Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-133-2016
https://doi.org/10.5194/tc-10-133-2016
Research article
 | 
18 Jan 2016
Research article |  | 18 Jan 2016

Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya

R. Prinz, L. I. Nicholson, T. Mölg, W. Gurgiser, and G. Kaser

Related authors

Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024,https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024,https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022
Annelies Voordendag, Rainer Prinz, Lilian Schuster, and Georg Kaser
The Cryosphere, 17, 3661–3665, https://doi.org/10.5194/tc-17-3661-2023,https://doi.org/10.5194/tc-17-3661-2023, 2023
Short summary
THE STABILITY OF A PERMANENT TERRESTRIAL LASER SCANNING SYSTEM – A CASE STUDY WITH HOURLY SCANS
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1093–1099, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022,https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1093-2022, 2022
AUTOMATED AND PERMANENT LONG-RANGE TERRESTRIAL LASER SCANNING IN A HIGH MOUNTAIN ENVIRONMENT: SETUP AND FIRST RESULTS
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 153–160, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021,https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, 2021

Related subject area

Tropical Glaciers
El Niño enhances snow-line rise and ice loss on the Quelccaya Ice Cap, Peru
Kara A. Lamantia, Laura J. Larocca, Lonnie G. Thompson, and Bryan G. Mark
The Cryosphere, 18, 4633–4644, https://doi.org/10.5194/tc-18-4633-2024,https://doi.org/10.5194/tc-18-4633-2024, 2024
Short summary
New insights into the decadal variability in glacier volume of a tropical ice cap, Antisana (0°29′ S, 78°09′ W), explained by the morpho-topographic and climatic context
Rubén Basantes-Serrano, Antoine Rabatel, Bernard Francou, Christian Vincent, Alvaro Soruco, Thomas Condom, and Jean Carlo Ruíz
The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022,https://doi.org/10.5194/tc-16-4659-2022, 2022
Short summary
Brief communication: Glacier thickness reconstruction on Mt. Kilimanjaro
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020,https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier
Adrien Gilbert, Anna Sinisalo, Tika R. Gurung, Koji Fujita, Sudan B. Maharjan, Tenzing C. Sherpa, and Takehiro Fukuda
The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020,https://doi.org/10.5194/tc-14-1273-2020, 2020
Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru
Oliver Wigmore and Bryan Mark
The Cryosphere, 11, 2463–2480, https://doi.org/10.5194/tc-11-2463-2017,https://doi.org/10.5194/tc-11-2463-2017, 2017
Short summary

Cited articles

Ayala, A., Pellicciotti, F., and Shea, J. M.: Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming, J. Geophys. Res.-Atmos., 120, 3139–3157, https://doi.org/10.1002/2015JD023137, 2015.
Bintanja, R. and van den Broeke, M. R.: The surface energy balance of Antarctic snow and blue ice, J. Appl. Meteorol., 34, 902–926, 1995.
Black, E., Slingo, J., and Sperber, K. R.: An Observational Study of the Relationship between Excessively Strong Short Rains in Coastal East Africa and Indian Ocean SST, Mon. Weather Rev., 131, 74–94, https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2, 2003.
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 52, 281–297, https://doi.org/10.3189/172756506781828746, 2006.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11, 742–744, 1975.
Download
Short summary
Lewis Glacier has lost > 80 % of its extent since the late 19th century. A sensitivity study using a process-based model assigns this shrinking to decreased atmospheric moisture without increasing air temperatures required. The glacier retreat implies a distinctly different coupling between the glacier's surface-air layer and its surrounding boundary layer, underlining the difficulty of deriving palaeoclimates for larger glacier extents on the basis of modern measurements of small glaciers.