Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-133-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-133-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya
Department of Geography and Regional Science, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
Institute of Atmospheric and Cryospheric Sciences, until May 2015 known as the Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
L. I. Nicholson
Institute of Atmospheric and Cryospheric Sciences, until May 2015 known as the Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Institute of Geography, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Wetterkreuz 15, 91058 Erlangen, Germany
W. Gurgiser
Institute of Atmospheric and Cryospheric Sciences, until May 2015 known as the Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
G. Kaser
Institute of Atmospheric and Cryospheric Sciences, until May 2015 known as the Institute of Meteorology and Geophysics, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Related authors
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024, https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
Short summary
Wind-driven snow redistribution affects glacier mass balance. A case study of Hintereisferner glacier in Austria used high-resolution observations and simulations to model snow redistribution. Simulations matched observations, showing the potential of the model for studying snow redistribution on other mountain glaciers.
Annelies Voordendag, Rainer Prinz, Lilian Schuster, and Georg Kaser
The Cryosphere, 17, 3661–3665, https://doi.org/10.5194/tc-17-3661-2023, https://doi.org/10.5194/tc-17-3661-2023, 2023
Short summary
Short summary
The Glacier Loss Day (GLD) is the day on which all mass gained from the accumulation period is lost, and the glacier loses mass irrecoverably for the rest of the mass balance year. In 2022, the GLD was already reached on 23 June at Hintereisferner (Austria), and this led to a record-breaking mass loss. We introduce the GLD as a gross yet expressive indicator of the glacier’s imbalance with a persistently warming climate.
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1093–1099, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, 2022
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 153–160, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, 2021
Thomas Mölg, Douglas R. Hardy, Emily Collier, Elena Kropač, Christina Schmid, Nicolas J. Cullen, Georg Kaser, Rainer Prinz, and Michael Winkler
Earth Syst. Dynam., 11, 653–672, https://doi.org/10.5194/esd-11-653-2020, https://doi.org/10.5194/esd-11-653-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro summit are like sample spots of the climate in the tropical mid-troposphere. Measurements of air temperature, air humidity, and precipitation with automated weather stations show that the differences in these meteorological elements between two altitudes (~ 5600 and ~ 5900 m) vary significantly over the day and the seasons, in concert with airflow dynamics around the mountain. Knowledge of these variations will improve atmosphere and cryosphere models.
Christoph Klug, Erik Bollmann, Stephan Peter Galos, Lindsey Nicholson, Rainer Prinz, Lorenzo Rieg, Rudolf Sailer, Johann Stötter, and Georg Kaser
The Cryosphere, 12, 833–849, https://doi.org/10.5194/tc-12-833-2018, https://doi.org/10.5194/tc-12-833-2018, 2018
Short summary
Short summary
This study presents a reanalysis of the glacier mass balance record at Hintereisferner, Austria, for the period 2001 to 2011. We provide a year-by-year comparison of glaciological and geodetic mass balances obtained from annual airborne laser scanning data. After applying a series of corrections, a comparison of the methods reveals major differences for certain years. We thoroughly discuss the origin of these discrepancies and implications for future glaciological mass balance measurements.
L. I. Nicholson, R. Prinz, T. Mölg, and G. Kaser
The Cryosphere, 7, 1205–1225, https://doi.org/10.5194/tc-7-1205-2013, https://doi.org/10.5194/tc-7-1205-2013, 2013
Lorenz Hänchen, Emily Potter, Cornelia Klein, Pierluigi Calanca, Fabien Maussion, Wolfgang Gurgiser, and Georg Wohlfahrt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3263, https://doi.org/10.5194/egusphere-2024-3263, 2024
Short summary
Short summary
In semi-arid regions, the timing and duration of the rainy season are crucial for agriculture. This study introduces a new framework for improving estimations of start and end of the rainy season by testing how well they fit local vegetation data. We improve the performance of existing methods and present a new one with higher performance. Our findings can help to make informed decisions about water usage, and the framework can be applied to other regions as well.
Thomas Mölg, Jan C. Schubert, Annette Debel, Steffen Höhnle, Kathy Steppe, Sibille Wehrmann, and Achim Bräuning
Geosci. Commun., 7, 215–225, https://doi.org/10.5194/gc-7-215-2024, https://doi.org/10.5194/gc-7-215-2024, 2024
Short summary
Short summary
We examine the understanding of weather and climate impacts on forest health in high school students. Climate physics, tree ring science, and educational research collaborate to provide an online platform that captures the students’ observations, showing they translate the measured weather and basic tree responses well. However, students hardly ever detect the causal connections. This result will help refine future classroom concepts and public climate change communication on changing forests.
Brigitta Goger, Lindsey Nicholson, Matthis Ouy, and Ivana Stiperski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2634, https://doi.org/10.5194/egusphere-2024-2634, 2024
Short summary
Short summary
We study with simulations if changing glacier ice surfaces surrounding a glacier impacts the atmospheric structure. Under North-Westerly flow conditions, a gravity wave forms over the glacier. This gravity wave is, however, weakened and breaks faster, when the surrounding glaciers are removed. This leads to stronger turbulent mixing over the remaining glacier and higher temperatures. This affects glacier melting patterns, and glaciers should be studied as a system.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024, https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
Short summary
Wind-driven snow redistribution affects glacier mass balance. A case study of Hintereisferner glacier in Austria used high-resolution observations and simulations to model snow redistribution. Simulations matched observations, showing the potential of the model for studying snow redistribution on other mountain glaciers.
Calvin Beck and Lindsey Nicholson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2766, https://doi.org/10.5194/egusphere-2023-2766, 2023
Short summary
Short summary
A glacier’s debris cover strongly modified its mass balance in contrast to a clean ice glacier. A key parameter for calculating sub-debris melt is the thermal diffusivity of the debris layer. Conway and Rasmussen (2000) present a method to estimate this value based on simple heat diffusion principles. Our analysis shows that the selected temporal and spatial sampling intervals effects the estimated value of thermal diffusivity, resulting in glacier melt being systematically underestimated.
Annelies Voordendag, Rainer Prinz, Lilian Schuster, and Georg Kaser
The Cryosphere, 17, 3661–3665, https://doi.org/10.5194/tc-17-3661-2023, https://doi.org/10.5194/tc-17-3661-2023, 2023
Short summary
Short summary
The Glacier Loss Day (GLD) is the day on which all mass gained from the accumulation period is lost, and the glacier loses mass irrecoverably for the rest of the mass balance year. In 2022, the GLD was already reached on 23 June at Hintereisferner (Austria), and this led to a record-breaking mass loss. We introduce the GLD as a gross yet expressive indicator of the glacier’s imbalance with a persistently warming climate.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1093–1099, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, 2022
Lorenz Hänchen, Cornelia Klein, Fabien Maussion, Wolfgang Gurgiser, Pierluigi Calanca, and Georg Wohlfahrt
Earth Syst. Dynam., 13, 595–611, https://doi.org/10.5194/esd-13-595-2022, https://doi.org/10.5194/esd-13-595-2022, 2022
Short summary
Short summary
To date, farmers' perceptions of hydrological changes do not match analysis of meteorological data. In contrast to rainfall data, we find greening of vegetation, indicating increased water availability in the past decades. The start of the season is highly variable, making farmers' perceptions comprehensible. We show that the El Niño–Southern Oscillation has complex effects on vegetation seasonality but does not drive the greening we observe. Improved onset forecasts could help local farmers.
Adina E. Racoviteanu, Lindsey Nicholson, and Neil F. Glasser
The Cryosphere, 15, 4557–4588, https://doi.org/10.5194/tc-15-4557-2021, https://doi.org/10.5194/tc-15-4557-2021, 2021
Short summary
Short summary
Supraglacial debris cover comprises ponds, exposed ice cliffs, debris material and vegetation. Understanding these features is important for glacier hydrology and related hazards. We use linear spectral unmixing of satellite data to assess the composition of map supraglacial debris across the Himalaya range in 2015. One of the highlights of this study is the automated mapping of supraglacial ponds, which complements and expands the existing supraglacial debris and lake databases.
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 153–160, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, 2021
Rebecca Mott, Ivana Stiperski, and Lindsey Nicholson
The Cryosphere, 14, 4699–4718, https://doi.org/10.5194/tc-14-4699-2020, https://doi.org/10.5194/tc-14-4699-2020, 2020
Short summary
Short summary
The Hintereisferner Experiment (HEFEX) investigated spatial and temporal dynamics of the near-surface boundary layer and associated heat exchange processes close to the glacier surface during the melting season. Turbulence data suggest that strong changes in the local thermodynamic characteristics occur when westerly flows disturbed prevailing katabatic flow, forming across-glacier flows and facilitating warm-air advection from the surrounding ice-free areas, which potentially promote ice melt.
Emily Collier and Thomas Mölg
Earth Syst. Sci. Data, 12, 3097–3112, https://doi.org/10.5194/essd-12-3097-2020, https://doi.org/10.5194/essd-12-3097-2020, 2020
Short summary
Short summary
As part of a recent project that aims to investigate the impact of climate change on forest ecosystems in Bavaria, we developed a high-resolution atmospheric dataset, BAYWRF, for this region that covers the period of September 1987 to August 2018. The data reproduce observed variability in recent meteorological conditions well and provide a useful tool for linking large-scale climate change to local impacts on economic, societal, ecological, and agricultural processes.
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020, https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro are unique indicators for climatic changes in the tropical midtroposphere of Africa. A history of severe glacier area loss raises concerns about an imminent future disappearance. Yet the remaining ice volume is not well known. Here, we reconstruct ice thickness maps for the two largest remaining ice bodies to assess the current glacier state. We believe that our approach could provide a means for a glacier-specific calibration of reconstructions on different scales.
Thomas Mölg, Douglas R. Hardy, Emily Collier, Elena Kropač, Christina Schmid, Nicolas J. Cullen, Georg Kaser, Rainer Prinz, and Michael Winkler
Earth Syst. Dynam., 11, 653–672, https://doi.org/10.5194/esd-11-653-2020, https://doi.org/10.5194/esd-11-653-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro summit are like sample spots of the climate in the tropical mid-troposphere. Measurements of air temperature, air humidity, and precipitation with automated weather stations show that the differences in these meteorological elements between two altitudes (~ 5600 and ~ 5900 m) vary significantly over the day and the seasons, in concert with airflow dynamics around the mountain. Knowledge of these variations will improve atmosphere and cryosphere models.
Jenny V. Turton, Thomas Mölg, and Emily Collier
Earth Syst. Sci. Data, 12, 1191–1202, https://doi.org/10.5194/essd-12-1191-2020, https://doi.org/10.5194/essd-12-1191-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream drains approximately 12 % of the entire Greenland ice sheet and could contribute over 1 m of sea level rise if it were to completely disappear. However, this region is a relatively new research area. Here we provide an atmospheric modelling dataset from 2014 to 2018, which includes many meteorological and radiation variables. The model data have been compared to weather stations and show good agreement. This dataset has many future applications.
Ian Allison, Charles Fierz, Regine Hock, Andrew Mackintosh, Georg Kaser, and Samuel U. Nussbaumer
Hist. Geo Space. Sci., 10, 97–107, https://doi.org/10.5194/hgss-10-97-2019, https://doi.org/10.5194/hgss-10-97-2019, 2019
Short summary
Short summary
The International Association of Cryospheric Sciences (IACS) became the eighth and most recent association of IUGG in July 2007. IACS was launched in recognition of the importance of the cryosphere, particularly at a time of significant global change. The forbears of IACS, however, start with the 1894 Commission Internationale des Glaciers (CIG). This paper traces the transition from CIG to IACS; scientific objectives that drove activities and changes, and key events and individuals involved.
Tobias Zolles, Fabien Maussion, Stephan Peter Galos, Wolfgang Gurgiser, and Lindsey Nicholson
The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019, https://doi.org/10.5194/tc-13-469-2019, 2019
Short summary
Short summary
A mass and energy balance model was subjected to sensitivity and uncertainty analysis on two different Alpine glaciers. The global sensitivity analysis allowed for a mass balance measurement independent assessment of the model sensitivity and functioned as a reduction of the model free parameter space. A novel approach of a multi-objective optimization estimates the uncertainty of the simulated mass balance and the energy fluxes. The final model uncertainty is up to 1300 kg m−3 per year.
Lindsey I. Nicholson, Michael McCarthy, Hamish D. Pritchard, and Ian Willis
The Cryosphere, 12, 3719–3734, https://doi.org/10.5194/tc-12-3719-2018, https://doi.org/10.5194/tc-12-3719-2018, 2018
Short summary
Short summary
Ground-penetrating radar of supraglacial debris thickness is used to study local thickness variability. Freshly emergent debris cover appears to have higher skewness and kurtosis than more mature debris covers. Accounting for debris thickness variability in ablation models can result in markedly different ice ablation than is calculated using the mean debris thickness. Slope stability modelling reveals likely locations for locally thin debris with high ablation.
Christoph Klug, Erik Bollmann, Stephan Peter Galos, Lindsey Nicholson, Rainer Prinz, Lorenzo Rieg, Rudolf Sailer, Johann Stötter, and Georg Kaser
The Cryosphere, 12, 833–849, https://doi.org/10.5194/tc-12-833-2018, https://doi.org/10.5194/tc-12-833-2018, 2018
Short summary
Short summary
This study presents a reanalysis of the glacier mass balance record at Hintereisferner, Austria, for the period 2001 to 2011. We provide a year-by-year comparison of glaciological and geodetic mass balances obtained from annual airborne laser scanning data. After applying a series of corrections, a comparison of the methods reveals major differences for certain years. We thoroughly discuss the origin of these discrepancies and implications for future glaciological mass balance measurements.
Ulrich Strasser, Thomas Marke, Ludwig Braun, Heidi Escher-Vetter, Irmgard Juen, Michael Kuhn, Fabien Maussion, Christoph Mayer, Lindsey Nicholson, Klaus Niedertscheider, Rudolf Sailer, Johann Stötter, Markus Weber, and Georg Kaser
Earth Syst. Sci. Data, 10, 151–171, https://doi.org/10.5194/essd-10-151-2018, https://doi.org/10.5194/essd-10-151-2018, 2018
Short summary
Short summary
A hydrometeorological and glaciological data set is presented with recordings from several research sites in the Rofental (1891–3772 m a.s.l., Ötztal Alps, Austria). The data sets are spanning 150 years and represent a unique pool of high mountain observations, enabling combined research of atmospheric, cryospheric and hydrological processes in complex terrain, and the development of state-of-the-art hydroclimatological and glacier mass balance models.
Anna Wirbel, Alexander H. Jarosch, and Lindsey Nicholson
The Cryosphere, 12, 189–204, https://doi.org/10.5194/tc-12-189-2018, https://doi.org/10.5194/tc-12-189-2018, 2018
Short summary
Short summary
As debris cover affects the meltwater production and behaviour of glaciers it is important to understand how, and over what timescales, it forms. Here we develop an advanced 3-D numerical model that describes transport of sediment through a glacier to the point where it emerges at the surface. The numerical performance of the model is satisfactory and it reproduces debris structures observed within real-world glaciers, thereby offering a useful tool for future studies of debris-covered glaciers.
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239, https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted
Short summary
Short summary
Many glaciers in the Himalaya are covered with thick layers of rock debris that acts as an insulating blanket and so reduces melting of the underlying ice. Little is known about how melt beneath supraglacial debris varies across glaciers and through the monsoon season. We measured debris temperatures across three glaciers and several years to investigate seasonal trends, and found that sub-debris ice melt can be predicted using a temperature–depth relationship with surface temperature data.
Douglas I. Benn, Sarah Thompson, Jason Gulley, Jordan Mertes, Adrian Luckman, and Lindsey Nicholson
The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, https://doi.org/10.5194/tc-11-2247-2017, 2017
Short summary
Short summary
This paper provides the first complete view of the drainage system of a large Himalayan glacier, based on ice-cave exploration and satellite image analysis. Drainage tunnels inside glaciers have a major impact on melting rates, by providing lines of weakness inside the ice and potential pathways for melt-water, and play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.
Stephan Peter Galos, Christoph Klug, Fabien Maussion, Federico Covi, Lindsey Nicholson, Lorenzo Rieg, Wolfgang Gurgiser, Thomas Mölg, and Georg Kaser
The Cryosphere, 11, 1417–1439, https://doi.org/10.5194/tc-11-1417-2017, https://doi.org/10.5194/tc-11-1417-2017, 2017
Kai-Uwe Eiselt, Frank Kaspar, Thomas Mölg, Stefan Krähenmann, Rafael Posada, and Jens O. Riede
Adv. Sci. Res., 14, 163–173, https://doi.org/10.5194/asr-14-163-2017, https://doi.org/10.5194/asr-14-163-2017, 2017
Short summary
Short summary
As one element of the SASSCAL initiative (a cooperation of Angola, Botswana, Namibia, Zambia, South Africa and Germany) networks of automatic weather stations have been installed or improved in Southern Africa. Here we compare interpolation methods for monthly minimum and maximum temperatures which were calculated from hourly measurements. The best interpolation results have been achieved combining multiple linear regression with three dimensional inverse distance weighted interpolation.
Lindsey I. Nicholson, Michał Pętlicki, Ben Partan, and Shelley MacDonell
The Cryosphere, 10, 1897–1913, https://doi.org/10.5194/tc-10-1897-2016, https://doi.org/10.5194/tc-10-1897-2016, 2016
Short summary
Short summary
An Xbox Kinect sensor was used as a close-range surface scanner to produce the first accurate 3D surface models of spikes of snow and ice (known as penitentes) that develop in cold, dry, sunny conditions. The data collected show how penitentes develop over time and how they affect the surface roughness of a glacier. These surface models are useful inputs to modelling studies of how penitentes alter energy exchanges between the atmosphere and the surface and how this affects meltwater production.
Wolfgang Gurgiser, Irmgard Juen, Katrin Singer, Martina Neuburger, Simone Schauwecker, Marlis Hofer, and Georg Kaser
Earth Syst. Dynam., 7, 499–515, https://doi.org/10.5194/esd-7-499-2016, https://doi.org/10.5194/esd-7-499-2016, 2016
Short summary
Short summary
Working on the interface of water availability and water demand in a small Andean catchment, peasants’ reports on detrimental precipitation changes during the last decades have attracted our scientific interest. We could not confirm any precipitation trends in this period with nearby precipitation records, but we found precipitation patterns that very likely pose challenges for rain-fed farming – in addition to potential other stresses by environmental and sociopolitical changes.
F. Maussion, W. Gurgiser, M. Großhauser, G. Kaser, and B. Marzeion
The Cryosphere, 9, 1663–1683, https://doi.org/10.5194/tc-9-1663-2015, https://doi.org/10.5194/tc-9-1663-2015, 2015
Short summary
Short summary
Using a newly developed open-source tool, we downscale the glacier surface energy and mass balance fluxes at Shallap Glacier. This allows an unprecedented quantification of the ENSO influence on a tropical glacier at climatological time scales (1980-2013). We find a stronger and steadier anti-correlation between Pacific sea-surface temperature (SST) and glacier mass balance than previously reported and provide keys to understand its mechanism.
E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush
The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015, https://doi.org/10.5194/tc-9-1617-2015, 2015
Short summary
Short summary
We investigate the impact of surface debris on glacier energy and mass fluxes and on atmosphere-glacier feedbacks in the Karakoram range, by including debris in an interactively coupled atmosphere-glacier model. The model is run from 1 May to 1 October 2004, with a simple specification of debris thickness. We find an appreciable reduction in ablation that exceeds 5m w.e. on glacier tongues, as well as significant alterations to near-surface air temperatures and boundary layer dynamics.
M. Hofer, B. Marzeion, and T. Mölg
Geosci. Model Dev., 8, 579–593, https://doi.org/10.5194/gmd-8-579-2015, https://doi.org/10.5194/gmd-8-579-2015, 2015
E. Collier, L. I. Nicholson, B. W. Brock, F. Maussion, R. Essery, and A. B. G. Bush
The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014, https://doi.org/10.5194/tc-8-1429-2014, 2014
W. Gurgiser, B. Marzeion, L. Nicholson, M. Ortner, and G. Kaser
The Cryosphere, 7, 1787–1802, https://doi.org/10.5194/tc-7-1787-2013, https://doi.org/10.5194/tc-7-1787-2013, 2013
S. MacDonell, C. Kinnard, T. Mölg, L. Nicholson, and J. Abermann
The Cryosphere, 7, 1513–1526, https://doi.org/10.5194/tc-7-1513-2013, https://doi.org/10.5194/tc-7-1513-2013, 2013
L. I. Nicholson, R. Prinz, T. Mölg, and G. Kaser
The Cryosphere, 7, 1205–1225, https://doi.org/10.5194/tc-7-1205-2013, https://doi.org/10.5194/tc-7-1205-2013, 2013
N. J. Cullen, P. Sirguey, T. Mölg, G. Kaser, M. Winkler, and S. J. Fitzsimons
The Cryosphere, 7, 419–431, https://doi.org/10.5194/tc-7-419-2013, https://doi.org/10.5194/tc-7-419-2013, 2013
D. B. Bahr, W. T. Pfeffer, and G. Kaser
The Cryosphere Discuss., https://doi.org/10.5194/tcd-6-5405-2012, https://doi.org/10.5194/tcd-6-5405-2012, 2012
Revised manuscript not accepted
T. Mölg, F. Maussion, W. Yang, and D. Scherer
The Cryosphere, 6, 1445–1461, https://doi.org/10.5194/tc-6-1445-2012, https://doi.org/10.5194/tc-6-1445-2012, 2012
Related subject area
Tropical Glaciers
El Niño enhances snow-line rise and ice loss on the Quelccaya Ice Cap, Peru
New insights into the decadal variability in glacier volume of a tropical ice cap, Antisana (0°29′ S, 78°09′ W), explained by the morpho-topographic and climatic context
Brief communication: Glacier thickness reconstruction on Mt. Kilimanjaro
The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier
Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru
Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field
Glacier change and glacial lake outburst flood risk in the Bolivian Andes
Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru
A century of ice retreat on Kilimanjaro: the mapping reloaded
Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes
Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change
Kara A. Lamantia, Laura J. Larocca, Lonnie G. Thompson, and Bryan G. Mark
The Cryosphere, 18, 4633–4644, https://doi.org/10.5194/tc-18-4633-2024, https://doi.org/10.5194/tc-18-4633-2024, 2024
Short summary
Short summary
Glaciers that exist within tropical regions are vital water resources and excellent indicators of a changing climate. We use satellite imagery analysis to detect the boundary between snow and ice on the Quelccaya Ice Cap (QIC), Peru, which indicates the ice cap's overall health. These results are analyzed with other variables, such as temperature, precipitation, and sea surface temperature anomalies, to better understand the factors and timelines driving the ice retreat.
Rubén Basantes-Serrano, Antoine Rabatel, Bernard Francou, Christian Vincent, Alvaro Soruco, Thomas Condom, and Jean Carlo Ruíz
The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022, https://doi.org/10.5194/tc-16-4659-2022, 2022
Short summary
Short summary
We assessed the volume variation of 17 glaciers on the Antisana ice cap, near the Equator. We used aerial and satellite images for the period 1956–2016. We highlight very negative changes in 1956–1964 and 1979–1997 and slightly negative or even positive conditions in 1965–1978 and 1997–2016, the latter despite the recent increase in temperatures. Glaciers react according to regional climate variability, while local humidity and topography influence the specific behaviour of each glacier.
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020, https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro are unique indicators for climatic changes in the tropical midtroposphere of Africa. A history of severe glacier area loss raises concerns about an imminent future disappearance. Yet the remaining ice volume is not well known. Here, we reconstruct ice thickness maps for the two largest remaining ice bodies to assess the current glacier state. We believe that our approach could provide a means for a glacier-specific calibration of reconstructions on different scales.
Adrien Gilbert, Anna Sinisalo, Tika R. Gurung, Koji Fujita, Sudan B. Maharjan, Tenzing C. Sherpa, and Takehiro Fukuda
The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, https://doi.org/10.5194/tc-14-1273-2020, 2020
Oliver Wigmore and Bryan Mark
The Cryosphere, 11, 2463–2480, https://doi.org/10.5194/tc-11-2463-2017, https://doi.org/10.5194/tc-11-2463-2017, 2017
Short summary
Short summary
Using a drone custom built for high altitude flight (4000–6000 m) we completed repeat surveys of Llaca Glacier in the Cordillera Blanca, Peru. Analysis of high resolution imagery and elevation data reveals highly heterogeneous patterns of glacier change and the important role of ice cliffs in glacier melt dynamics. Drones are found to provide a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Simon J. Cook, Ioannis Kougkoulos, Laura A. Edwards, Jason Dortch, and Dirk Hoffmann
The Cryosphere, 10, 2399–2413, https://doi.org/10.5194/tc-10-2399-2016, https://doi.org/10.5194/tc-10-2399-2016, 2016
Short summary
Short summary
This is the first study of recent glacier change for the whole of the Bolivian Cordillera Oriental from 1986 to 2014. These glaciers have shrunk by ~ 43 %, which is a concern for regional water resources. We provide the first quantification of meltwater lake development across the Bolivian Andes as glaciers have receded. These lakes have increased markedly in number and area. We identify 25 lakes as potential outburst flood risks to downstream communities. These lakes require further monitoring.
C. G. Schmitt, J. D. All, J. P. Schwarz, W. P. Arnott, R. J. Cole, E. Lapham, and A. Celestian
The Cryosphere, 9, 331–340, https://doi.org/10.5194/tc-9-331-2015, https://doi.org/10.5194/tc-9-331-2015, 2015
Short summary
Short summary
This paper presents the results of 3 years of measurements of light absorbing particles on the glaciers in Peru. A new analysis technique has been developed and results are shown to be well correlated with black carbon mass estimates made with the Single Particle Soot Photometer (SP2) instrument, the state-of-the-art instrument for this type of measurement. Effective black carbon levels were found to be moderate on glaciers near cities and close to zero in more remote regions.
N. J. Cullen, P. Sirguey, T. Mölg, G. Kaser, M. Winkler, and S. J. Fitzsimons
The Cryosphere, 7, 419–431, https://doi.org/10.5194/tc-7-419-2013, https://doi.org/10.5194/tc-7-419-2013, 2013
N. Salzmann, C. Huggel, M. Rohrer, W. Silverio, B. G. Mark, P. Burns, and C. Portocarrero
The Cryosphere, 7, 103–118, https://doi.org/10.5194/tc-7-103-2013, https://doi.org/10.5194/tc-7-103-2013, 2013
A. Rabatel, B. Francou, A. Soruco, J. Gomez, B. Cáceres, J. L. Ceballos, R. Basantes, M. Vuille, J.-E. Sicart, C. Huggel, M. Scheel, Y. Lejeune, Y. Arnaud, M. Collet, T. Condom, G. Consoli, V. Favier, V. Jomelli, R. Galarraga, P. Ginot, L. Maisincho, J. Mendoza, M. Ménégoz, E. Ramirez, P. Ribstein, W. Suarez, M. Villacis, and P. Wagnon
The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, https://doi.org/10.5194/tc-7-81-2013, 2013
Cited articles
Ayala, A., Pellicciotti, F., and Shea, J. M.: Modeling 2 m air temperatures
over mountain glaciers: Exploring the influence of katabatic cooling and
external warming, J. Geophys. Res.-Atmos., 120, 3139–3157, https://doi.org/10.1002/2015JD023137, 2015.
Bintanja, R. and van den Broeke, M. R.: The surface energy balance of
Antarctic snow and blue ice, J. Appl. Meteorol., 34, 902–926, 1995.
Black, E., Slingo, J., and Sperber, K. R.: An Observational Study of the
Relationship between Excessively Strong Short Rains in Coastal East Africa
and Indian Ocean SST, Mon. Weather Rev., 131, 74–94, https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2, 2003.
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and
parameterization of aerodynamic roughness length variations at Haut Glacier
d'Arolla, Switzerland, J. Glaciol., 52, 281–297, https://doi.org/10.3189/172756506781828746, 2006.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear
skies, Water Resour. Res., 11, 742–744, 1975.
Budyko, M. I.: Climate and Life, Academic Press, New York, London, 1974.
Carturan, L., Cazorzi, F., De Blasi, F., and Dalla Fontana, G.: Air
temperature variability over three glaciers in the Ortles–Cevedale (Italian
Alps): effects of glacier fragmentation, comparison of calculation methods,
and impacts on mass balance modeling, The Cryosphere, 9, 1129–1146,
https://doi.org/10.5194/tc-9-1129-2015, 2015.
Charnley, F. E.: Some observations on the glaciers of Mount Kenya, J. Glaciol.,
3, 483–492, 1959.
Chou, C. and Neelin, J. D.: Mechanisms of global warming impacts on
robustness of tropical precipitation asymmetry, J. Climate, 17, 2688–2701,
https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2, 2004.
Chou, C., Neelin, J. D., Chen, C. A., and Tu, J. Y.: Evaluating the
“rich-get-richer” mechanism in tropical precipitation change under global
warming, J. Climate, 22, 1982–2005, https://doi.org/10.1175/2008JCLI2471.1, 2009.
Collier, E., Mölg, T., Maussion, F., Scherer, D., Mayer, C., and Bush, A.
B. G.: High-resolution interactive modelling of the mountain
glacier–atmosphere interface: An application over the Karakoram, The Cryosphere,
7, 779–795, https://doi.org/10.5194/tc-7-779-2013, 2013.
Conway, J. P. and Cullen, N. J.: Cloud effects on the surface energy and
mass balance of Brewster Glacier, New Zealand, The Cryosphere Discuss., 9,
975–1019, https://doi.org/10.5194/tcd-9-975-2015, 2015.
Corripio, J. G. and Purves, R. S.: Surface Energy Balance of High Altitude
Glaciers in the Central Andes: the Effect of Snow Penitentes, in: Climate and
Hydrology in Mountain Areas, edited by: de Jong, C., Collins, D., and Ranzi,
R., John Wiley & Sons, Ltd, Chichester., 15–27, 2005.
Cullen, N. J., Mölg, T., Kaser, G., Steffen, K., and Hardy, D. R.:
Energy-balance model validation on the top of Kilimanjaro, Tanzania, using
eddy covariance data, Ann. Glaciol., 46, 227–233, https://doi.org/10.3189/172756407782871224, 2007.
Cullen, N. J., Sirguey, P., Mölg, T., Kaser, G., Winkler, M., and
Fitzsimons, S. J.: A century of ice retreat on Kilimanjaro: the mapping
reloaded, The Cryosphere, 7, 419–431, https://doi.org/10.5194/tc-7-419-2013, 2013.
Cullen, N. J., Mölg, T., Conway, J., and Steffen, K.: Assessing the role
of sublimation in the dry snow zone of the Greenland ice sheet in a warming
world, J. Geophys. Res.-Atmos., 119, 6563–6577, https://doi.org/10.1002/2014JD021557, 2014.
Davies, T. D., Brimblecombe, P., and Vincent, C. E.: The daily cycle of
weather on Mount Kenya, Weather, 32, 406–417, 1977.
Favier, V., Wagnon, P., Chazarin, J.-P., Maisincho, L., and Coudrain, A.:
One-year measurements of surface heat budget on the ablation zone of
Antizana Glacier 15, Ecuadorian Andes, J. Geophys. Res., 109, D18105,
https://doi.org/10.1029/2003JD004359, 2004.
Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E.,
Barlow, M., and Hoell, A.: Warming of the Indian Ocean threatens eastern and
southern African food security but could be mitigated by agricultural
development, P. Natl. Acad. Sci. USA, 105, 11081–11086, https://doi.org/10.1073/pnas.0708196105, 2008.
Greuell, W. and Böhm, R.: 2 m temperatures along melting mid-latitude
glaciers, and implications for the sensitivity of the mass balance to
variations in temperature, J. Glaciol., 44, 9–20, 1998.
Gurgiser, W., Marzeion, B., Nicholson, L., Ortner, M., and Kaser, G.:
Modeling energy and mass balance of Shallap Glacier, Peru, The Cryosphere, 7,
1787–1802, https://doi.org/10.5194/tc-7-1787-2013, 2013a.
Gurgiser, W., Mölg, T., Nicholson, L., and Kaser, G.: Mass-balance model
parameter transferability on a tropical glacier, J. Glaciol., 59, 845–858,
https://doi.org/10.3189/2013JoG12J226, 2013b.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J.,
Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and
Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013:
The Physical Science Basis, Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, UK and New York, NY, USA, 159–254, 2013.
Hastenrath, S.: Diurnal thermal forcing and hydrological response of Lewis
Glacier, Mount Kenya, Arch. Meteorol. Geophys. Bioklimatol. A, 32, 361–373, 1983.
Hastenrath, S.: The Glaciers of Equatorial East Africa, D. Reidel Publishing
Company, Dordrecht, Boston, Lancaster, 1984.
Hastenrath, S.: Glaciological Studies on Mount Kenya, University of
Wisconsin-Madison, Madison, 2005a.
Hastenrath, S.: The glaciers of Mount Kenya 1899–2004, Erdkunde, 59,
120–125, https://doi.org/10.3112/erdkunde.2005.02.03, 2005b.
Hastenrath, S.: Recession of Eqautorial Glaciers: A Photo Documentation,
Sundog, Madison, 2008.
Hastenrath, S.: Climatic forcing of glacier thinning on the mountains of
equatorial East Africa, Int. J. Climatol., 30, 146–152, https://doi.org/10.1002/joc.1866, 2010.
Hastenrath, S. and Kruss, P. D.: Greenhouse indicators in Kenya, Nature, 335, 503–504, 1992.
Hutchinson, M. F.: Methods of generation of weather sequences, in:
Agricultural Environments: Characterization, Classification and Mapping,
edited by: Bunting, A. H., CAB International, Wallingford, UK, 149–157, 1987.
Iqbal, M.: An Introduction to Solar Radiation, Academic Press Canada, Toronto, 1983.
Karl, T. R., Hassol, S. J., Miller, C. D., and Murray, W. L.: Temperature
Trends in the Lower Atmosphere: Steps for Understanding and Reconciling
Differences, General Books LLC, Washington, D.C., 2006.
Kaser, G., Georges, C., Juen, I., and Mölg, T.: Low-latitude glaciers:
Unique global climate indicators and essential contributors to regional
fresh water supply. A conceptual approach, in: Global Change and Mountain
Regions: An Overview of Current Knowledge, edited by: Huber, U., Bugmann,
H. K. M., and Reasoner, M. A., Kluwer, New York, 185–196, 2005.
Kaser, G., Mölg, T., Cullen, N. J., Hardy, D. R., and Winkler, M.: Is the
decline of ice on Kilimanjaro unprecedented in the Holocene?, Holocene,
20, 1079–1091, https://doi.org/10.1177/0959683610369498, 2010.
Konecky, B., Russell, J., Huang, Y., Vuille, M., Cohen, L., and
Street-Perrott, F. A.: Impact of monsoons, temperature, and CO2 on the
rainfall and ecosystems of Mt. Kenya during the Common Era, Palaeogeogr.
Palaeocl., 396, 17–25, https://doi.org/10.1016/j.palaeo.2013.12.037, 2014.
Kruss, P. D.: Climate change in east Africa: a numerical simulation from the
100 years of terminus record at Lewis Glacier, Mount Kenya, Kenya,
Z. Gletscherkd. Glazialgeol., 19, 43–60, 1983.
Kruss, P. D. and Hastenrath, S.: The role of radiation geometry in the
climate response of Mount Kenya's glaciers, part 1: Horizontal reference
surfaces, Int. J. Climatol., 7, 493–505, https://doi.org/10.1002/joc.3370070505, 1987.
Kruss, P. D. and Hastenrath, S.: The role of radiation geometry in the
climate response of Mount Kenya's glaciers, part 3: The latitude effect,
Int. J. Climatol., 10, 321–328, https://doi.org/10.1002/joc.3370100309, 1990.
Lintner, B. R. and Neelin, J. D.: A prototype for convective margin shifts,
Geophys. Res. Lett., 34, L05812, https://doi.org/10.1029/2006GL027305, 2007.
MacDonell, S., Kinnard, C., Mölg, T., Nicholson, L., and Abermann, J.:
Meteorological drivers of ablation processes on a cold glacier in the
semi-arid Andes of Chile, The Cryosphere, 7, 1513–1526, https://doi.org/10.5194/tc-7-1513-2013, 2013.
Meyers, T. P. and Dale, R. F.: Predicting daily insolation with hourly cloud
height and coverage, J. Clim. Appl. Meteorol., 22, 537–545, 1983.
Mölg, T.: Exploring the concept of maximum entropy production for the
local atmosphere-glacier system, J. Adv. Model. Earth Syst., 7, 1–11,
https://doi.org/10.1002/2014MS000404, 2015.
Mölg, T. and Hardy, D. R.: Ablation and associated energy balance of a
horizontal glacier surface on Kilimanjaro, J. Geophys. Res., 109, D16104,
https://doi.org/10.1029/2003JD004338, 2004.
Mölg, T., Renold, M., Vuille, M., Cullen, N. J., Stocker, T. F., and
Kaser, G.: Indian Ocean zonal mode activity in a multicentury integration of
a coupled AOGCM consistent with climate proxy data, Geophys. Res. Lett.,
33, 1–5, https://doi.org/10.1029/2006GL026384, 2006.
Mölg, T., Cullen, N. J., Hardy, D. R., Kaser, G., and Klok, L.: Mass
balance of a slope glacier on Kilimanjaro and its sensitivity to climate,
Int. J. Climatol., 28, 881–892, https://doi.org/10.1002/joc.1589, 2008.
Mölg, T., Chiang, J. C. H., and Cullen, N. J.: Temporal precipitation
variability versus altitude on a tropical high mountain: Observations and
mesoscale atmospheric modelling, Q. J. Roy. Meteorol. Soc., 135, 1439–1455,
https://doi.org/10.1002/qj.461, 2009a.
Mölg, T., Cullen, N. J., Hardy, D. R., Winkler, M., and Kaser, G.:
Quantifying climate change in the tropical midtroposphere over East Africa
from glacier shrinkage on Kilimanjaro, J. Climate, 22, 4162–4181,
https://doi.org/10.1175/2009JCLI2954.1, 2009b.
Mölg, T., Cullen, N. J., and Kaser, G.: Solar radiation, cloudiness and
longwave radiation over low-latitude glaciers: implications for mass-balance
modelling, J. Glaciol., 55, 292–302, 2009c.
Mölg, T., Maussion, F., Yang, W., and Scherer, D.: The footprint of Asian
monsoon dynamics in the mass and energy balance of a Tibetan glacier,
The Cryosphere, 6, 1445–1461, https://doi.org/10.5194/tc-6-1445-2012, 2012.
Mölg, T., Cullen, N. J., Hardy, D. R., Kaser, G., Nicholson, L., Prinz,
R., and Winkler, M.: East African glacier loss and climate change:
Corrections to the UNEP article “Africa without ice and snow”, Environ.
Dev., 6, 1–6, https://doi.org/10.1016/j.envdev.2013.02.001, 2013.
Mölg, T., Maussion, F., and Scherer, D.: Mid-latitude westerlies as a
driver of glacier variability in monsoonal High Asia, Nat. Clim. Change,
3, 68–73, https://doi.org/10.1038/nclimate2055, 2014.
Mutai, C. C. and Ward, M. N.: East African Rainfall and the Tropical
Circulation/Convection on Intraseasonal to Interannual Timescales, J. Climate,
13, 3915–3939, https://doi.org/10.1175/1520-0442(2000)013<3915:EARATT>2.0.CO;2, 2000.
Nicholson, L. I., Prinz, R., Mölg, T., and Kaser, G.: Micrometeorological
conditions and surface mass and energy fluxes on Lewis Glacier, Mt Kenya, in
relation to other tropical glaciers, The Cryosphere, 7, 1205–1225,
https://doi.org/10.5194/tc-7-1205-2013, 2013.
Nicholson, S. E.: A review of climate dynamics and climate variability in
Eastern Africa, in: The Limnology, Climatology and Paleoclimatology of the
East African Lakes, edited by: Johnson, T. C. and Odada, E., Gordon
and Breach, Amsterdam, 25–56, 1996.
Nicholson, S. E.: An analysis of recent rainfall conditions in eastern Africa,
Int. J. Climatol., 36, 526–532, https://doi.org/10.1002/joc.4358, 2016.
Nicholson, S. E. and Yin, X.: Rainfall conditions in Equatorial East Africa
during the nineteenth Century as inferred from the record of Lake Victoria,
Climatic Change, 48, 387–398, 2001.
Niemelä, S., Räisänen, P., and Savijärvi, H.: Comparison of
surface radiative flux parameterisations. Part I: Longwave radiation, Atmos.
Res., 58, 1–18, https://doi.org/10.1016/S0169-8095(01)00084-9, 2001.
Oerlemans, J. and Knap, W. H.: A 1 year record of global radiation and
albedo in the ablation zone of Morteratschgletscher, Switzerland, J. Glaciol.,
44, 231–238, 1998.
Patzelt, G., Schneider, E., and Moser, G.: Der Lewis-Gletscher, Mount Kenya:
Begleitworte zur Gletscherkarte 1983, Z. Gletscherkd. Glazialgeol., 20, 177–195, 1984.
Pepin, N. C. and Lundquist, J. D.: Temperature trends at high elevations:
Patterns across the globe, Geophys. Res. Lett., 35, 1–6, https://doi.org/10.1029/2008GL034026, 2008.
Petersen, L. and Pellicciotti, F.: Spatial and temporal variability of air
temperature on a melting glacier: Atmospheric controls, extrapolation
methods and their effect on melt modeling, Juncal Norte Glacier, Chile, J.
Geophys. Res., 116, D23109, https://doi.org/10.1029/2011JD015842, 2011.
Platt, C. M.: Some observations on the climate of Lewis Glacier, Mount
Kenya, during the rainy season, J. Glaciol., 6, 267–287, 1966.
Prinz, R., Fischer, A., Nicholson, L., and Kaser, G.: Seventy-six years of
mean mass balance rates derived from recent and re-evaluated ice volume
measurements on tropical Lewis Glacier, Mount Kenya, Geophys. Res. Lett.,
38, L20502, https://doi.org/10.1029/2011GL049208, 2011.
Prinz, R., Nicholson, L., and Kaser, G.: Variations of the Lewis Glacier,
Mount Kenya, 2004–2012, Erdkunde, 66, 255–262, https://doi.org/10.3112/erdkunde.2012.03.05, 2012.
Røhr, P. C. and Killingtveit, Å.: Rainfall distribution on the slopes
of Mt Kilimanjaro, Hydrolog. Sci. J., 48, 65–77, https://doi.org/10.1623/hysj.48.1.65.43483, 2003.
Schmocker, J., Liniger, H. P., Ngeru, J. N., Brugnara, Y., Auchmann, R., and
Brönnimann, S.: Trends in mean and extreme precipitation in the Mount
Kenya region from observations and reanalyses, Int. J. Climatol., https://doi.org/10.1002/joc.4438, in press, 2015.
Schneider, E.: Begleitworte zur Karte des Mount Kenya in 1 : 10000, in: Khumbu
Himal. Ergebnisse des Forschungsunternehmens Nepal Himalaya, edited by:
Hellmich, W., Springer Verlag, Berlin, Göttongen, Heidelberg, 20–23, 1964.
Shea, J. M. and Moore, R. D.: Prediction of spatially distributed
regional-scale fields of air temperature and vapor pressure over mountain
glaciers, J. Geophys. Res., 115, 1–15, https://doi.org/10.1029/2010JD014351, 2010.
Sicart, J. E., Ribstein, P., Chazarin, J.-P., and Berthier, E.: Solid
precipitation on a tropical glacier in Bolivia measured with an ultrasonic
depth gauge, Water Resour. Res., 38, 1189, https://doi.org/10.1029/2002WR001402, 2002.
Sicart, J. E., Pomeroy, J. W., Essery, R., and Bewley, D.: Incoming longwave
radiation to melting snow: observations, sensitivity, and estimation in
northern environments, Hydrol. Process., 20, 3697–3708, https://doi.org/10.1002/hyp.6383, 2006.
Sicart, J. E., Hock, R., Ribstein, P., Litt, M., and Ramirez, E.: Analysis of
seasonal variations in mass balance and meltwater discharge of the tropical
Zongo Glacier by application of a distributed energy balance model, J.
Geophys. Res., 116, D13105, https://doi.org/10.1029/2010JD015105, 2011.
Thompson, B. W.: The mean annual rainfall of Mount Kenya, Weather, 21, 48–49, 1966.
Thompson, L. G. and Hastenrath, S.: Climatic ice core studies at Lewis
Glacier, Mount Kenya, Z. Gletscherkd. Glazialgeol., 17, 115–123, 1981.
Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J., and Seager, R.:
Multidecadal variability in East African hydroclimate controlled by the
Indian Ocean, Nature, 493, 389–392, https://doi.org/10.1038/nature11785, 2013.
van den Broeke, M. R., Reijmer, C. H., van As, D., and Boot, W.: Daily cycle
of the surface energy balance in Antarctica and the influence of clouds,
Int. J. Climatol., 26, 1587–1605, https://doi.org/10.1002/joc.1323, 2006.
Verschuren, D., Laird, K. R., and Cumming, B. F.: Rainfall and drought in
equatorial east Africa during the past 1,100 years, Nature, 403, 410–414, 2000.
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R.: Coupled
ocean-atmosphere dynamics in the Indian Ocean during 1997–98, Nature,
401, 356–360, https://doi.org/10.1038/43848, 1999.
Williams, A. P. and Funk, C.: A westward extension of the warm pool leads to
a westward extension of the Walker circulation, drying eastern Africa, Clim.
Dynam., 37, 2417–2435, https://doi.org/10.1007/s00382-010-0984-y, 2011.
Winkler, M., Juen, I., Mölg, T., Wagnon, P., Gómez, J., and Kaser,
G.: Measured and modelled sublimation on the tropical Glaciar Artesonraju,
Perú, The Cryosphere, 3, 21–30, https://doi.org/10.5194/tc-3-21-2009, 2009.
Winkler, M., Kaser, G., Cullen, N. J., Mölg, T., Hardy, D. R., and
Pfeffer, W. T.: Land-based marginal ice cliffs: Focus on Kilimanjaro,
Erdkunde, 64, 179–193, https://doi.org/10.3112/erdkunde.2010.02.05, 2010.
Yang, W., Seager, R., Cane, M. A., and Lyon, B.: The Annual Cycle of the East
African Precipitation, J. Climate, 28, 2385–2404, https://doi.org/10.1175/JCLI-D-14-00484.1, 2014a.
Yang, W., Seager, R., Cane, M. A., and Lyon, B.: The East African Long Rains
in Observations and Models, J. Climate, 27, 7185–7202, https://doi.org/10.1175/JCLI-D-13-00447.1, 2014b.
Short summary
Lewis Glacier has lost > 80 % of its extent since the late 19th century. A sensitivity study using a process-based model assigns this shrinking to decreased atmospheric moisture without increasing air temperatures required. The glacier retreat implies a distinctly different coupling between the glacier's surface-air layer and its surrounding boundary layer, underlining the difficulty of deriving palaeoclimates for larger glacier extents on the basis of modern measurements of small glaciers.
Lewis Glacier has lost 80 % of its extent since the late 19th century. A sensitivity study...