Articles | Volume 9, issue 6
https://doi.org/10.5194/tc-9-2417-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/tc-9-2417-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Inconsistency in precipitation measurements across the Alaska–Yukon border
Global Institute for Water Security and School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
D. Yang
National Hydrology Research Center, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
Global Institute for Water Security and School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Climate Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada
Related authors
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Yanping Li, Zhenhua Li, Zhe Zhang, Liang Chen, Sopan Kurkute, Lucia Scaff, and Xicai Pan
Hydrol. Earth Syst. Sci., 23, 4635–4659, https://doi.org/10.5194/hess-23-4635-2019, https://doi.org/10.5194/hess-23-4635-2019, 2019
Short summary
Short summary
High-resolution regional climate modeling that resolves convection was conducted over western Canada for the current climate and a high-end greenhouse gas emission scenario by 2100. The simulation demonstrates its good quality in capturing the temporal and spatial variation in the major hydrometeorological variables. The warming is stronger in the northeastern domain in the cold seasons. It also shows a larger increase in high-intensity precipitation events than moderate and light ones by 2100.
Zhenhua Li, Yanping Li, Barrie Bonsal, Alan H. Manson, and Lucia Scaff
Hydrol. Earth Syst. Sci., 22, 5057–5067, https://doi.org/10.5194/hess-22-5057-2018, https://doi.org/10.5194/hess-22-5057-2018, 2018
Short summary
Short summary
The research started by investigating the 2015 growing season drought over the Canadian Prairies and evolved into investigating the connection between growing season rain deficit in the Prairies and MJO (20–90 days tropical oscillation in convective storms). With warm central Pacific sea surface temperature, strong MJOs in the western Pacific cause Rossby wave trains that propagate downstream and favour upper-level ridges and rain deficits over the Canadian Prairies during the growing season.
Xiao Ma, Yanping Li, Zhenhua Li, and Fei Huo
Atmos. Chem. Phys., 24, 12013–12030, https://doi.org/10.5194/acp-24-12013-2024, https://doi.org/10.5194/acp-24-12013-2024, 2024
Short summary
Short summary
This study uses 4 km Weather Research and Forecasting simulations to investigate the features of low-level jets (LLJs) in North America. It identifies significant LLJ systems, such as the Great Plains LLJ. It also provides insight into LLJs poorly captured in coarser models, such as the northerly Quebec LLJ and the small-scale, low-level wind maxima around the Rocky Mountains. Furthermore, the study examines different physical mechanisms of forming three distinct types of LLJs.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Craig D. Smith, Eva Mekis, Megan Hartwell, and Amber Ross
Earth Syst. Sci. Data, 14, 5253–5265, https://doi.org/10.5194/essd-14-5253-2022, https://doi.org/10.5194/essd-14-5253-2022, 2022
Short summary
Short summary
It is well understood that precipitation gauges underestimate the measurement of solid precipitation (snow) as a result of systematic bias caused by wind. Relationships between the wind speed and gauge catch efficiency of solid precipitation have been previously established and are applied to the hourly precipitation measurements made between 2001 and 2019 in the automated Environment and Climate Change Canada observation network. The adjusted data are available for download and use.
Zen Mariani, Laura Huang, Robert Crawford, Jean-Pierre Blanchet, Shannon Hicks-Jalali, Eva Mekis, Ludovick Pelletier, Peter Rodriguez, and Kevin Strawbridge
Earth Syst. Sci. Data, 14, 4995–5017, https://doi.org/10.5194/essd-14-4995-2022, https://doi.org/10.5194/essd-14-4995-2022, 2022
Short summary
Short summary
Environment and Climate Change Canada (ECCC) commissioned two supersites in Iqaluit (64°N, 69°W) and Whitehorse (61°N, 135°W) to provide new and enhanced automated and continuous altitude-resolved meteorological observations as part of the Canadian Arctic Weather Science (CAWS) project. These observations are being used to test new technologies, provide recommendations to the optimal Arctic observing system, and evaluate and improve the performance of numerical weather forecast systems.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Sopan Kurkute, Zhenhua Li, Yanping Li, and Fei Huo
Hydrol. Earth Syst. Sci., 24, 3677–3697, https://doi.org/10.5194/hess-24-3677-2020, https://doi.org/10.5194/hess-24-3677-2020, 2020
Short summary
Short summary
Our research has analyzed the surface water budget and atmospheric water vapour budget over western Canada from a set of convection-permitting regional climate simulations. The pseudo-global-warming simulation shows a great increase in evapotranspiration and an enhanced water cycle. We found that the orographic effect on the water vapour budget is significant over the Saskatchewan River basin, indicating the need for high-resolution regional climate modelling to reflect the effects.
Eva Mekis, Ronald E. Stewart, Julie M. Theriault, Bohdan Kochtubajda, Barrie R. Bonsal, and Zhuo Liu
Hydrol. Earth Syst. Sci., 24, 1741–1761, https://doi.org/10.5194/hess-24-1741-2020, https://doi.org/10.5194/hess-24-1741-2020, 2020
Short summary
Short summary
This article provides a Canada-wide analysis of near-0°C temperature conditions (±2°C) using hourly surface temperature and precipitation type observations from 92 locations for the 1981–2011 period. Higher annual occurrences were found in Atlantic Canada, although high values also occur in other regions. Trends of most indicators show little or no change despite a systematic warming over Canada. A higher than expected tendency for near-0°C conditions was also found at some stations.
Zhe Zhang, Yanping Li, Michael Barlage, Fei Chen, Gonzalo Miguez-Macho, Andrew Ireson, and Zhenhua Li
Hydrol. Earth Syst. Sci., 24, 655–672, https://doi.org/10.5194/hess-24-655-2020, https://doi.org/10.5194/hess-24-655-2020, 2020
Short summary
Short summary
The groundwater regime in cold regions is strongly impacted by the soil freeze–thaw processes and semiarid climatic conditions. In this paper, we incorporate groundwater dynamics in the Noah-MP land surface model to simulate the water exchange between the unsaturated soil zone and an unconfined aquifer in the Prairie Pothole Region. The water table dynamics are reasonably simulated. The water budget of groundwater aquifer under current and future climate are also investigated.
Yanping Li, Zhenhua Li, Zhe Zhang, Liang Chen, Sopan Kurkute, Lucia Scaff, and Xicai Pan
Hydrol. Earth Syst. Sci., 23, 4635–4659, https://doi.org/10.5194/hess-23-4635-2019, https://doi.org/10.5194/hess-23-4635-2019, 2019
Short summary
Short summary
High-resolution regional climate modeling that resolves convection was conducted over western Canada for the current climate and a high-end greenhouse gas emission scenario by 2100. The simulation demonstrates its good quality in capturing the temporal and spatial variation in the major hydrometeorological variables. The warming is stronger in the northeastern domain in the cold seasons. It also shows a larger increase in high-intensity precipitation events than moderate and light ones by 2100.
Craig D. Smith, Daqing Yang, Amber Ross, and Alan Barr
Earth Syst. Sci. Data, 11, 1337–1347, https://doi.org/10.5194/essd-11-1337-2019, https://doi.org/10.5194/essd-11-1337-2019, 2019
Short summary
Short summary
During and following the WMO Solid Precipitation Inter-Comparison Experiment (SPICE), winter (2013–2017) precipitation intercomparison data sets were collected at two test sites in Saskatchewan: Caribou Creek in the southern boreal forest and Bratt's Lake on the prairies. Precipitation was measured by the WMO automated reference and can be compared to measurements made by gauge configurations commonly used in Canada to examine issues with systematic bias.
Ronald E. Stewart, Kit K. Szeto, Barrie R. Bonsal, John M. Hanesiak, Bohdan Kochtubajda, Yanping Li, Julie M. Thériault, Chris M. DeBeer, Benita Y. Tam, Zhenhua Li, Zhuo Liu, Jennifer A. Bruneau, Patrick Duplessis, Sébastien Marinier, and Dominic Matte
Hydrol. Earth Syst. Sci., 23, 3437–3455, https://doi.org/10.5194/hess-23-3437-2019, https://doi.org/10.5194/hess-23-3437-2019, 2019
Short summary
Short summary
This article examines future atmospheric-related phenomena across the interior of western Canada associated with a
business-as-usualclimate scenario. Changes in large-scale atmospheric circulation and extent of warming vary with season, and these generally lead to increases, especially after mid-century, in factors associated with winter snowstorms, freezing rain, drought, forest fires, as well as atmospheric forcing of spring floods, although not necessarily summer convection.
Zhenhua Li, Yanping Li, Barrie Bonsal, Alan H. Manson, and Lucia Scaff
Hydrol. Earth Syst. Sci., 22, 5057–5067, https://doi.org/10.5194/hess-22-5057-2018, https://doi.org/10.5194/hess-22-5057-2018, 2018
Short summary
Short summary
The research started by investigating the 2015 growing season drought over the Canadian Prairies and evolved into investigating the connection between growing season rain deficit in the Prairies and MJO (20–90 days tropical oscillation in convective storms). With warm central Pacific sea surface temperature, strong MJOs in the western Pacific cause Rossby wave trains that propagate downstream and favour upper-level ridges and rain deficits over the Canadian Prairies during the growing season.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018, https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Short summary
Due to the effects of wind, precipitation gauges typically underestimate the amount of precipitation that occurs as snow. Measurements recorded during a World Meteorological Organization intercomparison of precipitation gauges were used to evaluate and improve the adjustments that are available to address this issue. Adjustments for specific types of precipitation gauges and wind shields were tested and recommended.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen
Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, https://doi.org/10.5194/hess-21-3525-2017, 2017
Short summary
Short summary
Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Short summary
This study demonstrates a robust procedure for accumulating precipitation gauge measurements and provides an analysis of bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. It highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.
Xicai Pan, Yanping Li, Qihao Yu, Xiaogang Shi, Daqing Yang, and Kurt Roth
The Cryosphere, 10, 1591–1603, https://doi.org/10.5194/tc-10-1591-2016, https://doi.org/10.5194/tc-10-1591-2016, 2016
Short summary
Short summary
Using a 9-year dataset in conjunction with a process-based model, we verify that the common assumption of a considerably smaller thermal conductivity in the thawed season than the frozen season is not valid at a site with a stratified active layer on the Qinghai–Tibet Plateau (QTP). The unique hydraulic and thermal mechanism in the active layer challenges the concept of thermal offset used in conceptual permafrost models and hints at the reason for rapid permafrost warming on the QTP.
Liang Chen, Yanping Li, Fei Chen, Alan Barr, Michael Barlage, and Bingcheng Wan
Atmos. Chem. Phys., 16, 8375–8387, https://doi.org/10.5194/acp-16-8375-2016, https://doi.org/10.5194/acp-16-8375-2016, 2016
Short summary
Short summary
This work is the first time that Noah-MP is used to investigate the impact of parameterizing organic soil at a boreal forest site. Including an organic soil parameterization significantly improved performance of the model in surface energy and hydrology simulations due to the lower thermal conductivity and greater porosity of the organic soil. It substantially modified the partition between direct soil evaporation and vegetation transpiration in the simulation.
Related subject area
Snow Hydrology
Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy
Using Sentinel-1 wet snow maps to inform fully-distributed physically-based snowpack models
Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events
Two-dimensional liquid water flow through snow at the plot scale in continental snowpacks: simulations and field data comparisons
Fractional snow-covered area: scale-independent peak of winter parameterization
Seasonal components of freshwater runoff in Glacier Bay, Alaska: diverse spatial patterns and temporal change
Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain
Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California
A continuum model for meltwater flow through compacting snow
Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment
Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada
Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments
A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation
Multilevel spatiotemporal validation of snow/ice mass balance and runoff modeling in glacierized catchments
Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method
Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data
Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau
Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements
Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence
Modeling bulk density and snow water equivalent using daily snow depth observations
Evaluation of the snow regime in dynamic vegetation land surface models using field measurements
Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: methodology and applications
What drives basin scale spatial variability of snowpack properties in northern Colorado?
Micrometeorological processes driving snow ablation in an Alpine catchment
Understanding snow-transport processes shaping the mountain snow-cover
Freshwater flux to Sermilik Fjord, SE Greenland
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
EGUsphere, https://doi.org/10.5194/egusphere-2024-209, https://doi.org/10.5194/egusphere-2024-209, 2024
Short summary
Short summary
We use novel wet snow maps from Sentinel-1 to evaluate simulations of a snow-hydrological model over Switzerland. These data are complementary to available in-situ snow depth observations as they capture a broad diversity of topographic conditions. Wet snow maps allow us to detect a delayed melt onset in the model, which we resolve thanks to an improved parametrization. This opens the way to further evaluation, calibration and data assimilation using wet snow maps.
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023, https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and a nonlinear relationship between snow density and impact variables, as well as allows us to understand the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Short summary
The internal properties of the snow cover shape the annual hygrogram of northern and alpine regions. This study develops a multi-method approach to measure the evolution of snowpack internal properties. The snowpack hydrological property evolution was evaluated with drone-based ground-penetrating radar (GPR) measurements. In addition, the combination of GPR observations and time domain reflectometry measurements is shown to be able to be adapted to monitor the snowpack moisture over winter.
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022, https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Short summary
Rain is highly variable in time at a given location so that there can be both wet and dry climate periods. In this study, we quantify the effects of this natural climate variability and other sources of uncertainty on changes in flooding events due to rain on snow (ROS) caused by climate change. For ROS events with a significant contribution of snowmelt to runoff, the change due to climate was too small to draw firm conclusions about whether there are more ROS events of this important type.
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021, https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Short summary
We simulate the flow of liquid water through snow and compare results to field experiments. This process is important because it controls how much and how quickly water will reach our streams and rivers in snowy regions. We found that water can flow large distances downslope through the snow even after the snow has stopped melting. Improved modeling of snowmelt processes will allow us to more accurately estimate available water resources, especially under changing climate conditions.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Ryan L. Crumley, David F. Hill, Jordan P. Beamer, and Elizabeth R. Holzenthal
The Cryosphere, 13, 1597–1619, https://doi.org/10.5194/tc-13-1597-2019, https://doi.org/10.5194/tc-13-1597-2019, 2019
Short summary
Short summary
In this study we investigate the historical (1980–2015) and projection scenario (2070–2099) components of freshwater runoff to Glacier Bay, Alaska, using a modeling approach. We find that many of the historically snow-dominated watersheds in Glacier Bay National Park and Preserve may transition towards rainfall-dominated hydrographs in a projection scenario under RCP 8.5 conditions. The changes in timing and volume of freshwater entering Glacier Bay will affect bay ecology and hydrochemistry.
Ryan W. Webb, Steven R. Fassnacht, and Michael N. Gooseff
The Cryosphere, 12, 287–300, https://doi.org/10.5194/tc-12-287-2018, https://doi.org/10.5194/tc-12-287-2018, 2018
Short summary
Short summary
We observed how snowmelt is transported on a hillslope through multiple measurements of snow and soil moisture across a small headwater catchment. We found that snowmelt flows through the snow with less infiltration on north-facing slopes and infiltrates the ground on south-facing slopes. This causes an increase in snow water equivalent at the base of the north-facing slope by as much as 170 %. We present a conceptualization of flow path development to improve future investigations.
Keith N. Musselman, Noah P. Molotch, and Steven A. Margulis
The Cryosphere, 11, 2847–2866, https://doi.org/10.5194/tc-11-2847-2017, https://doi.org/10.5194/tc-11-2847-2017, 2017
Short summary
Short summary
We present a study of how melt rates in the California Sierra Nevada respond to a range of warming projected for this century. Snowfall and melt were simulated for historical and modified (warmer) snow seasons. Winter melt occurs more frequently and more intensely, causing an increase in extreme winter melt. In a warmer climate, less snow persists into the spring, causing spring melt to be substantially lower. The results offer insight into how snow water resources may respond to climate change.
Colin R. Meyer and Ian J. Hewitt
The Cryosphere, 11, 2799–2813, https://doi.org/10.5194/tc-11-2799-2017, https://doi.org/10.5194/tc-11-2799-2017, 2017
Short summary
Short summary
We describe a new model for the evolution of snow temperature, density, and water content on the surface of glaciers and ice sheets. The model encompasses the surface hydrology of accumulation and ablation areas, allowing us to explore the transition from one to the other as thermal forcing varies. We predict year-round liquid water storage for intermediate values of the surface forcing. We also compare our model to data for the vertical percolation of meltwater in Greenland.
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, https://doi.org/10.5194/tc-11-1647-2017, 2017
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Short summary
This study demonstrates a robust procedure for accumulating precipitation gauge measurements and provides an analysis of bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. It highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.
Francesco Avanzi, Hiroyuki Hirashima, Satoru Yamaguchi, Takafumi Katsushima, and Carlo De Michele
The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, https://doi.org/10.5194/tc-10-2013-2016, 2016
Short summary
Short summary
We investigate capillary barriers and preferential flow in layered snow during nine cold laboratory experiments. The dynamics of each sample were replicated solving Richards equation within the 1-D multi-layer physically based SNOWPACK model. Results show that both processes affect the speed of water infiltration in stratified snow and are marked by a high degree of spatial variability at cm scale and complex 3-D patterns.
Thomas Skaugen and Ingunn H. Weltzien
The Cryosphere, 10, 1947–1963, https://doi.org/10.5194/tc-10-1947-2016, https://doi.org/10.5194/tc-10-1947-2016, 2016
Short summary
Short summary
In hydrological models it is important to properly simulate the spatial distribution of snow water equivalent (SWE) for the timing of spring melt floods and the accounting of energy fluxes. This paper describes a method for the spatial distribution of SWE which is parameterised from observed spatial variability of precipitation and has hence no calibration parameters. Results show improved simulation of SWE and the evolution of snow-free areas when compared with the standard method.
Florian Hanzer, Kay Helfricht, Thomas Marke, and Ulrich Strasser
The Cryosphere, 10, 1859–1881, https://doi.org/10.5194/tc-10-1859-2016, https://doi.org/10.5194/tc-10-1859-2016, 2016
Short summary
Short summary
The hydroclimatological model AMUNDSEN is set up to simulate snow and ice accumulation, ablation, and runoff for a study region in the Ötztal Alps (Austria) in the period 1997–2013. A new validation concept is introduced and demonstrated by evaluating the model performance using several independent data sets, e.g. snow depth measurements, satellite-derived snow maps, lidar data, glacier mass balances, and runoff measurements.
Sarah S. Thompson, Bernd Kulessa, Richard L. H. Essery, and Martin P. Lüthi
The Cryosphere, 10, 433–444, https://doi.org/10.5194/tc-10-433-2016, https://doi.org/10.5194/tc-10-433-2016, 2016
Short summary
Short summary
We show that strong electrical self-potential fields are generated in melting in in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor, owing to its suitability for sensing lateral and vertical liquid water flows directly and minimally invasively, complementing established observational programs and monitoring autonomously at a low cost.
Z. Zheng, P. B. Kirchner, and R. C. Bales
The Cryosphere, 10, 257–269, https://doi.org/10.5194/tc-10-257-2016, https://doi.org/10.5194/tc-10-257-2016, 2016
Short summary
Short summary
By analyzing high-resolution lidar products and using statistical methods, we quantified the snow depth dependency on elevation, slope and aspect of the terrain and also the surrounding vegetation in four catchment size sites in the southern Sierra Nevada during snow peak season. The relative importance of topographic and vegetation attributes varies with elevation and canopy, but all these attributes were found significant in affecting snow distribution in mountain basins.
R. Chen, J. Liu, E. Kang, Y. Yang, C. Han, Z. Liu, Y. Song, W. Qing, and P. Zhu
The Cryosphere, 9, 1995–2008, https://doi.org/10.5194/tc-9-1995-2015, https://doi.org/10.5194/tc-9-1995-2015, 2015
Short summary
Short summary
The catch ratio of Chinese standard precipitation gauge vs. wind speed relationship for different precipitation types was well quantified by cubic polynomials and exponential functions using 5-year field data in the high-mountain environment of the Tibetan Plateau. The daily precipitation measured by shielded gauges increases linearly with that of unshielded gauges. The pit gauge catches the most local precipitation in rainy season and could be used as a reference in most regions of China.
A. Hedrick, H.-P. Marshall, A. Winstral, K. Elder, S. Yueh, and D. Cline
The Cryosphere, 9, 13–23, https://doi.org/10.5194/tc-9-13-2015, https://doi.org/10.5194/tc-9-13-2015, 2015
J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano
The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, https://doi.org/10.5194/tc-8-1989-2014, 2014
J. L. McCreight and E. E. Small
The Cryosphere, 8, 521–536, https://doi.org/10.5194/tc-8-521-2014, https://doi.org/10.5194/tc-8-521-2014, 2014
E. Kantzas, S. Quegan, M. Lomas, and E. Zakharova
The Cryosphere, 8, 487–502, https://doi.org/10.5194/tc-8-487-2014, https://doi.org/10.5194/tc-8-487-2014, 2014
S. Jörg-Hess, F. Fundel, T. Jonas, and M. Zappa
The Cryosphere, 8, 471–485, https://doi.org/10.5194/tc-8-471-2014, https://doi.org/10.5194/tc-8-471-2014, 2014
G. A. Sexstone and S. R. Fassnacht
The Cryosphere, 8, 329–344, https://doi.org/10.5194/tc-8-329-2014, https://doi.org/10.5194/tc-8-329-2014, 2014
R. Mott, L. Egli, T. Grünewald, N. Dawes, C. Manes, M. Bavay, and M. Lehning
The Cryosphere, 5, 1083–1098, https://doi.org/10.5194/tc-5-1083-2011, https://doi.org/10.5194/tc-5-1083-2011, 2011
R. Mott, M. Schirmer, M. Bavay, T. Grünewald, and M. Lehning
The Cryosphere, 4, 545–559, https://doi.org/10.5194/tc-4-545-2010, https://doi.org/10.5194/tc-4-545-2010, 2010
S. H. Mernild, I. M. Howat, Y. Ahn, G. E. Liston, K. Steffen, B. H. Jakobsen, B. Hasholt, B. Fog, and D. van As
The Cryosphere, 4, 453–465, https://doi.org/10.5194/tc-4-453-2010, https://doi.org/10.5194/tc-4-453-2010, 2010
Cited articles
Benning, J. and Yang, D.: Adjustment of Daily Precipitation Data at Barrow and Nome Alaska for 1995–2001, Arct. Antarct. Alp. Res., 37, 276–283, https://doi.org/10.1657/1523-0430(2005)037[0276:AODPDA]2.0.CO;2, 2005.
Goodison, B. E.: Compatibility of Canadian snowfall and snow cover data, Water Resour. Res., 17, 893–900, https://doi.org/10.1029/WR017i004p00893, 1981.
Goodison, B. E., Louie, P. Y. T., and Yang, D.: WMO solid precipitation measurement intercomparison, WMO/TD 872, World Meteorological Organization, Geneva, Switzerland, 1998.
Groisman, P. Y. and Easterling, D. R.: Variability and Trends of Total Precipitation and Snowfall over the United States and Canada, J. Climate, 7, 184–205, https://doi.org/10.1175/1520-0442(1994)007<0184:VATOTP>2.0.CO;2, 1994.
Jones, S. H. and Fahl, C. B.: Magnitude and Frequency of Floods in Alaska and Conterminous Basins of Canada, Water-Resources Investigations Report 93-4179, U.S. Geological Survey, Anchorage, Alaska, 1994.
Kane, D. L. and Stuefer, S. L.: Reflecting on the status of precipitation data collection in Alaska: a case study, Hydrol. Res., 46, 478–493, https://doi.org/10.2166/nh.2014.023, 2015.
Leeper, R. D., Rennie, J., and Palecki, M. A.: Observational Perspectives from US Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: Temperature and Precipitation Comparison., J. Atmos. Ocean. Tech., 32, 703–721, 2015.
Legates, D. R. and Willmott, C. J.: Mean seasonal and spatial variability in gauge-corrected, global precipitation, Int. J. Climatol., 10, 111–127, https://doi.org/10.1002/joc.3370100202, 1990.
Manson, G. K. and Solomon, S. M.: Past and future forcing of Beaufort Sea coastal change, Atmos. Ocean, 45, 107–122, https://doi.org/10.3137/ao.450204, 2007.
Mekis, É. and Brown, R.: Derivation of an adjustment factor map for the estimation of the water equivalent of snowfall from ruler measurements in Canada, Atmos. Ocean, 48, 284–293, https://doi.org/10.3137/AO1104.2010, 2010.
Mekis, É. and Vincent, L. A.: An Overview of the Second Generation Adjusted Daily Precipitation Dataset for Trend Analysis in Canada, Atmos. Ocean, 49, 163–177, https://doi.org/10.1080/07055900.2011.583910, 2011.
Metcalfe, J. R. and Goodison, B. E.: Correction of Canadian winter precipitation data, in Proc. 8th Symp. on Meteorological Observations and Instrumentation, Amer. Meteor. Soc., Anaheim, CA, 338–343, USA, 1993.
Nitu, R. and Wong, K.: CIMO Survey on national summaries of methods and instruments for solid precipitation measurement at automatic weather stations, World Meteorological Organization (WMO), Geneva, Switzerland, 2010.
Nitu, R., Rasmunssen, R., Baker, B., Lanzinger, E., Joe, P., Yang, D., Smith, C., Roulet, Y. A., Goodison, B., Liang, H., Sabatini, F., Kochendorfer, J., Wolff, M., Hendrikx, J., Vuerich, E., Lanza, L., Aulamo, O., and Vuglinsky, V.: WMO intercomparison of instruments and methods for the measurement of solid precipitation and snow on the ground: organization of the experiment, World Meteorological Organization (WMO), Brussels, Belgium, 2012.
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.: How well are we measuring snow? The NOAA/FAA/NCAR Winter Precipitation Test Bed, B. Am. Meteorol. Soc., 93, 811–829, https://doi.org/10.1175/BAMS-D-11-00052.1, 2012.
Sanderson, M.: Notes and correspondence: A comparison of Canadian and United States Standard Methods of Measuring Precipitation, J. Appl. Meteorol., 14, 1197–1199, 1975.
Searcy, J. and Hardison, C.: Double-Mass Curves, United States Department of the Interior, Washington DC, USA, 1960.
Šeparović, L., Alexandru, A., Laprise, R., Martynov, A., Sushama, L., Winger, K., Tete, K., and Valin, M.: Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model, Clim. Dynam., 41, 3167–3201, https://doi.org/10.1007/s00382-013-1737-5, 2013.
Serreze, M. C. and Hurst, C. M.: Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses, J. Climate, 13, 182–201, https://doi.org/10.1175/1520-0442(2000)013<0182:ROMAPF>2.0.CO;2, 2000.
Sevruk, B. and Klemm, S.: Types of standard precipitation gauges, in Proceedings of International Workshop on Precipitation Measurement, WMO/IAHS/ETH, vol. 227236, St. Moritz, Switzerland, 1989.
Simpson, J. J., Hufford, G. L., Fleming, M. D., Berg, J. S., and Ashton, J. B.: Long-term climate patterns in Alaskan surface temperature and precipitation and their biological consequences, IEEE T. Geosci. Remote, 40, 1164–1184, https://doi.org/10.1109/TGRS.2002.1010902, 2002.
Simpson, J. J., Hufford, G. L., Daly, C., Berg, J. S., and Fleming, M. D.: Comparing maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada produced by two different methods, Arctic, 58, 137–161, 2005.
Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T., and Brækkan, R.: Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study, Hydrol. Earth Syst. Sci., 19, 951–967, https://doi.org/10.5194/hess-19-951-2015, 2015.
Yang, D. and Ohata, T.: A Bias-Corrected Siberian Regional Precipitation Climatology, J. Hydrometeorol., 2, 122–139, https://doi.org/10.1175/1525-7541(2001)002<0122:ABCSRP>2.0.CO;2, 2001.
Yang, D. and Simonenko, A.: Comparison of Winter Precipitation Measurements by Six Tretyakov Gauges at the Valdai Experimental Site, Atmos. Ocean, 52, 39–53, https://doi.org/10.1080/07055900.2013.865156, 2013.
Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Elomaa, E., Gunther, T., Bates, R., Pangburn, T., Hanson, C. L., Emerson, D., Copaciu, V., and Milkovic, J.: Accuracy of tretyakov precipitation gauge: Result of WMO intercomparison, Hydrol. Process., 9, 877–895, https://doi.org/10.1002/hyp.3360090805, 1995.
Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Bates, R., Pangburn, T., and Hanson, C. L.: Accuracy of NWS 8" standard nonrecording precipitation gauge: Results and application of WMO intercomparison, J. Atmos. Ocean. Tech., 15, 54–68, https://doi.org/10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2, 1998a.
Yang, D., Goodison, B. E., Ishida, S., and Benson, C. S.: Adjustment of daily precipitation data at 10 climate stations in Alaska: Application of World Meteorological Organization intercomparison results, Water Resour. Res., 34, 241–256, https://doi.org/10.1029/97WR02681, 1998b.
Yang, D., Ishida, S., Goodison, B. E. and Gunther, T.: Bias correction of daily precipitation measurements for Greenland, J. Geophys. Res., 104, 6171, https://doi.org/10.1029/1998JD200110, 1999.
Yang, D., Goodison, B., Metcalfe, J., Louie, P., Elomaa, E., Hanson, C., Golubev, V., Gunther, T., Milkovic, J., and Lapin, M.: Compatibility evaluation of national precipitation gage measurements, J. Geophys. Res., 106, 1481–1491, https://doi.org/10.1029/2000JD900612, 2001.
Yang, D., Kane, D., Zhang, Z., Legates, D. and Goodison, B.: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions, Geophys. Res. Lett., 32, L19501, https://doi.org/10.1029/2005GL024057, 2005.
Zhao, K., Stadnyk, T., Koenig, K., and Crawford, J.: Better Precipitation Product over the Red River Basin, B.Sc. thesis, University of Manitoba, Winnipeg, Manitoba, Canada, available at: http://watflood.ce.umanitoba.ca/Publication.html (last access: 18 December 2015), 2010.
Short summary
The bias corrections show significant errors in the gauge precipitation measurements over the northern regions. Monthly precipitation is closely correlated between the stations across the Alaska--Yukon border, particularly for the warm months. Double mass curves indicate changes in the cumulative precipitation due to bias corrections over the study period. Overall the bias corrections lead to a smaller and inverted precipitation gradient across the border, especially for snowfall.
The bias corrections show significant errors in the gauge precipitation measurements over the...