Articles | Volume 10, issue 3
The Cryosphere, 10, 1075–1088, 2016
https://doi.org/10.5194/tc-10-1075-2016
The Cryosphere, 10, 1075–1088, 2016
https://doi.org/10.5194/tc-10-1075-2016
Research article
23 May 2016
Research article | 23 May 2016

Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations

Yves Bühler et al.

Related authors

Modeling deadwood for rockfall mitigation assessments in windthrow areas
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022,https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Shape still matters – rockfall experiments with deadwood reveal a new facet of rock shape relevance
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-70,https://doi.org/10.5194/esurf-2022-70, 2022
Preprint under review for ESurf
Short summary
Automated snow avalanche release area delineation in data-sparse, remote, and forested regions
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022,https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary
Automated avalanche mapping from SPOT 6/7 satellite imagery with deep learning: results, evaluation, potential and limitations
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022,https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
The impact of terrain model source and resolution on snow avalanche modeling
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022,https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary

Related subject area

Remote Sensing
Ice thickness and water level estimation for ice-covered lakes with satellite altimetry waveforms and backscattering coefficients
Xingdong Li, Di Long, Yanhong Cui, Tingxi Liu, Jing Lu, Mohamed A. Hamouda, and Mohamed M. Mohamed
The Cryosphere, 17, 349–369, https://doi.org/10.5194/tc-17-349-2023,https://doi.org/10.5194/tc-17-349-2023, 2023
Short summary
Inter-comparison and evaluation of Arctic sea ice type products
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023,https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary
Snow stratigraphy observations from Operation IceBridge surveys in Alaska using S and C band airborne ultra-wideband FMCW (frequency-modulated continuous wave) radar
Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold
The Cryosphere, 17, 175–193, https://doi.org/10.5194/tc-17-175-2023,https://doi.org/10.5194/tc-17-175-2023, 2023
Short summary
Automated ArcticDEM iceberg detection tool: insights into area and volume distributions, and their potential application to satellite imagery and modelling of glacier–iceberg–ocean systems
Connor J. Shiggins, James M. Lea, and Stephen Brough
The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023,https://doi.org/10.5194/tc-17-15-2023, 2023
Short summary
Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval
Pinja Venäläinen, Kari Luojus, Colleen Mortimer, Juha Lemmetyinen, Jouni Pulliainen, Matias Takala, Mikko Moisander, and Lina Zschenderlein
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-227,https://doi.org/10.5194/tc-2022-227, 2022
Revised manuscript accepted for TC
Short summary

Cited articles

Basnet, K., Muste, M., Constantinescu, G., Ho, H., and Xu, H.: Close range photogrammetry for dynamically tracking drifted snow deposition, Cold Reg. Sci. Technol., 121, 141–153, https://doi.org/10.1016/j.coldregions.2015.08.013, 2015.
Bavay, M., Lehning, M., Jonas, T., and Löwe, H.: Simulations of future snow cover and discharge in Alpine headwater catchments, Hydrol. Process., 23, 95–108, 2009.
Bilodeau, F., Gauthier, G., and Berteaux, D.: The effect of snow cover on lemming population cycles in the Canadian High Arctic, Oecologia, 172, 1007–1016, 2013.
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015a.
Bühler, Y., Meier, L., and Ginzler, C.: Potential of operational, high spatial resolution near infrared remote sensing instruments for snow surface type mapping, IEEE Geosci. Remote S., 12, 821–825, 2015b.
Download
Short summary
We map the distribution of snow depth at two alpine test sites with unmanned aerial system (UAS) data by applying structure-from-motion photogrammetry. In comparison with manual snow depth measurements, we find high accuracies of 7 to 15 cm for the snow depth values. We can prove that photogrammetric measurements on snow-covered terrain are possible. Underlaying vegetation such as bushes and grass leads to an underestimation of snow depth in the range of 10 to 50 cm.