Articles | Volume 9, issue 1
https://doi.org/10.5194/tc-9-357-2015
https://doi.org/10.5194/tc-9-357-2015
Research article
 | 
17 Feb 2015
Research article |  | 17 Feb 2015

Comparing C- and L-band SAR images for sea ice motion estimation

J. Lehtiranta, S. Siiriä, and J. Karvonen

Related authors

Interannual sea ice thickness variability in the Bay of Bothnia
Iina Ronkainen, Jonni Lehtiranta, Mikko Lensu, Eero Rinne, Jari Haapala, and Christian Haas
The Cryosphere, 12, 3459–3476, https://doi.org/10.5194/tc-12-3459-2018,https://doi.org/10.5194/tc-12-3459-2018, 2018
Short summary

Related subject area

Remote Sensing
Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024,https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024,https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary
Snow water equivalent retrieved from X- and dual Ku-band scatterometer measurements at Sodankylä using the Markov Chain Monte Carlo method
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024,https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024,https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024,https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary

Cited articles

Arkett, M., Flett, D., De Abreu, R., Clemente-Colon, P., Woods, J., and Melchior, B.: Evaluating ALOS-PALSAR for Ice Monitoring-What Can L-band do for the North American Ice Service?, in: Geoscience and Remote Sensing Symposium, IGARSS 2008, IEEE International, 5, V–188, 2008.
Astola, J., Haavisto, P., and Neuvo, Y.: Vector median filters, P. IEEE, 78, 678–689, 1990.
The Baltic Sea Portal: Ice winter 2008–2009, available at: http://www.itameriportaali.fi/en/tietoa/jaa/jaatalvi/en_GB/2009/ (last access: 18 December 2014), 2009.
Dierking, W. and Busche, T.: Sea Ice Monitoring by L-Band SAR: An Assessment Based on Literature and Comparisons of JERS-1 and ERS-1 Imagery, IEEE T. Geosci. Remote, 44, 957–970, 2006.
Emery, W., Fowler, C., Hawkins, J., and Preller, R.: Fram Strait satellite image-derived ice motions, J. Geophys. Res., 96, 4751–4768, 1991.
Download
Short summary
Satellite radar images are used for detecting and quantifying the motion of sea ice. Traditionally C-band radar images have been used for this purpose. The technique has been shown to work with other frequency bands. This work compares C-band and L-band images for the Baltic Sea. We also show that two images of different bands can be used for sea ice motion estimation.