Articles | Volume 10, issue 1
The Cryosphere, 10, 133–148, 2016
https://doi.org/10.5194/tc-10-133-2016
The Cryosphere, 10, 133–148, 2016
https://doi.org/10.5194/tc-10-133-2016
Research article
18 Jan 2016
Research article | 18 Jan 2016

Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya

R. Prinz et al.

Related authors

AUTOMATED AND PERMANENT LONG-RANGE TERRESTRIAL LASER SCANNING IN A HIGH MOUNTAIN ENVIRONMENT: SETUP AND FIRST RESULTS
A. B. Voordendag, B. Goger, C. Klug, R. Prinz, M. Rutzinger, and G. Kaser
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 153–160, https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021,https://doi.org/10.5194/isprs-annals-V-2-2021-153-2021, 2021
Mesoscale atmospheric circulation controls of local meteorological elevation gradients on Kersten Glacier near Kilimanjaro summit
Thomas Mölg, Douglas R. Hardy, Emily Collier, Elena Kropač, Christina Schmid, Nicolas J. Cullen, Georg Kaser, Rainer Prinz, and Michael Winkler
Earth Syst. Dynam., 11, 653–672, https://doi.org/10.5194/esd-11-653-2020,https://doi.org/10.5194/esd-11-653-2020, 2020
Short summary
Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria
Christoph Klug, Erik Bollmann, Stephan Peter Galos, Lindsey Nicholson, Rainer Prinz, Lorenzo Rieg, Rudolf Sailer, Johann Stötter, and Georg Kaser
The Cryosphere, 12, 833–849, https://doi.org/10.5194/tc-12-833-2018,https://doi.org/10.5194/tc-12-833-2018, 2018
Short summary
Micrometeorological conditions and surface mass and energy fluxes on Lewis Glacier, Mt Kenya, in relation to other tropical glaciers
L. I. Nicholson, R. Prinz, T. Mölg, and G. Kaser
The Cryosphere, 7, 1205–1225, https://doi.org/10.5194/tc-7-1205-2013,https://doi.org/10.5194/tc-7-1205-2013, 2013

Related subject area

Tropical Glaciers
Brief communication: Glacier thickness reconstruction on Mt. Kilimanjaro
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020,https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier
Adrien Gilbert, Anna Sinisalo, Tika R. Gurung, Koji Fujita, Sudan B. Maharjan, Tenzing C. Sherpa, and Takehiro Fukuda
The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020,https://doi.org/10.5194/tc-14-1273-2020, 2020
Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru
Oliver Wigmore and Bryan Mark
The Cryosphere, 11, 2463–2480, https://doi.org/10.5194/tc-11-2463-2017,https://doi.org/10.5194/tc-11-2463-2017, 2017
Short summary
Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017,https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Glacier change and glacial lake outburst flood risk in the Bolivian Andes
Simon J. Cook, Ioannis Kougkoulos, Laura A. Edwards, Jason Dortch, and Dirk Hoffmann
The Cryosphere, 10, 2399–2413, https://doi.org/10.5194/tc-10-2399-2016,https://doi.org/10.5194/tc-10-2399-2016, 2016
Short summary

Cited articles

Ayala, A., Pellicciotti, F., and Shea, J. M.: Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming, J. Geophys. Res.-Atmos., 120, 3139–3157, https://doi.org/10.1002/2015JD023137, 2015.
Bintanja, R. and van den Broeke, M. R.: The surface energy balance of Antarctic snow and blue ice, J. Appl. Meteorol., 34, 902–926, 1995.
Black, E., Slingo, J., and Sperber, K. R.: An Observational Study of the Relationship between Excessively Strong Short Rains in Coastal East Africa and Indian Ocean SST, Mon. Weather Rev., 131, 74–94, https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2, 2003.
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 52, 281–297, https://doi.org/10.3189/172756506781828746, 2006.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11, 742–744, 1975.
Download
Short summary
Lewis Glacier has lost > 80 % of its extent since the late 19th century. A sensitivity study using a process-based model assigns this shrinking to decreased atmospheric moisture without increasing air temperatures required. The glacier retreat implies a distinctly different coupling between the glacier's surface-air layer and its surrounding boundary layer, underlining the difficulty of deriving palaeoclimates for larger glacier extents on the basis of modern measurements of small glaciers.