-11-2033-2017, 2017
Short summary

Related subject area

Rheology
Parameter optimization in sea ice models with elastic–viscoplastic rheology
Gleb Panteleev, Max Yaremchuk, Jacob N. Stroh, Oceana P. Francis, and Richard Allard
The Cryosphere, 14, 4427–4451, https://doi.org/10.5194/tc-14-4427-2020,https://doi.org/10.5194/tc-14-4427-2020, 2020
Short summary
Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at −10, −20 and −30 °C
Sheng Fan, Travis F. Hager, David J. Prior, Andrew J. Cross, David L. Goldsby, Chao Qi, Marianne Negrini, and John Wheeler
The Cryosphere, 14, 3875–3905, https://doi.org/10.5194/tc-14-3875-2020,https://doi.org/10.5194/tc-14-3875-2020, 2020
Short summary
Landfast sea ice material properties derived from ice bridge simulations using the Maxwell elasto-brittle rheology
Mathieu Plante, Bruno Tremblay, Martin Losch, and Jean-François Lemieux
The Cryosphere, 14, 2137–2157, https://doi.org/10.5194/tc-14-2137-2020,https://doi.org/10.5194/tc-14-2137-2020, 2020
Short summary
Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear
Baptiste Journaux, Thomas Chauve, Maurine Montagnat, Andrea Tommasi, Fabrice Barou, David Mainprice, and Léa Gest
The Cryosphere, 13, 1495–1511, https://doi.org/10.5194/tc-13-1495-2019,https://doi.org/10.5194/tc-13-1495-2019, 2019
Short summary
Melting and fragmentation laws from the evolution of two large Southern Ocean icebergs estimated from satellite data
Nicolas Bouhier, Jean Tournadre, Frédérique Rémy, and Rozenn Gourves-Cousin
The Cryosphere, 12, 2267–2285, https://doi.org/10.5194/tc-12-2267-2018,https://doi.org/10.5194/tc-12-2267-2018, 2018
Short summary

Cited articles

Agnon, A. and Lyakhovsky, V.: Damage distribution and localization during dyke intrusion, 65–78, edited by: Balkema, A. A., Brookfield, Vt, 1995.
Amitrano, D., Grasso, J.-R., and Hantz, D.: From diffuse to localised damage through elastic interaction, Geophys. Res. Lett., 26, 2109–2112, 1999.
Aranson, I. S. and Tsimring, L. S.: Patterns and collective behavior in granular media: Theoretical concepts, Rev. Mod. Phys., 78, 641–692, https://doi.org/10.1103/RevModPhys.78.641, 2006.
Bažant, Z. P.: Instability ductility and size effect in strain-softening concrete, Journal of Engineering Mechanics Division, 102, 331–344, 1976.
Bažant, Z. P. and Jirásek, M.: Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress, J. Eng. Mech.-ASCE, 128, 1119–1149, https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119), 2002.
Download
Short summary
In this paper we present a new mechanical modelling framework for the deformation of sea ice on regional and larger scales named Maxwell elasto-brittle. The model successfully reproduces the formation of narrow, oriented leads which concentrate the deformation within the damaged, i.e., fractured, ice as well as the intermittency of the damaging process, and hence represents a relevant contribution to the ongoing development of operational modelling platforms, regional and global climate models.