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Abstract. A new rheological model is developed that builds
on an elasto-brittle (EB) framework used for sea ice and rock
mechanics, with the intent of representing both the small
elastic deformations associated with fracturing processes and
the larger deformations occurring along the faults/leads once
the material is highly damaged and fragmented. A viscous-
like relaxation term is added to the linear-elastic constitutive
law together with an effective viscosity that evolves accord-
ing to the local level of damage of the material, like its elastic
modulus. The coupling between the level of damage and both
mechanical parameters is such that within an undamaged ice
cover the viscosity is infinitely large and deformations are
strictly elastic, while along highly damaged zones the elastic
modulus vanishes and most of the stress is dissipated through
permanent deformations. A healing mechanism is also intro-
duced, counterbalancing the effects of damaging over large
timescales. In this new model, named Maxwell-EB after the
Maxwell rheology, the irreversible and reversible deforma-
tions are solved for simultaneously; hence drift velocities are
defined naturally. First idealized simulations without advec-
tion show that the model reproduces the main characteris-
tics of sea ice mechanics and deformation: strain localization,
anisotropy, intermittency and associated scaling laws.

1 Introduction

Making reliable predictions of the drift and deformation of
sea ice is becoming crucial nowadays for (1) forecasting the
opening of shipping routes across the Arctic, (2) evaluating

mechanical constraints on offshore structures and ships, and,
at larger scales, (3) estimating the future evolution of both the
summer and winter sea ice cover in the Arctic and Antarctic
to anticipate its short- to long-term, regional to global im-
pacts on climate. Current operational modelling platforms,
whether assimilating data or not (e.g., TOPAZ4: Sakov et al.,
2012, GIOPS: Smith et al., 2016), and global climate models
including sea ice dynamics (e.g., the Coupled Model Inter-
comparison Project Phase 5 models involved in the IPCC
Fifth Assessment Report, Flato et al., 2013) are based on
the same mechanical framework for sea ice developed in the
late seventies: the Hibler viscous-plastic (VP) model (Hibler,
1977, 1979). With this approach, the ice creeps very slowly
as a viscous fluid under small stresses and deforms plasti-
cally once exceeding a yield criterion. However, over the last
decade, the viscous hypothesis and other underlying phys-
ical assumptions of this VP framework have been revisited
and found to be inconsistent with the observed mechanical
behaviour of sea ice, in particular with respect to the order
of magnitude of the observed strain rates (Weiss et al., 2007;
Rampal et al., 2008), the anisotropic distribution of ridges
and leads and associated discontinuities in the velocity field
on scales both small and large (> 100 km) (Hibler, 2001;
Schulson, 2004; Coon et al., 2007), the relation between
stresses and strain-rates (Weiss et al., 2007), the strength of
pack ice in tension (Weiss et al., 2007; Coon et al., 2007) and
the normal flow rule (Weiss et al., 2007).

In the same line of ideas, recent modelling studies have
demonstrated that while the VP model can represent the
mean global (> 100 km) drift of sea ice with a certain level
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of accuracy, it fails at reproducing the observed properties
of sea ice deformation, especially at the fine scales (Lindsay
et al., 2003; Kwok et al., 2008; Girard et al., 2009) relevant
for operational modelling, thereby stressing the need to ex-
plore alternative rheologies.

Other continuum models have been developed lately with
the aim of representing some important aspects of the me-
chanical behaviour of sea ice more accurately. Consider-
ing the discontinuous and anisotropic character of the pack,
Schreyer et al. (2006) have suggested an elastic-decohesive
model that explicitly accounts for the deformation arising
from discontinuities in displacement across leads, the ori-
entation of which is prescribed. Tsamados et al. (2013)
presented a model based on the rheology of Wilchinsky
and Feltham (2006) that accounts for the subgrid-scale
anisotropy of the sea ice cover. Their framework incorpo-
rates an evolution equation for the orientation of ice floes, for
which a diamond shape is assumed. Our present work shares
the same objective as these previous initiatives: to build a
continuum model for sea ice that is consistent with its ob-
served mechanical behaviour. However, we chose to base our
approach on a completely isotropic rheology and, by incor-
porating the relevant brittle mechanics concepts and long-
range elastic interactions, aim to develop a model that repro-
duces the anisotropy and extreme gradients within the sea ice
cover naturally, that is, without the need of treating velocity
discontinuities explicitly or prescribing lead orientations or
floe shapes.

2 Background

Early on, sea ice scientists suspected that the ice pack be-
haves in a brittle instead of a viscous manner, with some
strain hardening in compression (Nye, 1973). In later years,
studies of fracture patterns, stresses and strains both in situ
and in the laboratory have suggested that the deformation
of the sea ice cover is mostly accommodated by a mecha-
nism of multiscale fracturing and frictional sliding (Marsan
et al., 2004; Weiss et al., 2007; Schulson, 2004, 2006). Re-
cently, the availability of ice buoy and satellite data has al-
lowed three all-important characteristics of the deformation
of sea ice to be revealed: its strong localization in space, or
heterogeneity, its localization in time, or intermittency, and
its anisotropy.

On the one hand, the anisotropic nature of sea ice defor-
mation is made evident by the analysis of satellite-imagery-
derived ice motion products (e.g. Stern et al., 1995), which
shows that high strain rates concentrate along oriented,
linear-like faults, or leads, often termed “linear kinematic
features” (Kwok, 2001). The signature of the strong hetero-
geneity and intermittency of sea ice deformation, on the other
hand, is the emergence of spatial and temporal scalings in
the deformation fields over a wide range of scales. Using a
coarse-graining procedure, Marsan et al. (2004) performed a

scaling analysis of the deformation of sea ice over the Arctic
using the 3 days, 10km× 10km gridded RADARSAT Geo-
physical Processor System (RGPS) deformation product. By
doing so, they obtained a power-law relationship between the
total deformation rate < ε̇tot>l invariant and the correspond-
ing averaging scale l of the form

< ε̇tot>l ∼ l
−β , (1)

with a constant exponent β > 0, indicating correlations in
the deformation fields over at least 2 orders of magnitude
in l and an increase in the mean strain rate with decreasing
scale of observation, in agreement with a strong spatial lo-
calization of the deformation. This coarse-graining calcula-
tion was later extended to ice buoy data (e.g., Rampal et al.,
2008; Hutchings et al., 2011) which, with a higher tempo-
ral resolution than the RGPS data, allowed scaling analyses
of Arctic sea ice deformation in the temporal dimension to
be performed as well, over space scales of 300 m to 300 km.
Using the dispersion rate of buoys as a proxy for the strain
rate, Rampal et al. (2008) obtained a power-law relationship
between the total deformation rate < ε̇tot>t computed at a
chosen space scale and the timescale of observation t :

< ε̇tot>t ∼ t
−γ , (2)

with a constant exponent γ > 0 over 2 orders of magni-
tudes in t (from 3 h to 3 months), indicating an increase of
strain rates with decreasing timescale, consistent with an in-
termittent deformation process. Their analyses furthermore
revealed a space–time coupling between the spatial and tem-
poral scaling laws, consistent with (1) a brittle-type material
in which permanent deformations are accommodated by dis-
placements along fractures and fault planes over a wide range
of scales and (2) long-range elastic interactions, allowing for
small, local perturbations to trigger much larger damaging
events within the ice pack (Marsan and Weiss, 2010).

A close comparison can be made between the deformation
of sea ice and that of the Earth crust, in which brittle fractur-
ing and Coulomb stress redistribution also take place and for
which scaling properties have been recognized for years (Ka-
gan and Knopoff, 1980; Kagan, 1991; Kagan and Jackson,
1991; King et al., 1994; Turcotte, 1992; Stein, 1999). Re-
cently, Marsan and Weiss (2010) established a formal anal-
ogy between the mechanical behaviour of sea ice and that
of the Earth crust by demonstrating that the space–time cou-
pling in the deformation of sea ice, estimated from contin-
uous displacement fields, is equivalent to a coupled scal-
ing of the discrete ice-fracturing events occurring along the
leads, similar to that observed for earthquakes (Kagan, 1991;
Kagan and Jackson, 1991). The authors suggested that the
similarity between sea ice and the Earth crust is attributable
to a common cascading mechanism of earth-/ice-fracturing
events that extends the influence of local events to longer du-
rations and larger areas than their direct aftershocks.
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In the case of rocks, attempts to simulate brittle deforma-
tion were first made using random spring-like models. Com-
bining local threshold mechanics and long-range elastic in-
teractions, these successfully reproduced the strong local-
ization of rupture in both space and time, the clustering of
rupture events along faults and the multifractal properties of
strain fields (Cowie et al., 1993, 1995). Building on similar
linear-elastic laws and introducing some strain softening at
the micro-scale, the failure model of Tang (1997) succeeded
in simulating the progressive failure leading to the macro-
scopic non-linear behaviour of brittle rock, thereby treating
discontinuum mechanics with continuum mechanics meth-
ods. An analogous approach based on local damage evolu-
tion was also taken by Amitrano et al. (1999), who combined

– a linear-elastic constitutive law for a continuous solid,

– a local Mohr–Coulomb criterion for brittle failure,

– an isotropic progressive damage mechanism for the
elastic modulus described by a non-dimensional scalar
damage parameter, allowing for the redistribution of the
stress from over-critical to subcritical areas of the mate-
rial, for the triggering of avalanches of damaging events
and for the propagation of faults.

This rheological framework, named elasto-brittle (EB),
was recently developed in the context of the Arctic ice pack
by Girard et al. (2011) to explicitly introduce brittle mechan-
ics concepts in continuum sea ice models. First implemen-
tations of this rheology into short (3 days), no-advection,
stand-alone simulations of the Arctic, but using realistic wind
forcing from reanalyses, showed that the EB model is able to
reproduce the strong localization and the anisotropy of dam-
age within sea ice and agrees very well with the deformation
fields estimated from the RGPS data (Girard et al., 2011).

In the context of longer-term simulations of ice conditions
and coupling to an ocean component, a suitable sea ice model
however needs to represent not only the small deformations
associated with the fracturing of the pack, but also the per-
manent deformations occurring once it is fractured and frag-
mented. When ice floes move relative to each other along
open leads, these much larger deformations set the advective
processes and overall drift pattern of the ice cover.

This last point is an important and intrinsic limitation of
the EB framework, since the linear-elastic constitutive law
does not allow the elastic (reversible) and permanent defor-
mations to be solved for separately. Hence to estimate the
velocity of the simulated material, assumptions about the
amount of reversible vs. irreversible deformation need to be
made in the EB model. The partitioning is bounded by two
limit cases. (1) If a loading stress is applied to the damaged
material (see Fig. 1b, dashed blue loading path) and all of the
resulting deformation is assumed elastic, the material goes
back to its initial position if unloaded and its velocity is zero
(red dashed unloading path). This assumption was made in

the no-advection simulations of Girard et al. (2011). (2) Al-
ternatively, if all of the resulting deformation is considered
permanent, the material keeps its final position if unloaded
(Fig. 1b, purple dashed unloading path) and the velocity is
trivially estimated as the ratio of the total deformation and
time associated with the loading. In the case of sea ice, the
second assumption might be justified by the fact that elastic
deformations within an undamaged pack are small compared
to the permanent deformations associated with the opening,
closing and shearing along leads. Considering the maximum
in situ values of shear stress of 105 Pa reported by Weiss et al.
(2007) and an undamaged elastic modulus between 1.0 and
10.0×109 Pa (Timco and Weeks, 2010), upper bound values
for shear strains in a 1 m thick elastic ice pack would be on
the order of 10−5. On daily timescales, these are at the lower
bound of RGPS deformation rate estimates (between 10−4

and 100 day−1, for Marsan et al., 2004; Girard et al., 2009),
suggesting a dominant contribution of irreversible deforma-
tions. This second assumption is made in the recently devel-
oped neXtSIM sea ice model, which is based on the EB rhe-
ology and does represent advective processes over the Arctic
(Bouillon and Rampal, 2015). However, in this all-permanent
deformations limit, internal stresses are immediately dissi-
pated; hence the memory of the stresses associated with elas-
tic deformations is erased whenever the applied loading is
removed or reset. Without carrying the history of previous
stresses, the model cannot exhibit the intermittency intrinsic
to the mechanical behaviour of sea ice, that is, the part of
the intermittency that is not directly inhered from the wind
forcing (Rampal et al., 2009). In order to estimate adequate
drift velocities, a suitable rheological model must therefore
have the capability to distinguish between reversible and ir-
reversible deformations.

The goal of this work is to develop such a model
that allows a passage between the small/elastic and the
large/permanent deformations and with the capability of
damage mechanics models to reproduce the observed space
and time scaling properties of sea ice deformation. Our ap-
proach consists in introducing a viscous relaxation term
into the linear-elastic constitutive law of the original EB
framework. The new constitutive law takes the form of the
Maxwell viscoelastic model. The all-important difference
with respect to the Maxwell framework however is that the
viscosity associated with the stress dissipation term is not
meant to represent the viscoplastic creep of bulk ice (Du-
val et al., 1983), but instead is an “apparent” viscosity that
depends on the local level of damage and concentration of
the ice cover. As for the elastic modulus, this mechanical
parameter is coupled to the progressive damage mechanism
through a scalar variable d representing the time- and space-
evolving level of damage of the ice pack. The coupling is
designed so that stresses induce elastic strains over undam-
aged portions of the ice and are dissipated through permanent
deformations where the pack is highly fractured.
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The use of a viscoelastic rheology and apparent viscosity
in the case of sea ice can be supported again by the sim-
ilarity between the mechanical behaviour of the ice pack
and that of the Earth crust and by the existence of similar
approaches to model lithospheric faulting. Active faults in
the Earth crust have been known to deform in two distinct
ways: either abruptly, causing earthquakes, or in a transient,
aseismic manner (Scholz, 2002; Gratier et al., 2014; Cakir
et al., 2012; Cetin et al., 2014). Similar to sea ice, co-seismic
fracturing activates aseismic creep, leading to deformations
that can be much larger than that associated with the frac-
turing itself and to the relaxation of a significant amount of
elastic strain (Cakir et al., 2012; Cetin et al., 2014). A fur-
ther justification of the introduction of such pseudo-viscosity
comes from the rheology of granular media. As for sea ice
along leads (see Fig. 3), rocks along active faults are highly
fragmented. Sheared granular media flow in a viscous man-
ner when inertial effects can be neglected (Jop et al., 2006)
with an apparent viscosity diverging as the packing fraction
approaches the close-packed limit (Aranson and Tsimring,
2006). This last point will justify the dependence of our ap-
parent viscosity on sea ice concentration.

Viscous-elastic rheological models combined with dam-
age mechanics have already been used to model the defor-
mation and failure of glacier ice (e.g., Keller and Hutter,
2014), particularly in the context of glacier crevassing (Pra-
long and Funk, 2005) and ice sheet calving (Borstad et al.,
2012; Krug et al., 2014). However, the timescales involved
in damage and deformation are widely different between the
sea ice cover and glaciers and the processes at play are of
fundamentally different nature: sea ice deforms rapidly under
the action of the wind and ocean drags, in the brittle regime,
while glaciers deform slowly, through viscoplastic deforma-
tion of bulk ice. In viscoelastic models for glaciers and ice
sheets, the viscosity is therefore the dynamical viscosity as-
sociated with the true creep of polycrystalline ice. Besides,
in such models, damage impacts the viscous flow through
the concept of effective stress.

In comparison, viscous-elastic models developed for litho-
spheric faulting somewhat share more similarities with the
approach presented here for sea ice, especially with respect
to the use of an apparent viscosity. Lyakhovsky et al. (1997)
for instance built a viscoelastic damage rheology model with
the intent of representing the different stages of geological
faulting, from subcritical crack growth to increasing crack
concentration and material degradation, macroscopic brittle
failure, post-failure deformation and healing. However, the
evolution of damage in their model was derived from energy
conservation principles rather than from a brittle failure cri-
terion and was coupled to the elastic modulus only. Hamiel
et al. (2004) modified this rheological framework with a
non-linear damage-elastic moduli relation and by adding a
damage-dependent Maxwell-like viscous term to account for
the gradual accumulation of irreversible strain observed in
typical rock mechanics experiments. The addition of this

term had however a fundamentally different purpose than in
the present approach in that it was intended for the represen-
tation of the small pre-macroscopic brittle failure deforma-
tions, not to bridge between small and large deformations.

To our knowledge, it is the first time a viscoelastic
Maxwell constitutive law is coupled to a progressive damage
(and healing) mechanism through both the elastic modulus
and an apparent viscosity with the intent of reproducing the
small deformation associated with brittle fracturing and the
large, permanent post-fracture deformation of geomaterials.
It is certainly the first time such a rheological model has been
adapted for sea ice modelling.

The paper is structured as follows: the Maxwell-EB rhe-
ological framework is described in Sect. 3. A dynamical
Maxwell-EB sea ice model is presented in Sect. 4 along with
its adimensional version and a discussion of the important
non-dimensional numbers involved in the model. The numer-
ical scheme employed in the case of small-deformation ex-
periments is presented and idealized model simulations are
described in Sect. 5. In Sect. 6, these simulations are an-
alyzed and discussed on the basis of the macroscopic be-
haviour and convergence properties of the model and of the
heterogeneity, anisotropy and intermittency of the simulated
deformation. Conclusions are summarized in Sect. 7.

3 The Maxwell-EB model

3.1 Constitutive law

In 1867, James Clerk Maxwell presented a linear model to
describe the macroscopic behaviour of a continuum mate-
rial, typically an incompressible fluid, that exhibits both elas-
tic and viscous properties in small deformations (Maxwell,
1867). This linear model combines a Newtonian viscous
fluid-like damper and an elastic term and is represented
schematically in one dimension by a spring and a dashpot
connected in series (see Fig. 1a). Considering the material as
being isotropic at the elementary scale for both elastic and
viscous properties, the Maxwell constitutive law reads

1
E

Dσ

Dt
+

1
η
σ = ε̇, (3)

with σ , the stress tensor, E and η the elastic modulus and
viscosity of the material associated to the spring and dashpot
components respectively and ε̇ the strain rate tensor.

When a stress σ is applied to the Maxwell system, the re-
sulting deformation εtotal is split between two components:
the instantaneous, reversible, deformation of the spring, εE ,
and the permanent deformation of the dashpot, ευ , increasing
linearly in time (see Fig. 1a). For a given total deformation
applied to the system, the rate of dissipation of the associated
stress through the permanent deformation of the dashpot is
determined by the ratio, η

E
, of the viscosity of the dashpot

and of the elastic modulus of the spring, E. This ratio can be
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interpreted as a characteristic memory time for elastic defor-
mations: as it decreases, the material loses its capability to
retain the memory of recoverable deformations.

Here we apply this idea of stress dissipation to a two-
or three-dimensional, compressible, elastic continuous solid
and formulate the following constitutive equation by adding
a Maxwell-like viscous damper term to the linear elasticity
(i.e., Hooke’s law) constitutive law:

1
E

Dσ
Dt +

1
η
σ =K : ε̇, (4)

where ε̇ is the strain rate tensor, here equivalent to the rate
of strain tensor and given by D(u)= ∇u+∇uT

2 , with the ve-
locity u. The (dimensionless) elastic stiffness tensor K is de-
fined in terms of ν, the Poisson’s ratio, such that for all three-
dimensional symmetric tensor ε = εij ∀ i,j ; 1≤ i,j ≤ 3,
(K : ε)ij = ν

(1+ν)(1−2ν) tr(ε)δij + 2 1
2(1+ν)εij . In the case of

large deformations, the material derivative of the Cauchy
stress tensor σ takes the form of the objective Gordon–
Schowalter derivative (Saramito, 2016):

Dσ
Dt =

∂σ

∂t
+ (u · ∇)σ +βa(∇u,σ ), (5)

where the additional term βa accounts for the effects of rota-
tion and deformation on the evolution of the stress tensor and
is expressed as

βa(∇u,σ )= σW(u)−W(u)σ − a (σD(u)+D(u)σ ) ,

with D(u) the symmetric and W(u)= ∇u−∇uT
2 the anti-

symmetric part of the velocity gradient. In this rheological
framework, the mechanical parameter η is not the true dy-
namic viscosity of the material but rather is an apparent vis-
cosity. The related relaxation time, λ= η

E
, characterizing the

rate at which internal stresses dissipate into permanent de-
formations, is assumed equal for both the volumetric and de-
viatoric components of the deformation of the compressible
material.

3.2 Damage criterion

In agreement with in situ stress measurements (Weiss et al.,
2007), and as in the original EB model, the damage criterion
in the Maxwell-EB rheology is based on the Mohr–Coulomb
(MC) theory of fracture. In terms of the principal stresses σ1
and σ2, and using the rock mechanics convention that com-
pressive stresses are positive, the MC criterion reads

σ1 = qσ2+ σc (6)

(or σ2 = qσ1+ σc, by symmetry of the criterion along the
σ1 = σ2 axis – see Fig. 2).

The slope of the envelope in the principal stresses plane,
q, is expressed in terms of the internal friction coefficient µ
as

q =
[
(µ2
+ 1)1/2+µ

]2
. (7)

The intercept σc of the MC criterion with the σ1 axes (see
Fig. 2), interpreted as the uniaxial (unconfined) compressive
strength, is given by

σc =
2C[

(µ2+ 1)1/2−µ
] , (8)

with the cohesion C setting the local resistance of the mate-
rial to pure shear. Disorder is introduced in the damage crite-
rion through noise in the spatial distribution of C. This noise
represents the natural heterogeneity of a real material associ-
ated with various structural defects serving as stress concen-
trators and which causes the progressive failure of the mate-
rial even under homogeneous forcing conditions (e.g., Her-
rmann and Roux, 1990; Amitrano et al., 1999; Tang, 1997).
In the case of the ice pack, heterogeneities arise for instance
in the form of thermal cracks or brine pockets (Schulson,
2004; Schulson and Duval, 2009), the length scale of which
is much smaller than the typical spatial resolution of mod-
els (≥ 1 km). Therefore, heterogeneity in the Maxwell-EB
model is introduced at the smallest resolved scale, that is
the mesh element size 1x, by drawing randomly the value
of C over each element from a uniform distribution of val-
ues spanning estimates from in situ stress measurements in
Arctic sea ice (Weiss et al., 2007).

The internal friction coefficient µ is set to 0.7, a value
seemingly scale-independent and consistent with laboratory
experiments on Coulombic shear faults in fresh ice (Schulson
et al., 2006; Fortt and Schulson, 2007; Weiss and Schulson,
2009) and also common for geomaterials (Byerlee, 1978;
Jaeger and Cook, 1979).

For metals and rocks, the MC theory was shown to be
defective in the case of tension (Paul, 1961), as the mech-
anism of tensile failure is intrinsically different to that of
compressive failure and, in general, does not involve fric-
tion. In the case of σ1,σ2 < 0, fracture occurs whenever σ1 or
σ2 reaches a critical value. However, in situ stress measure-
ments in Arctic sea ice have revealed that pure tensile failure
does not significantly modify the Coulombic-like failure en-
velope of pack ice and that Coulomb branches well describe
this envelope even under large tensile stresses, up to at least
σN ∼ 50 kPa (Weiss et al., 2007). Here, we therefore ex-
tend the Mohr–Coulomb criterion to tensile stresses and for
practical reasons, set the critical value to the ultimate tensile
stress σt , defined as the intersection of the Mohr–Coulomb
criterion with the σ2 axis (Paul, 1961), as shown in Fig. 2.
The tensile strength cutoff therefore takes the form

σ1 < 0; σ2 = σt , (9)

where

σt =−
σc

q
=−2C

[
(µ2
+ 1)1/2+µ

]
. (10)

This gives a ratio of the ultimate tensile stress and uniax-
ial compressive stress of σt

σc
≈ 0.27, which might slightly
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Figure 1. (a) Schematic representations of the Maxwell model for a continuum material with elastic (shear) modulus E and viscosity η. At
time t , a stress is applied on the system. It is removed at time t +1t : the spring goes back to its initial position but the dashpot retains its
deformation ευ . (b) Loading–unloading paths for a material with initial elastic modulus E0 in the linear-elastic (dotted), EB (dashed) and
Maxwell-EB (solid lines) model. The black dot indicates the onset of damaging in the EB and Maxwell-EB models. Unlike the EB model, the
Maxwell-EB model allows the total deformation to be partitioned into a permanent (ευ ) and an elastic contribution (εE), as indicated by the
arrows along the deformation axis. The diagram is not to scale in the context of modelling the lithosphere or sea ice; in these geomaterials,
permanent deformations can become much greater than elastic deformations as damage events accumulate over time.

overestimate the tensile strength for sea ice as measured
on the field (Weiss et al., 2007) and in the lab (Schulson,
2006) (σt ≈ 0.2σc). However, as such large values of tensile
strength are rarely obtained in the Maxwell-EB model simu-
lations, this choice does not significantly affect our results.

No truncation to the MC criterion is used to close the en-
velope towards biaxial compression (i.e., beyond σc) as in-
stances of large biaxial compressive stresses are seldom en-
countered in Arctic sea ice (Weiss et al., 2007). Besides,
imposing a truncation was shown to have little impact on
the simulation results. The damage criterion combining the
MC envelope and the tensile strength cutoff is represented in
Fig. 2 in the principal stresses plane and has the same shape
as deduced by Coon et al. (2007) from measurements in un-
damaged pack ice.

3.3 Progressive damage mechanism and healing

The Maxwell-EB rheology differs from the standard
Maxwell rheology in that the mechanical parameters E, η
and λ are not constant but all coupled to the spatially and
temporally evolving level of damage of the material, which
controls its local degradation and re-increase in strength.
Consistent with previous damage rheological frameworks,
the level of damage is represented by a non-dimensional,
scalar parameter d . The level of damage is equal to 1 for
an undamaged material and approaches the value of 0 in the
case of a “completely damaged” material. This variable is in-
terpreted as a measure of sub-grid cell defects and is allowed
to evolve through two competing mechanisms: damaging and
healing. On the one hand, damaging represents fracturing and
the opening of faults, or leads in the case of sea ice, occurring

when and where the internal stress exceeds the mechanical
resistance of the material and which leads to its weakening.
Healing on the other hand represents the reconsolidating and
strengthening of the damaged material through sintering or,
in the case of sea ice, refreezing within open leads. Although
this mechanism also contributes to the increase in elastic
stiffness (E×h, with h the ice thickness) and effective appar-
ent viscosity (η×h) of the ice, healing is distinguished from
pure thermodynamic growth or dynamically driven thickness
redistribution (e.g., Rothrock, 1975) in that it applies only
where and when the material has been damaged. It there-
fore allows d , E and η to re-increase at most to their un-
damaged value; d0

= 1, E0 and η0 respectively. Because the
two processes operate simultaneously within the simulated
material, an evolution equation for d needs to include both
mechanisms. In the following, damaging and healing are first
treated separately and then combined in a single equation for
d .

3.3.1 Damaging

Contrary to typical sea ice modelling frameworks, no plastic
(i.e., normal) flow rule is prescribed when the damage cri-
terion is reached in the Maxwell-EB model. Instead, when
the stress locally exceeds the critical stress, the elastic mod-
ulus is allowed to drop, leading to local strain softening
(e.g., Amitrano et al., 1999; Cowie et al., 1993; Tang, 1997;
Hamiel et al., 2004, and others). Because of the long-range
interactions within the elastic medium, local drops in E im-
ply a stress redistribution that can in turn induce damaging
of neighbouring elements. By this process, “avalanches” of
damaging events can occur and damage can propagate within
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Figure 2. Damage criterion of the Maxwell-EB model in the princi-
pal stresses plane (solid line) combining the Mohr–Coulomb and
tensile stress criteria. The thick dashed line represents a biaxial
compression truncation that closes the envelope but is not applied
in the present model. Compression is taken positive and the dot-
ted line indicates the σ1 = σ2 axis. Numbers indicate the states of
(1) uniaxial tension, (2) biaxial tension and compression, (3) uni-
axial compression and (4) biaxial compression and their location
relative to the envelope. The calculation of the distance to the dam-
age criterion dcrit, defined by the intersection (σ ′1, σ ′2) of the line
relating the state of stress (σ1, σ2) of a given element to the origin
of the principal stress plane, is represented in red in the case of the
Mohr–Coulomb criterion being exceeded and in purple in the case
of the tensile strength criterion being exceeded.

the material over long distances (Amitrano et al., 1999; Gi-
rard et al., 2010). As the elastic perturbation generated by
such events is anisotropic (Eshelby, 1957), this propagation
mechanism naturally leads to the emergence of both spatial
heterogeneity and anisotropy in the stress and strain fields,
i.e., to the formation of linear-like faults (see Sect. 6).

In the Maxwell-EB model, the change in level of dam-
age corresponding to a local damage event is determined as a
function of the distance of the damaged model element to the
yield criterion. Three important assumptions are made when
calculating this distance, denoted dcrit. The first is that the de-
formation of each model element is conserved during a dam-
aging event, i.e., at initiation, damage modifies only the local
state of stress, not strains. The second is that for a sufficiently
small model time step 1t , i.e., very small compared to the
viscous relaxation time λ (see Sect. 4.1), a negligible part

of the stress is dissipated into viscous deformation. A third
constraint is based on the fact that stresses outside the failure
envelope are not physical because brittle failure would occur
before the material could support them. Hence we consider
that after being damaged, an element has its state of stress ly-
ing just on the failure envelope. With these assumptions, the
following equality holds for each damaged element:

ε′
= ε ←→

K−1σ ′

E× dcrit
=

K−1σ

E
, (11)

where ε is the strain tensor and the superscript ′ denotes the
post-damage state of deformation and stress. In terms of the
principal stresses, the change in level of damage of a given
element is given by

dcrit =
σ ′1
σ1
=
σ ′2
σ2
, (12)

which implies that as the level of damage varies, all stress
components vary in the same proportions. Hence the state
of stress σ ′ after each damaging event is given by the in-
tersection of the failure envelope and of the line connecting
the pre-damage state of stress (σ1,σ2) with the origin, in the
principal stress plane (see Fig. 2). Two cases must be dis-
tinguished when calculating σ ′, depending on which of the
Mohr–Coulomb or tensile criterion has been exceeded. Com-
bining the two, dcrit is evaluated simultaneously over all mesh
elements of the model domain as

dcrit = min
[

1,
σt

σ2
,

σc

σ1− qσ2

]
. (13)

Following progressive damage models, the level of dam-
age of a given element in the Maxwell-EB model at any given
time is determined by both its instantaneous distance to the
damage criterion dcrit, i.e., its current state of stress, and its
previous damage level. This implies that the variable d car-
ries the entire history of damage of model elements and, if
discretizing time as tn = n1t , n≥ 0, translates into the dis-
crete recursive equation

dn+1
= dn+1

crit d
n, 0< d0

≤ 1. (14)

A continuous evolution equation for d can be obtained by
considering that the time characterizing the redistribution of
stress between model elements is intrinsically tied to the
speed of propagation of elastic waves, c, in the material,
which carry the damage information. Using a backward ex-
plicit scheme of order 1, and setting the model time step to
1t = td with td = 1x

c
, the exact time of propagation of an

elastic wave with speed c over a distance 1x, the following
equation arises:

Dd

Dt
=
dcrit− 1
td

d. (15)
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3.3.2 Healing

By healing, the simulated material is allowed to regain
some strength. The characteristic time for this process is
designated in the following by th. It corresponds to the
time required for a completely damaged element (d = 0)
to recover its initial stiffness (d = 1), which in a dynamic–
thermodynamic sea ice model would depend on the local dif-
ference between the temperature of the air near the surface
of the ice and the freezing point of seawater below. Healing
schemes of varying levels of complexity could be used in the
Maxwell-EB model. One possibility is the one employed in
the EB sea ice model of Girard et al. (2010), which follows
parameterizations of the vertical growth of sea ice (Maykut,
1986). An underlying assumption is that the rate of healing
is inversely proportional to the level of damaging of the ice.
However as there is no physical evidence for this assumption,
in the following uncoupled implementation of the Maxwell-
EB model, we use an even simpler parameterization that im-
plies a constant healing rate, 1

th
:

Dd

Dt
=

1
th
, 0< d ≤ 1. (16)

Combining both the damaging and healing mechanisms
(Eqs. 13, 15 and 16), the complete evolution equation for d
is

∂d

∂t
+ (u · ∇)d =

(
min

[
1,
σt

σ2
,

σc

σ1− qσ2

]
− 1

)
1
td
d +

1
th
, 0< d ≤ 1. (17)

Although the two processes apply simultaneously to the level
of damage in the model, they are inherently distinct. On the
one hand, damaging is a discrete threshold mechanism ap-
plying only when and where the state of stress becomes over-
critical. As mentioned in Sects. 3.2 and 3.3.1, the character-
istic time for this process, td, is tied to the speed of prop-
agation of (shear) elastic waves and to the model’s spatial
resolution. In the case of an heterogeneous ice pack, an av-
erage value for c is on the order of 500 m s−1 (Marsan et al.,
2011). For spatial resolutions between that of current global
climate and high-resolution regional sea ice models (1x ≈ 1
to 100 km), the characteristic time for damage evolution, td,
therefore varies between a few seconds and a few hundreds
of seconds. Healing on the other hand is a continuous pro-
cess acting on all model elements, independently of the lo-
cal distance to the damage criteria. Studies on the refreezing
within leads in sea ice showed that the time for 1 m of ice
to grow within an opening of 10 cm under atmospheric tem-
peratures of Ta =−15 ◦C is 100 h (between 105 and 106 s,
Petrich et al., 2007). The orders of magnitude of difference
between th and td therefore imply that the two processes are
intrinsically decoupled in the case of the ice pack.

Undamaged	
pack ice

Small, elastic 
deformations

E = E0

Fractured,	
damaged zones

Large, permanent 
deformations

⌘ �!1

� �!1� �! 0

⌘ �! 0

E �! 0

Figure 3. Dependence of the apparent viscosity (η), of the elastic
modulus (E) and of the relaxation time (λ) on the level of damage
in the Maxwell-EB sea ice model. The image is a SPOT satellite
aerial picture of a 59 km×59 km portion of the Arctic sea ice cover
centred around 80.18◦ N, 108.55◦W.

3.3.3 Coupling d with E and η

The coupling between the Maxwell-EB constitutive law and
the progressive damage mechanism constitutes one of the
main features of this new modelling framework. It is defined
as follows.

– Deformations within an undamaged medium are small
and reversible, i.e., strictly elastic. Hence undamaged
portions of the simulated material have a maximum
elastic modulus E0 and a very large apparent viscosity
η0. In this case, the viscous term in Eq. (4) is negligible
and a linear-elastic constitutive law is recovered (Fig. 3,
right panel).

– Deformations can accumulate over highly damaged ar-
eas of the material to become arbitrarily large. These
deformations are permanent and dissipate most of the
stress applied to the material within a short relaxation
time. Hence the elastic modulus, viscosity and relax-
ation time drop locally over damaged areas. In the limit
of a completely damaged material, elastic interactions
are hindered and deformations are strictly irreversible
(Fig. 3, left panel). In this case, λ−→ td and a soft
elastic-plastic behaviour is recovered in which the mem-
ory of the elastic stresses is totally lost (narrow-dashed
blue line in Fig. 1).

– As damaged areas are allowed to heal, E, η and λ all
re-increase, up to their initial undamaged values.

Different functions could be used to express the depen-
dence of E, η and λ on d that meet these criteria. In the
absence of physical evidence for a higher level of complex-
ity, and consistent with the relationship between the elas-
tic modulus and crack density used in damage models of
rocks (Agnon and Lyakhovsky, 1995; Amitrano et al., 1999;
Schapery, 1999), we use the simplest parameterization and
set

E(t)= E0d(t) (18)
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η(t)= η0d(t)α, (19)

with 0< d(t = 0)≤ 1 such that

λ(t)=
η0

E0 d(t)
α−1, (20)

with α a constant greater than 1 introduced to fulfil the con-
straint that the relaxation time for the stress also decreases
with increasing damage and re-increases with healing, as the
material respectively loses and recovers the memory of re-
versible deformations. Using this formulation, both η and E
depend only on their undamaged value and on the level of
damage variable d .

4 A Maxwell-EB sea ice model

In this section, the Maxwell-EB rheology is implemented
in the context of sea ice modelling. As in regional and
global sea ice models, the ice cover is considered as a two-
dimensional plate due to its very large aspect ratio and plane
stresses are assumed. A constant healing rate is used. In this
case, the complete dynamical model is given by the follow-
ing system of equations.

1. The momentum equation is

ρh

[
∂u

∂t
+ (u · ∇)u

]
= Fext+∇ · (hσ ), (21)

with u the velocity, h the thickness and ρ the density of
sea ice. Fext represents all external forces on the sea ice
cover, which in regional and global sea ice models are
typically the air and ocean drags and the forces associ-
ated with the Coriolis acceleration and gradients in sea
surface height. We assume the internal stress to be ho-
mogeneously distributed over the thickness h and write
the momentum equation in terms of the internal stress
rather than the vertically integrated stress tensor more
commonly used in the sea ice modelling community.
This approach was also taken in the elasto-brittle model
of Bouillon and Rampal (NeXtSIM 2015), as it allows a
direct comparison between the local state of stress and
the critical stress (σt or σc here) when estimating the
distance to the damage criterion.

2. Conservation equations for the ice concentrationA (ice-
covered surface per unit area) and ice thickness h are

∂h

∂t
+∇ · (hu)= Sh,h≥ 0 (22)

∂A

∂t
+∇ · (Au)= SA,0≤ A≤ 1, (23)

where Sh and SA represent thermodynamic source and
diffusion terms. An assumption behind these conserva-
tion equations is that elastic compressibility effects are

negligible relative to dynamic variations of the ice vol-
ume.

3. The constitutive law is given by Eq. (4), with

E = f1(E
0,d)exp[−c∗(1−A)], (24)

η = f2(η
0,d)exp[−c∗(1−A)], (25)

where f1 and f2 represent the functional dependence
on the level of damage of the ice d , defined by Eqs. (18)
and (19) respectively. The exponential function of the
ice concentration allows the internal stress term to be
maximal when A= 1 and to decrease rapidly when
leads open and A drops. It is of the same form as that
used for the pressure term (P , or ice strength in com-
pression) in the VP rheology of Hibler (1979). Here the
non-dimensional parameter c∗ characterizing this de-
pendence on the ice concentration has the same (con-
stant) value for both mechanical parameters, but could
be set differently in a refined parameterization.

4. The equation for the evolution of damage is given by
Eq. (17), with the damage criterion defined by Eqs. (6)
and (9) and q, σc and σt given by Eqs. (7), (8), (10)
in terms of the cohesion variable C and of the constant
internal friction coefficient µ.

In the case of “quenched disorder” (i.e., when the field of C
is set at the beginning of a model simulation), an additional
equation arises that handles the advection of the field of cohe-
sion with the simulated velocity field. Table 1 lists all model
variables and parameters.

4.1 Characteristic numbers and times

Neglecting all thermodynamic effects and variations in ice
thickness and concentration (considering h= 1 and A= 1)
as well as external forcings and adimensionalizing with re-
spect to the ice velocity U , the horizontal extent of the model
domain L, and the undamaged elastic modulus E0, the dy-
namical system of equations reads

Ca0Dũ
Dt̃
= ∇̃ · σ̃ (26)

We0dα−1Dσ̃

Dt̃
+ σ̃ =We0dαK(ν) : ˜̇ε (27)

Dd

Dt̃
=

(
min

[
1,6t

1
σ̃2
,6c

1
σ̃1− qσ̃2

]
− 1

)
1
Td
d

+
1
Th
, 0< d ≤ 1, (28)

where the superscript “̃ ” is used for all non-dimensional
variables and operators.

In this form, the model involves eight characteristic num-
bers and timescales: Ca0, the (undamaged) Cauchy num-
ber, We0, the (undamaged) Weissenberg number, ν, Pois-
son’s ratio, 6t, the dimensionless critical tensile stress, 6c,
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Table 1. Model variables, parameters and domain dimensions for the uniaxial compression experiment.

Parameters Values

Poisson’s ratio ν 0.3
Internal friction coefficient µ 0.7
Ice density ρ 900 kg m−3

Elastic (shear) wave propagation speed c 500 m s−1

Undamaged elastic modulus E0 2c2(1+ ν)ρ Pa
Undamaged apparent viscosity η0 107

×E0 Pa s
Cohesion C (25–50)×103 Pa
Damage parameter α 4.0

Undamaged relaxation time λ0 η0

E0 s
Characteristic time for damage evolution td 1t s
Characteristic time for healing th 105 s

Dimensions of compression experiment Values

Length of the ice plate L 200× 103 m
Prescribed velocity of forced edge U 10−3 m s−1

Number of elements along short edge N 10, 20, 40, 80, 100
Mean model resolution 1x L

2N m
Model time step 1t 1x

c s
Ice thickness h 1 m
Ice concentration A 1

Variables Non-dimensional equivalent

Horizontal dimension x x̃ = x
L

Time t t̃ = tU
L

Ice velocity u ũ= u
U

Internal stress σ σ̃ = σ
E0

the dimensionless critical stress with respect to the Mohr–
Coulomb criterion, Td, the characteristic time for damage
evolution, Th, the characteristic time for healing and α, the
damage parameter. In order for the Maxwell-EB model to
represent the intended physics, the value of these parameters
must lie within a certain range. In the following we elaborate
on the absolute and relative values of those numbers which
are the most critical in the context of sea ice modelling.

4.1.1 Td

As mentioned in the previous section, the (adimensional)
characteristic time for the propagation of damage, Td =

td
T

with T = L
U

, is determined by the speed of propagation of
elastic waves within the simulated material and is strongly
tied to the mean spatial resolution of the model, as td should
be of order 1x

c
. In turn, this time places a strong constraint

on the Maxwell-EB model time step. Setting 1t < 1x
c

is in-
deed unphysical, as the time associated to one model itera-
tion would then be too short for the stress to be redistributed
from one overcritical element to its direct neighbour. For the
model to resolve the propagation of damage, the time step
must therefore be ≥ td.

No strict upper bound to 1t is imposed by the damage
mechanism. On the one hand, choosing 1t > td could be
interesting in terms of reducing computational costs. Phys-
ically, it implies that damage is allowed to propagate beyond
the first neighbour barrier and over larger distances within
one model time step. On the other hand, increasing 1t with
respect to td also implies (1) a decrease in the resolution of
damaging, as the model might miss important intermediate
damage events that trigger additional interactions between
neighbouring elements and (2) larger local drops in the level
of damage, inducing large stress perturbations and, poten-
tially, numerical instabilities in the model. The temporal res-
olution that is optimal in terms of capturing all elastic inter-
actions within the simulated material and ensuring numerical
stability is therefore 1t = td. In all simulations presented in
the following, this is the choice we make.

4.1.2 Th

In order for healing not to offset damaging in the rate of
change of d , the (adimensional) time for healing, Th =

th
T

,
must be much larger than the (adimensional) time for dam-
age propagation. This separation of scales ensures that ele-
ments cannot recover more strength than they have lost by
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damaging within one time step by healing. In the case of sea
ice for instance, excess healing would effectively entail a net
growth, or thickening, of the pack, a process that should in-
stead be accounted for by thermodynamic balance consider-
ations. However, considering the aforementioned estimates
of the speed of elastic waves and of the healing rate of leads
(see Sect. 3.3), the sea ice cover naturally meets the condition
Th� Td.

4.1.3 We

The Weissenberg number, We, defined as the dimensionless
product of the viscous relaxation time for the stress and of
time T = L

U
characterizing the deformation process,

We=
η

E

U

L
=
λ

T
, (29)

sets the viscous vs. elastic character of the flow of a vis-
coelastic material. In the original Maxwell model, We= 0
represents the limit of zero elastic stresses, while a very large
We characterizes a strictly elastic solid. In the Maxwell-EB
model, the Weissenberg number evolves according to the
level of damage as We=We0dα−1 with We0, its maximum
value.

As viscous dissipation should be insignificant in undam-
aged and strictly elastic areas of the material, a very large
We0 should be chosen, representing the limit of 1

η0 −→ 0. In
this case the viscous term in the constitutive law Eq. (4) ef-
fectively vanishes and a linear elastic rheology is recovered.
In practice, the value of We0 is however limited, first, by the
machine precision and second, due to a numerical scheme
failure known in the field of viscoelastic flow computations
as the high Weissenberg number problem (Keunings, 1986;
Fattal and Kupferman, 2004, 2005; Saramito, 2014). For
large values of We, numerical instabilities arise in Maxwell-
type models due to the presence of deformation source terms
(βa) in the transport equation for the stress tensor Eq. (5).
With We0 (or equivalently, λ0) that is too low, simulations
can run for a time t ∼ λ0 and unphysical viscous dissipation
can occur in undamaged parts of the simulated material. This
issue can be dealt with by multiplying the viscous term in the
Maxwell constitutive law by a Heaviside function that effec-
tively sets 1

η
to the limit value of 0 when and where d ≥ dc,

with dc a chosen threshold value (e.g., dc = 1 when using
a constant heal rate parameterization) and leaves the consti-
tutive equation unchanged otherwise. In small-deformation
experiments, i.e., run for a time t � λ0, viscous dissipation
over undamaged parts of the material is not significant and
the inclusion of such a function is unnecessary.

Conversely, where damage becomes important, the vis-
cous relaxation time λ should decrease significantly be-
low the characteristic time for healing to allow for internal
stresses to have time to dissipate and deformations to become
large.

4.1.4 Ca

The dimensionless number that arises when adimensionaliz-
ing stresses in the momentum equation with respect to the
elastic modulus is the Cauchy number, defined as the ratio
of inertial to elastic forces (Ca= ρU2

E
). If inertial forces are

comparable to elastic forces and Ca∼ 1, the effect of the
propagation of viscoelastic waves in the material cannot be
neglected. Dimensional analysis indicates that over an un-
damaged ice pack with velocity ranging between 0.001 and
1 m s−1, Ca0 is in the range [10−12

− 10−6
]. Hence inertial

effects can be safely neglected. For simulated ice velocities
U < 1 m s−1, and α > 2, inertial effects in the Maxwell-EB
model remain negligible when damage becomes important.

4.1.5 α

The damage parameter α controls the rate at which the appar-
ent viscosity decreases and the material loses its elastic prop-
erties with damaging. As mentioned in previous sections, it
should be set greater than 1 in order for the viscous relax-
ation time to decrease with damaging. The requirements that
(1) the viscous relaxation time drops well below the time for
healing over highly damaged areas and (2) inertial effects
remain negligible for high deformation rates (i.e., large ve-
locities) can also place a constraint on the minimum value
of α. Conversely, for large values of α, the relaxation time
λ becomes very small whatever the level of damage is (see
Sect. 3.3.3). This means that elastic deformations are almost
immediately dissipated after damaging; that is, the model be-
comes purely elasto-plastic. The sensitivity of the model to
the value of this parameter was kept for a separate paper;
hence α is not varied here. For the experiments presented in
Sect. 6, we find that α = 4 allows both the brittle behaviour
and the relaxation of the internal stress to be represented in
a material with mechanical parameters in the range of the
values suitable for sea ice. For α larger than about 7, mem-
ory effects become insignificant and the experiment instead
exhibits a stick-slip behaviour with a well-defined character-
istic frequency (not shown).

5 Numerical scheme and experiments

The objective time derivative of the Cauchy stress σ in the
Maxwell-EB constitutive law Eq. (4) is composed of a time
derivative, an advection term and of a sum of rotation and de-
formation (βa) terms, each of which implies a different level
of numerical complexity. In developing the model, our ap-
proach is to introduce each of these terms separately in order
to evaluate their respective contribution to the simulated me-
chanical behaviour. On the one hand, introducing the time
derivative while neglecting the advection and βa terms al-
lows retaining a Lagrangian scheme, similar to the original
EB model (Girard et al., 2011). Without any remeshing of
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Figure 4. Domain and boundary conditions for the uniaxial com-
pression experiment.

the domain, the model is then suitable for short-term, small-
deformation simulations only. On the other hand, when per-
manent deformations accumulate over a long time, the ad-
vection term is no longer negligible and βa terms become
potentially important.

In the following, we present small-deformation numeri-
cal experiments that allow the mechanical behaviour of the
Maxwell-EB model to be analyzed in terms of the statistical
and scaling properties of the simulated damage and deforma-
tion fields. Performed with a highly idealized configuration
for the domain geometry, the applied loading and boundary
conditions, these will demonstrate that the main characteris-
tics of sea ice deformation (spatial heterogeneity, anisotropy,
intermittency) naturally emerge from the underlying physics
and do not need to be implemented in an ad hoc manner.

The simulations represent the uniaxial compression of
a (two-dimensional) rectangular ice plate with dimensions
L
2 ×L (see Fig. 4a). Compression is applied by prescribing
a constant velocity U on the upper short edge of the plate
with the opposite edge maintained fixed in the direction of
the forcing. No confinement is applied on the lateral sides.
The velocity U is set small enough to ensure a low driving
rate (i.e., slow compared to timescale of damage propagation;
Cowie et al., 1993).

In the present implementation, the model is not yet cou-
pled to a thermodynamic component; hence SA = Sh = 0.
As advection is neglected and simulations are run for a

short enough time such that the macroscopic and local de-
formations within the ice cover remain small (the cumula-
tive deformation is ≤ 10 % of the size of a single model el-
ement), dynamics-induced variations (through convergence–
divergence) of the ice thickness and concentration are not
accounted for, and hence the mechanical parameters E, η
and C are not yet coupled to h or A. Conservation of mass
is therefore not imposed in these small-deformation simu-
lations, equivalent to assuming a uniform, constant thick-
ness (1 m) and ice concentration (100 %). All simulations are
started from an initially undamaged ice cover with uniform
elastic modulus and viscosity. Undamaged mechanical pa-
rameter values are chosen to represent sea ice on regional to
global scales (c = 500 m s−1 and ν = 0.3). The undamaged
elastic modulus is given by the relation E0

= 2c2(1+ ν)ρ
and the undamaged viscosity η0 is set such that the initial re-
laxation time λ0 is as large as possible while the maximum
Weissenberg number We0 is small (< 1). All model variables
and parameters are listed in Table 1. Parameter values are not
varied in any of the simulations presented here.

The model is made adimensional with respect to the length
of the rectangular plate, L, the prescribed velocity U on the
top boundary and the undamaged elastic modulus E0. The
system of equations is therefore given by Eqs. (26) to (28)
with Dũ

Dt̃
= 0 and is solved for the six unknowns, ũ (two com-

ponents), σ̃ (three components) and d . In all simulations, the
time step is set equal to the characteristic time for damage
propagation (1̃t = Td). A semi-implicit scheme is used that
linearizes the system, in which the momentum and constitu-
tive equations are first solved simultaneously using a back-
ward Euler scheme of order 1 and the value of d at the
previous model time step. The level of damage is updated
in a second time using the estimated ũ and σ̃ and an ex-
plicit scheme of order 1. A fixed-point algorithm iterates be-
tween these two steps until the residual of the linearized con-
stitutive equation drops below a chosen tolerance, ensuring
the convergence of the solution. Finite elements (FEs) and
variational methods are used to solve the time-discretized
problem on a Lagrangian grid within the C++ environment
RHEOLEF (Saramito, 2013: http://cel.archives-ouvertes.fr/
cel-00573970). An unstructured mesh with triangular ele-
ments is used and the average spatial resolution is set by
choosing the number N of elements along the short side
of the domain. As cumulative deformations are small (see
above) the FE spatial discretization is defined based on the
initial mesh grid and is not updated in time. All results pre-
sented in the following are expressed in terms of adimen-
sional quantities; however for the sake of simplicity we drop
the “̃ ” notation for all variables.

6 Results

In this section we analyze the mechanical behaviour of the
Maxwell-EB model. In particular, we evaluate its capability
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to reproduce the main characteristics of sea ice deformation –
its heterogeneity, intermittency and anisotropy – which have
been recently used as benchmarks to validate (or invalidate)
sea ice models (e.g., Girard et al., 2009, 2010; Bouillon and
Rampal, 2015). To do so, we follow the methodology de-
veloped in previous observational studies of the deformation
and drift of the Arctic ice pack.

6.1 Spatial resolution, convergence and anisotropy

In a first time, we analyze the overall, macroscopic behaviour
of the Maxwell-EB model as well as the convergence and de-
pendence of the solution on the prescribed initial conditions.
To do so, a set of four uniaxial compression simulations is
run using different spatial resolutions, with N = 10,20,40
and 80. The values of the initial, undamaged mechanical
parameters are identical between the simulations; so is the
field of cohesion, which is defined at the lowest resolution
(N = 10) and interpolated onto the higher resolution mesh
grids.

Figure 5 shows the (adimensional) macroscopic stress,
σm (normal stress integrated on the upper boundary of the
domain), as a function of the (adimensional) macroscopic
strain, εm, set by the prescribed displacement of the upper
boundary, for these four simulations. The dotted line rep-
resents the damage rate (the number of damaged elements
per model time step times their distance to the damage cri-
terion, 1− dcrit) for the simulation with N = 40. Inspection
of the initial loading and damaging sequence suggests that
the mechanical behaviour is similar to that obtained with
other elasto-brittle models (e.g., Tang, 1997; Amitrano et al.,
1999; Girard et al., 2010). The Maxwell-EB model simulates

1. a strictly linear-elastic behaviour at the initial stage of
the experiment, as the material is initially undamaged;

2. a deviation from the linear-elastic behaviour after the
onset of damage (marked by the red dot 1), indicative of
macroscopic strain softening, with damage distributed
homogeneously throughout the material (see Fig. 5b1);

3. the formation of clusters of damaged elements, non-
interacting at first, then joining along linear features;
this stage is marked by a rapid increase in the number
of damaged elements;

4. a sharp stress drop associated with the macroscopic fail-
ure of the sample and propagation of a main fault span-
ning the entire domain (see Fig. 5b2).

In the Maxwell-EB model, this last stage is characterized by
a drop in the Weissenberg number (i.e., in λ) localized along
the main fault (not shown), where strain rates are orders of
magnitude higher than in undamaged parts of the material.
Then, as damaged areas heal, stress builds up again within
the material. At all spatial resolutions, the model simulates

cycles of slow stress build-up (healing phase) and rapid stress
relaxation (damaging phase).

Because the simulations use the same spatial distribution
of the damage threshold (i.e., of C) the location of the first
damage events is the same at all resolutions, as shown by
the maps of instantaneous level of damage d near the onset
of damaging (Fig. 5b1). As soon as the first damage events
occur, the heterogeneities introduced in the stress field by
these events contribute and, over time, prevail over the ini-
tially introduced noise in C in setting the location and tim-
ing of subsequent events (Tang, 1997). Because these hetero-
geneities tend to localize at the finest scale (i.e., the scale of
the mesh element, 1x), their generation results in a different
redistribution of the stress between neighbouring elements
and hence in a non-identical propagation of damage between
the model simulations at different spatial resolutions. As il-
lustrated in Fig. 5, the model solutions therefore do not con-
verge (see panels b, 2 to 4) and fractures form with different
shapes and orientations.

This divergence between the post-damage model solu-
tions illustrates an all-important and intrinsic characteristic
of the present rheological framework. As other models for
the failure of disordered materials (e.g., Cowie et al., 1993;
Tang, 1997; Amitrano et al., 1999; Girard et al., 2011), the
Maxwell-EB model is based on the standard formulation of
damage theory, in which there is no characteristic length
scale associated with damage redistribution and damage is
therefore local. One intrinsic property of this local damage
theory is that it allows damage to localize into a zone of
vanishing volume (or area) (Bažant, 1976), thereby imply-
ing a zero energy dissipation rate in that volume (area). As a
consequence, the numerical solutions of finite element local
damage models are not objective with respect to the choice
of mesh grid and do not converge upon mesh refinement.

These shortcomings have been dealt with by defining dam-
age in models in a non-local manner (see Bažant and Jirásek
(2002) for a review of such models). Pijaudier-Cabot and
Bažant (1987) for instance have suggested applying the non-
local concept to the variables controlling the strain softening,
i.e., the level of damage, while keeping a local definition for
the elastic strain and stresses in the linear-elastic constitutive
equation. By replacing the damage energy release rate with
its spatial average over a representative volume (area), the lo-
calization of damage is then limited to a space scale that cor-
responds to an intrinsic damage length scale for the simulated
material. In the context of sea ice, following this approach
would entail assuming a minimum size for leads within the
ice pack, or a correlation length, ξ > 1x, for heterogeneities
within the ice cover. Such an assumption would however not
be physical, as the correlation length associated with natu-
ral heterogeneities (see Sect. 3.2) is likely much smaller than
that of the grid cell in regional and global sea ice models.
In addition, invariance of sea ice fracturing, as revealed from
the distributions of floe sizes, holds down to the metre scale
(e.g. Weiss, 2003).
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Figure 5. (a) Macroscopic stress vs. macroscopic strain (solid lines) for four uniaxial compression simulations with different spatial resolu-
tions and damage rate (number of damaged elements times 1−dcrit, grey line) for the simulation with N = 40. All simulations are initialized
with the same values of the mechanical parameters and with the same field of cohesion (C) defined at the lowest spatial resolution (N = 10).
(b) Fields of the instantaneous level of damage (left panels) and of the order of magnitude of the total deformation rate (log10(ε̇tot), right
panels) at the four different times indicated on (a) and for the four simulations (resolution increasing from top to bottom).

Another important property of the deformation made evi-
dent by this set of experiments is its strong anisotropy. The
fields of d and of the total deformation rate (ε̇tot) repre-
sented in Fig. 5 indeed show that at all spatial resolutions,
the simulated damage and deformation are both highly lo-
calized and oriented along linear features. This is an impor-

tant result, as no anisotropy is introduced at the local scale
on either the elastic or viscous properties, or in the dam-
age parameterization. In an elastic medium submitted to a
loading that is non-perfectly isotropic with respect to the
domain geometry or the heterogeneity present in the mate-
rial, the elastic kernel associated with a damaged inclusion
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Figure 6. Coulomb’s stress field (the normalized maximum stress
with respect to the Mohr–Coulomb damage criterion) generated
by (a) a circular inclusion defined on the initial field of the level
of damage (d = 0.9) in an otherwise undamaged (d = 1), homo-
geneous and linear-elastic material (left) and (b) by local damage
events within an initially undamaged material in which disorder is
introduced locally in the damage criterion via the field of cohesion,
C. In both cases, the spatial resolution is N = 80 and the plate is
subjected to the same uniaxial compression and boundary condi-
tions as described in Sect. 5 and Fig. 4.

is indeed anisotropic, hence the redistribution of stresses is
too (Eshelby, 1957). This is illustrated in Fig. 6a, which
shows the field of the Coulomb stress, σCoulomb = σ1− qσ2
(i.e., the maximum stress with respect to the Mohr–Coulomb
damage criterion, right panel), associated with the presence
of a circular damaged inclusion in an otherwise homoge-
neous, isotropic, linear-elastic rectangular plate subjected to
the same uniaxial compression loading and boundary con-
ditions as described in Sect. 5. In the simulations presented
here, each element, as soon as it becomes damaged, plays
the role of a damaged inclusion and induces a long-range
perturbation in the stress field that is maximum along ori-
ented branches (see Fig. 6b). The combination of (1) small-
scale disorder, (2) damage mechanics in an elastic medium
and (3) the anisotropy of the elastic interaction kernel itself
is sufficient to generate anisotropy, up to very large space
scales through successive elastic interactions between dam-
aged elements.

6.2 Heterogeneity

As shown in the previous section, when simulations are
started from an undamaged state, the simulated mechanical
behaviour of the material is intrinsically different between
the first and subsequent loading and damaging cycles. The
capability of damage models based on a linear-elastic consti-
tutive law to reproduce a deformation that is highly hetero-
geneous has already been demonstrated (e.g. Girard et al.,
2010; Tang, 1997; Amitrano et al., 1999). However, as these
frameworks neither include a healing mechanism nor a slow
relaxation of elastic stresses, their post-macroscopic failure
behaviour is physically inconsistent, and only the path to the
first rupture was analyzed. Hence here we focus our anal-
ysis on the post-macroscopic rupture behaviour and aim to
establish whether the strain-rate fields simulated with the
Maxwell-EB model exhibit a similar heterogeneity.

To quantify the spatial localization of the simulated defor-
mation, we follow Marsan et al. (2004) and estimate defor-
mation rates over 2 orders of magnitude in space scales using
a coarse-graining procedure. The calculation is described in
detail by Girard et al. (2010). For this analysis we use outputs
of strain rate fields from simulations withN = 100, averaged
over a time interval corresponding to the time of propagation
of an elastic shear wave with speed c through the width of
the domain (L2

1
T×c
=N time steps).

The dependence of the deformation rates on the spatial
scale of observation is investigated at different stages of the
healing–damaging cycle. Figure 7a and b show the total de-
formation rate < ε̇tot>l as a function of the space scale l
at five equally spaced steps along the path towards a given
macroscopic failure event, that is, between the minimum in
macroscopic stress that follows the propagation of a fault
and the maximum that precedes the next macro-rupture, as
indicated in Fig. 7a. Deformation rates are normalized by
< ε̇tot > at the smallest averaging scale (L/N ). At the first
stage, just following the rupture (red curve), the total defor-
mation rate shows a clear power-law decrease with increas-
ing spatial scale of the form of Eq. (1) over nearly 2 or-
ders of magnitude of l, consistent with a strong localiza-
tion of the deformation. At the subsequent stages (yellow
and green curves), damaged elements progressively recover
their mechanical strength by healing. Deformation rates de-
crease along the main fault and re-increases over undamaged
areas; hence deformation homogenizes over the domain and
the rate of decrease of < ε̇tot>l with l is reduced. Then, as
healing allows stress to build up within the material, damag-
ing resumes and localizes again. The exponent β therefore
re-increases towards its post-macro-rupture value (blue and
purple curves).

Repeating the procedure for subsequent healing and dam-
aging cycles and for multiple realizations of the experiment
initialized with different cohesion fields showed a similar
evolution of the rate of decrease of < ε̇tot>l with l between
macro-ruptures events, with values of β in the vicinity of the
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Figure 7. (a) Macroscopic stress as a function of the macroscopic strain for one realization of the uniaxial compression experiment with
N = 100. (b) Total deformation rate as a function of the spatial scale (l = L

2n with 1≤ n≤N/2), normalized at the smallest scale L/N ,
at the five stages indicated on (a). (c) Zoom into panel (b) for the second, third and fourth stages. (d) Corresponding fields of the order of
magnitude of the total deformation rate (log10(ε̇tot)) normalized by the maximum value of ε̇tot.

rupture consistent with previous EB model analyses (e.g., Gi-
rard et al., 2010, β = 0.15±0.02). However, an important dif-
ference between the present results and that of Girard et al.
(2010) is the absence of a clear cross-over scale for which
< ε̇tot>l becomes independent of l and which implies a fi-
nite correlation length of damage events. This suggests that
the Maxwell-EB system progressively loses the memory of
its initial homogeneous, undamaged state and that an elasto-
brittle material experiencing both healing and damaging en-
ters a marginally stable state with scale invariance spanning
the size of the system. This result is consistent with the scale-
dependence analysis of RGPS-derived deformation rates of
Marsan et al. (2004) and Stern and Lindsay (2009), in which
no cutoff scale was observed for l varying between 10 and
1000 km, suggesting that Arctic sea ice is most often in a
near-critical state.

6.3 Intermittency

In this section we characterize the temporal behaviour of
the Maxwell-EB model. Figure 8a represents the simulated
macroscopic stress as a function of time (black dashed-dotted
line) along with the corresponding damage rate (grey solid
line) record for one realization of the uniaxial compression
experiment with N = 40. Inspection of both temporal series
reveals two types of mechanical behaviour of the Maxwell-
EB material.

First, the evolution of the macroscopic stress is clearly
characterized by cycles of slow stress build-ups and very fast
relaxations. The strong asymmetry of the signal in time is
confirmed by a high (negative) skewness (−6) of the distribu-
tion of the macroscopic stress increments 1σm

1t
(not shown).

Associated with these cycles is a succession of progressive
increases in damage events and very sharp drops, after which
damaging stops momentarily (red arrow in Fig. 8a).
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Figure 8. (a) Macroscopic stress (black dashed/dotted line) and damage rate (solid grey line) as a function of time for one realization of the
uniaxial compression experiment with N = 40. The dashed red box indicates an interval of uninterrupted damaging activity, during which
deformation is accommodated by a persisting system of interacting faults. (b) Instantaneous fields of the level of damage at the five times
indicated by the blue dots on the macroscopic stress curve, showing the formation of the system of faults (first panel), which remains active
for some time (three following panels), until the propagation of a new, non-interacting fault (last panel).

Second, as identified on the same time series, some peri-
ods (e.g., the interval delimited by the dashed red box) are
characterized by a continuous damage activity and by both
low-amplitude and low-frequency fluctuations of the stress.
This contrasted behaviour translates into a significantly more
symmetric (skewness of −1.9) distribution of 1σm

1t
. Inspec-

tion of the spatial distribution of damage (Fig. 8b) and strain
rate fields (not shown) over this time interval indicates that
the same system of interacting faults remains activated, with
not much damaging activity over the rest of the domain, and
therefore suggests that creep-like deformation along this sys-
tem dissipates all of the input loading.

Following the approach taken for fracture-type models
which record the number of broken fibres, ruptured bounds,
depinning events, etc., we investigate the time dependence
of the simulated damage activity by analyzing time series of
discrete failure events. We estimate the power spectral den-
sity (PSD) of damage rate time series. The resulting squared
Fourier coefficients are averaged over five realizations of the
compression experiment initialized with different fields of C
over domains with N = 40. Figure 9a represents the spectral
density estimated by averaging the power over a five-value
window centred on each frequency f . We checked that using
a smaller averaging window does not affect the shape of the
PSD discussed below.

At low frequencies, the PSD is almost flat, suggesting that
the number of damage events is uncorrelated in time. As
these frequencies are lower than 1

Th
, this is consistent with the

fact that the Maxwell-EB material loses the memory of previ-
ous damage events entirely when allowed to heal completely.
At higher frequencies, the PSD shows a decrease with in-
creasing f reminiscent of a temporal correlation of damaging
events in the material. This is expressed as a power-law decay
with PSD(f )= 1/f γ . At intermediate frequencies, we esti-
mate a slope γ = 2, suggesting that the instantaneous dam-
age rate is correlated in time but increments of the damage
rate are uncorrelated. At the highest frequencies, γ > 2, indi-
cating that the damage rate is correlated in time and damage
rate increments are anti-correlated. The break in the slope oc-
curs around f = 106, a frequency that we relate to the min-
imum propagation time of a macro-rupture, i.e., the time of
propagation of damage (i.e., of an elastic shear wave with
speed c) across the width L

2 of the domain (N time steps).
The transition between the flat and power-law decaying parts
of the PSD is marked by a clear peak spanning the range of
frequencies corresponding to the cycles of healing and dam-
aging, the dashed line indicating the frequency of such a cy-
cle, as identified by the double arrow in Fig. 8a.

Finally, we analyze the dependence of the simulated de-
formation on the timescale of observation using a temporal
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initialized with different fields of C and with N = 40. Vertical solid lines indicate, from left to right, the frequency associated with the
characteristic time for healing, the inverse time of propagation of damage across the width of the domain and 1

2× the frequency associated
with the characteristic time for damage. The dashed line indicates the frequency of the healing and damaging cycle marked with a red
arrow in Fig. 8a. (b) Total deformation rate < ε̇tot>t as a function of the observation time t , for 20 realizations of the coarse-graining
calculation centred on different arbitrary times t0 along a uniaxial compression experiment with N = 40 (thin grey curves) and average of
the 20 realizations (thick black curve). The vertical solid lines indicate, from left to right, the time of propagation of damage across the width
of the domain and the characteristic time for healing and the dashed line, the period of the healing and damaging cycle marked with a red
arrow in Fig. 8a.

coarse-graining method (e.g., Rampal et al., 2008). Com-
ponents of the strain rate at a given spatial scale are av-
eraged over a time window of duration t to compute the
mean total deformation rate < ε̇tot>t . The window is cen-
tred on an arbitrary time t0 and has a size t = 2n× (N1t)
with n= 1,2,3, . . . and with the smallest averaging timescale
corresponding to the time of propagation of an elastic shear
wave with speed c across the width L

2 of the domain. The
chosen spatial averaging scale is that of the highest defor-
mation rate, which as shown in Sect. 1 is of L

N
. The domain

is therefore divided in square boxes of equal size l = L
N

and
the calculated deformation invariants are averaged over all
available boxes. Figure 9b shows the total deformation rate
< ε̇tot>t as a function of the time of observation t (thick
black line) averaged over 20 realizations of the coarse grain-
ing calculation (thin grey lines) centred on different t0 for a
simulation withN = 40. Consistent with the localizing of the
deformation and an intermittent process, < ε̇tot>t decreases
with increasing t over almost 2 orders of magnitudes of t .

The observed scaling is however altered in two ways,
which relate to the specific geometry, loading and bound-
ary conditions used in the present simulations. First, as one
main fault always dominates the deformation in the system,
curves of < ε̇tot>t are strongly modulated by a succession
of peaks associated with the cycles of stress build-up and
macro-rupture, the amplitude of which decreases with the
scale of observation t . Second, at large t , the scaling asymp-
totes to a value corresponding to the prescribed forcing. Sim-
ulations over larger systems using non-homogeneous surface
forcing should allow for multiple macroscopic-scale faults to

be active simultaneously, and hence to observe a clearer scal-
ing of the simulated deformation over larger time spans.

7 Conclusions

In this paper we have presented a new mechanical frame-
work suited for modelling the brittle behaviour of the sea
ice cover (Weiss et al., 2007) while keeping a continuum de-
scription. A relaxation term for the internal stress is added to
the original elasto-brittle constitutive law and both the linear
and viscous components are coupled to a progressive damage
mechanism to allow partitioning between the reversible and
permanent deformations based on the local level of damage
of the material.

Highly idealized simulations using forcing conditions ho-
mogeneous in both space and time show the Maxwell-EB
model simulates a complex temporal and spatial evolution
of the deformation patterns, in close agreement with obser-
vations of the Arctic sea ice cover. Anisotropy in the sim-
ulated damage and deformation fields arises naturally from
the small-scale disorder and elastic interactions, although the
material’s properties are fully isotropic at the element scale.
The model also reproduces both the persistence of creeping
leads and the activation of new leads with different shapes
and orientations, in agreement with the observed deforma-
tion of sea ice (Coon et al., 2007). Analyses of the simulated
damage and deformation fields reveal

1. a highly heterogeneous deformation, translating into a
power-law decrease of the deformation rate with in-
creasing spatial scale. The associated exponent varies
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periodically: it is highest in the vicinity of macro-
rupture events and decreases between events as the ma-
terial partially heals. The disappearance after a few
spinup rupture events of a cross-over scale at which
deformation rates become independent of the scale of
observation suggests that the Maxwell-EB model, in-
cluding both damaging and healing processes, success-
fully reproduces a marginally stable state, as observed
for Arctic sea ice.

2. an intermittent deformation, manifested by the highly
asymmetric temporal evolution of the internal stress
within the material, which shows a succession of slow
build-ups and very rapid relaxation phases. This inter-
mittency is supported by the existence of a temporal cor-
relation in the rate of damage at all timescales below the
characteristic healing time of the material. A temporal
scaling of the deformation rate is also obtained but due
to the specific set-up of the simulations analyzed here, it
is modulated by the cycles of stress build-up and relax-
ation and its span is limited by the prescribed forcing.

Considering the highly idealized set-up of the simulations
analyzed here, these temporal and spatial scaling properties
in the deformation fields cannot possibly be inherited from
the prescribed forcing. Instead, their emergence is a signature
of the mechanical behaviour of the Maxwell-EB model itself.

The next logical step in the development of a Maxwell-
EB sea ice rheology consists in analyzing the sensitivity of
the simulated deformation and damage fields to the model
parameters. In particular, the partitioning between the sim-
ulated brittle and creep-like behaviour as well as the degree
of localization of the deformation (Frederiksen and Braun,
2001) might depend on the rate of decrease of the viscous
relaxation time with increasing level of damage (parameter
α) and on the characteristic time for healing and associated
healing parameterization, all of which are poorly constrained
in the case of the ice pack.

Further validation of the Maxwell-EB framework and the
determination of the range of model parameters values suit-
able for sea ice call for a thorough comparison of the scaling
properties of the simulated deformation rates with that esti-
mated from the available ice buoy and RGPS data. Such anal-
ysis necessitates carrying out numerical experiments over pe-
riods of several days to months and over realistic domains
of regional to global scales. At these spatial and tempo-
ral scales, deformations within the sea ice cover become
large; hence advective processes cannot be neglected. As
the Maxwell-EB rheology effectively reproduces very strong
spatial gradients within the velocity, strain and stress fields,
its use in large-deformation experiments requires the imple-
mentation of a robust advection scheme in order to limit dif-
fusion and retain the strong localization of damage and de-
formation rates. The development of a numerical scheme for
the Maxwell-EB model that includes advection and is both
efficient and practical in view of dynamic–thermodynamic

and fully coupled ocean–sea ice–atmosphere simulations is
underway.
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