Articles | Volume 8, issue 2
https://doi.org/10.5194/tc-8-471-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-8-471-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: methodology and applications
S. Jörg-Hess
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstr. 111, 8903 Birmensdorf, Switzerland
F. Fundel
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstr. 111, 8903 Birmensdorf, Switzerland
now at: Deutscher Wetterdienst (DWD), Frankfurter Straße 135, 63067 Offenbach, Germany
T. Jonas
WSL Institute for Snow and Avalanche Research SLF, Flüelastr. 11, 7260 Davos, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstr. 111, 8903 Birmensdorf, Switzerland
Related authors
No articles found.
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2591, https://doi.org/10.5194/egusphere-2024-2591, 2024
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for the next month at 54 stations in Switzerland with our best performing data-driven model. The average forecast error is 0.38 °C for 1 day ahead and increases to 0.90 °C for 1 month ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Michael Margreth, Florian Lustenberger, Dorothea Hug Peter, Fritz Schlunegger, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-78, https://doi.org/10.5194/nhess-2024-78, 2024
Preprint under review for NHESS
Short summary
Short summary
Recession models (RM) are crucial for observing the low flow behavior of a catchment. We developed two novel RM, which are designed to represent slowly draining catchment conditions. With a newly designed low flow prediction procedure we tested the prediction capability of these two models and three others from literature. One of our novel products delivered the best results, because it best represents the slowly draining catchment conditions.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993, https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Short summary
This study uses deep learning to predict spatially contiguous water runoff in Switzerland from 1962–2023. It outperforms traditional models, requiring less data and computational power. Key findings include increased dry years and summer water scarcity. This method offers significant advancements in water monitoring.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5015–5025, https://doi.org/10.5194/hess-24-5015-2020, https://doi.org/10.5194/hess-24-5015-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth's energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale heterogeneity without explicitly representing it in land surface models.
Marco Dal Molin, Mario Schirmer, Massimiliano Zappa, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 24, 1319–1345, https://doi.org/10.5194/hess-24-1319-2020, https://doi.org/10.5194/hess-24-1319-2020, 2020
Matthias J. R. Speich, Massimiliano Zappa, Marc Scherstjanoi, and Heike Lischke
Geosci. Model Dev., 13, 537–564, https://doi.org/10.5194/gmd-13-537-2020, https://doi.org/10.5194/gmd-13-537-2020, 2020
Short summary
Short summary
Climate change is expected to substantially affect natural processes, and simulation models are a valuable tool to anticipate these changes. In this study, we combine two existing models that each describe one aspect of the environment: forest dynamics and the terrestrial water cycle. The coupled model better described observed patterns in vegetation structure. We also found that including the effect of water availability on tree height and rooting depth improved the model.
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Short summary
River flow regimes are expected to change and so are extreme flow regimes. We propose two methods for estimating extreme flow regimes and show on a data set from Switzerland how these extreme regimes are expected to change. Our results show that changes in low- and high-flow regimes are distinct for rainfall- and melt-dominated regions. Our findings provide guidance in water resource planning and management.
Manuela I. Brunner, Katharina Liechti, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, https://doi.org/10.5194/nhess-19-2311-2019, 2019
Short summary
Short summary
The 2018 drought event had severe ecological, economic, and social impacts. How extreme was it in Switzerland? We addressed this question by looking at different types of drought, including meteorological, hydrological, agricultural, and groundwater drought, and at the two characteristics deficit and deficit duration. The return period estimates depended on the region, variable, and return period considered.
Samuel Monhart, Massimiliano Zappa, Christoph Spirig, Christoph Schär, and Konrad Bogner
Hydrol. Earth Syst. Sci., 23, 493–513, https://doi.org/10.5194/hess-23-493-2019, https://doi.org/10.5194/hess-23-493-2019, 2019
Short summary
Short summary
Subseasonal streamflow forecasts have received increasing attention during the past decade, but their performance in alpine catchments is still largely unknown. We analyse the effect of a statistical correction technique applied to the driving meteorological forecasts on the performance of the resulting streamflow forecasts. The study shows the benefits of such hydrometeorological ensemble prediction systems and highlights the importance of snow-related processes for subseasonal predictions.
Manuel Antonetti, Christoph Horat, Ioannis V. Sideris, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 19–40, https://doi.org/10.5194/nhess-19-19-2019, https://doi.org/10.5194/nhess-19-19-2019, 2019
Short summary
Short summary
To predict timing and magnitude peak run-off, meteorological and calibrated hydrological models are commonly coupled. A flash-flood forecasting chain is presented based on a process-based run-off generation module with no need for calibration. This chain has been evaluated using data for the Emme catchment (Switzerland). The outcomes of this study show that operational flash predictions in ungauged basins can benefit from the use of information on run-off processes.
Peter Stucki, Moritz Bandhauer, Ulla Heikkilä, Ole Rössler, Massimiliano Zappa, Lucas Pfister, Melanie Salvisberg, Paul Froidevaux, Olivia Martius, Luca Panziera, and Stefan Brönnimann
Nat. Hazards Earth Syst. Sci., 18, 2717–2739, https://doi.org/10.5194/nhess-18-2717-2018, https://doi.org/10.5194/nhess-18-2717-2018, 2018
Short summary
Short summary
A catastrophic flood south of the Alps in 1868 is assessed using documents and the earliest example of high-resolution weather simulation. Simulated weather dynamics agree well with observations and damage reports. Simulated peak water levels are biased. Low forest cover did not cause the flood, but such a paradigm was used to justify afforestation. Supported by historical methods, such numerical simulations allow weather events from past centuries to be used for modern hazard and risk analyses.
Manuel Antonetti and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4425–4447, https://doi.org/10.5194/hess-22-4425-2018, https://doi.org/10.5194/hess-22-4425-2018, 2018
Short summary
Short summary
We developed 60 modelling chain combinations based on either experimentalists' (bottom-up) or modellers' (top-down) thinking and forced them with data of increasing accuracy. Results showed that the differences in performance arising from the forcing data were due to compensation effects. We also found that modellers' and experimentalists' concept of
model realismdiffers, and the level of detail a model should have to reproduce the processes expected must be agreed in advance.
Matthias J. R. Speich, Heike Lischke, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4097–4124, https://doi.org/10.5194/hess-22-4097-2018, https://doi.org/10.5194/hess-22-4097-2018, 2018
Short summary
Short summary
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum volume of water available to plants. This depends on soil properties and the average depth of roots. Rooting depth has proven challenging to estimate. Here, we applied a model assuming that plants dimension their roots to optimize their carbon budget. We compared its results with values obtained by calibrating a dynamic water balance model. In most cases, there is good agreement between both methods.
Christoph Horat, Manuel Antonetti, Katharina Liechti, Pirmin Kaufmann, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-119, https://doi.org/10.5194/nhess-2018-119, 2018
Publication in NHESS not foreseen
Short summary
Short summary
Two forecasting chains are forced by information from numerical weather predictions. The framework presented in the companion paper by Antonetti et al. has been set up for the Swiss Verzasca basin. The forecasts obtained with the uncalibrated RGM-PRO model are compared to forecasts yielded by the calibrated PREVAH-HRU model. Results shows that the uncalibrated model is able to compete with the calibrated operational prediction system and was consistently superior for
high-flow situations.
Love Råman Vinnå, Alfred Wüest, Massimiliano Zappa, Gabriel Fink, and Damien Bouffard
Hydrol. Earth Syst. Sci., 22, 31–51, https://doi.org/10.5194/hess-22-31-2018, https://doi.org/10.5194/hess-22-31-2018, 2018
Short summary
Short summary
Responses of inland waters to climate change vary on global and regional scales. Shifts in river discharge regimes act as positive and negative feedbacks in influencing water temperature. The extent of this effect on warming is controlled by the change in river discharge and lake hydraulic residence time. A shift of deep penetrating river intrusions from summer towards winter can potentially counteract the otherwise negative climate effects on deep-water oxygen content.
Konrad Bogner, Katharina Liechti, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 21, 5493–5502, https://doi.org/10.5194/hess-21-5493-2017, https://doi.org/10.5194/hess-21-5493-2017, 2017
Short summary
Short summary
The enhanced availability of many different weather prediction systems nowadays makes it very difficult for flood and water resource managers to choose the most reliable and accurate forecast. In order to circumvent this problem of choice, different approaches for combining this information have been applied at the Sihl River (CH) and the results have been verified. The outcome of this study highlights the importance of forecast combination in order to improve the quality of forecast systems.
Manuel Antonetti, Rahel Buss, Simon Scherrer, Michael Margreth, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 20, 2929–2945, https://doi.org/10.5194/hess-20-2929-2016, https://doi.org/10.5194/hess-20-2929-2016, 2016
Short summary
Short summary
We evaluated three automatic mapping approaches of dominant runoff processes (DRPs) with different complexity using similarity measures and synthetic runoff simulations. The most complex DRP maps were the most similar to the reference maps. Runoff simulations derived from the simpler DRP maps were more uncertain due to inaccuracies in the input data and rather coarse simplifications in the mapping criteria. It would thus be worthwhile trying to obtain DRP maps that are as realistic as possible.
Lieke Melsen, Adriaan Teuling, Paul Torfs, Massimiliano Zappa, Naoki Mizukami, Martyn Clark, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, https://doi.org/10.5194/hess-20-2207-2016, 2016
Short summary
Short summary
In this study we investigated the sensitivity of a large-domain hydrological model for spatial and temporal resolution. We evaluated the results on a mesoscale catchment in Switzerland. Our results show that the model was hardly sensitive for the spatial resolution, which implies that spatial variability is likely underestimated. Our results provide a motivation to improve the representation of spatial variability in hydrological models in order to increase their credibility on a smaller scale.
Michal Jenicek, Jan Seibert, Massimiliano Zappa, Maria Staudinger, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 859–874, https://doi.org/10.5194/hess-20-859-2016, https://doi.org/10.5194/hess-20-859-2016, 2016
Short summary
Short summary
We quantified how long snowmelt affects runoff, and we estimated the sensitivity of catchments to changes in snowpack. This is relevant as the increase of air temperature might cause decreased snow storage. We used time series from 14 catchments in Switzerland. On average, a decrease of maximum snow storage by 10 % caused a decrease of minimum discharge in July by 2 to 9 %. The results showed a higher sensitivity of summer low flow to snow in alpine catchments compared to pre-alpine catchments.
M. Zappa, N. Andres, P. Kienzler, D. Näf-Huber, C. Marti, and M. Oplatka
Proc. IAHS, 370, 235–242, https://doi.org/10.5194/piahs-370-235-2015, https://doi.org/10.5194/piahs-370-235-2015, 2015
Short summary
Short summary
The most severe threat for the city of Zürich (Switzerland) are flash-floods from the small Sihl river. An assessment using a rainfall-runoff model evaluated more than 40000 extreme flood scenarios. These scenarios identified deficits for the safety of Zürich. The combination of different structural and flood management measures can lead to an optimal safety also in case of unfavorable initial conditions. Pending questions concern the costs, political decisions and the environmental matters.
M. Zappa, T. Vitvar, A. Rücker, G. Melikadze, L. Bernhard, V. David, M. Jans-Singh, N. Zhukova, and M. Sanda
Proc. IAHS, 369, 25–30, https://doi.org/10.5194/piahs-369-25-2015, https://doi.org/10.5194/piahs-369-25-2015, 2015
Short summary
Short summary
A research effort involving Switzerland, Georgia and the Czech Republic has been launched to evaluate the relation between snowpack and summer low flows. Two rainfall-runoff models will simulate over 10 years of snow hydrology and runoff in nested streams. Processes involved will be also evaluated by mean by means of high frequency sampling of the environmental isotopes 18O and 2H. The paper presents first analysis of available datasets of 18O, 2H, discharge, snowpack and modelling experiments.
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Short summary
The aim of the paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying in the Sihl river valley including the city of Zurich, which represents a typical case of river flooding in an urban area, by means of a calibration process of the methodology to the site-specific context and features.
K. Liechti, L. Panziera, U. Germann, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 3853–3869, https://doi.org/10.5194/hess-17-3853-2013, https://doi.org/10.5194/hess-17-3853-2013, 2013
F. Fundel, S. Jörg-Hess, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 395–407, https://doi.org/10.5194/hess-17-395-2013, https://doi.org/10.5194/hess-17-395-2013, 2013
Related subject area
Snow Hydrology
Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy
Using Sentinel-1 wet snow maps to inform fully-distributed physically-based snowpack models
Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events
Two-dimensional liquid water flow through snow at the plot scale in continental snowpacks: simulations and field data comparisons
Fractional snow-covered area: scale-independent peak of winter parameterization
Seasonal components of freshwater runoff in Glacier Bay, Alaska: diverse spatial patterns and temporal change
Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain
Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California
A continuum model for meltwater flow through compacting snow
Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment
Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada
Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments
A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation
Multilevel spatiotemporal validation of snow/ice mass balance and runoff modeling in glacierized catchments
Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method
Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data
Inconsistency in precipitation measurements across the Alaska–Yukon border
Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau
Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements
Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence
Modeling bulk density and snow water equivalent using daily snow depth observations
Evaluation of the snow regime in dynamic vegetation land surface models using field measurements
What drives basin scale spatial variability of snowpack properties in northern Colorado?
Micrometeorological processes driving snow ablation in an Alpine catchment
Understanding snow-transport processes shaping the mountain snow-cover
Freshwater flux to Sermilik Fjord, SE Greenland
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
EGUsphere, https://doi.org/10.5194/egusphere-2024-209, https://doi.org/10.5194/egusphere-2024-209, 2024
Short summary
Short summary
We use novel wet snow maps from Sentinel-1 to evaluate simulations of a snow-hydrological model over Switzerland. These data are complementary to available in-situ snow depth observations as they capture a broad diversity of topographic conditions. Wet snow maps allow us to detect a delayed melt onset in the model, which we resolve thanks to an improved parametrization. This opens the way to further evaluation, calibration and data assimilation using wet snow maps.
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023, https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and a nonlinear relationship between snow density and impact variables, as well as allows us to understand the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Short summary
The internal properties of the snow cover shape the annual hygrogram of northern and alpine regions. This study develops a multi-method approach to measure the evolution of snowpack internal properties. The snowpack hydrological property evolution was evaluated with drone-based ground-penetrating radar (GPR) measurements. In addition, the combination of GPR observations and time domain reflectometry measurements is shown to be able to be adapted to monitor the snowpack moisture over winter.
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022, https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Short summary
Rain is highly variable in time at a given location so that there can be both wet and dry climate periods. In this study, we quantify the effects of this natural climate variability and other sources of uncertainty on changes in flooding events due to rain on snow (ROS) caused by climate change. For ROS events with a significant contribution of snowmelt to runoff, the change due to climate was too small to draw firm conclusions about whether there are more ROS events of this important type.
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021, https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Short summary
We simulate the flow of liquid water through snow and compare results to field experiments. This process is important because it controls how much and how quickly water will reach our streams and rivers in snowy regions. We found that water can flow large distances downslope through the snow even after the snow has stopped melting. Improved modeling of snowmelt processes will allow us to more accurately estimate available water resources, especially under changing climate conditions.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Ryan L. Crumley, David F. Hill, Jordan P. Beamer, and Elizabeth R. Holzenthal
The Cryosphere, 13, 1597–1619, https://doi.org/10.5194/tc-13-1597-2019, https://doi.org/10.5194/tc-13-1597-2019, 2019
Short summary
Short summary
In this study we investigate the historical (1980–2015) and projection scenario (2070–2099) components of freshwater runoff to Glacier Bay, Alaska, using a modeling approach. We find that many of the historically snow-dominated watersheds in Glacier Bay National Park and Preserve may transition towards rainfall-dominated hydrographs in a projection scenario under RCP 8.5 conditions. The changes in timing and volume of freshwater entering Glacier Bay will affect bay ecology and hydrochemistry.
Ryan W. Webb, Steven R. Fassnacht, and Michael N. Gooseff
The Cryosphere, 12, 287–300, https://doi.org/10.5194/tc-12-287-2018, https://doi.org/10.5194/tc-12-287-2018, 2018
Short summary
Short summary
We observed how snowmelt is transported on a hillslope through multiple measurements of snow and soil moisture across a small headwater catchment. We found that snowmelt flows through the snow with less infiltration on north-facing slopes and infiltrates the ground on south-facing slopes. This causes an increase in snow water equivalent at the base of the north-facing slope by as much as 170 %. We present a conceptualization of flow path development to improve future investigations.
Keith N. Musselman, Noah P. Molotch, and Steven A. Margulis
The Cryosphere, 11, 2847–2866, https://doi.org/10.5194/tc-11-2847-2017, https://doi.org/10.5194/tc-11-2847-2017, 2017
Short summary
Short summary
We present a study of how melt rates in the California Sierra Nevada respond to a range of warming projected for this century. Snowfall and melt were simulated for historical and modified (warmer) snow seasons. Winter melt occurs more frequently and more intensely, causing an increase in extreme winter melt. In a warmer climate, less snow persists into the spring, causing spring melt to be substantially lower. The results offer insight into how snow water resources may respond to climate change.
Colin R. Meyer and Ian J. Hewitt
The Cryosphere, 11, 2799–2813, https://doi.org/10.5194/tc-11-2799-2017, https://doi.org/10.5194/tc-11-2799-2017, 2017
Short summary
Short summary
We describe a new model for the evolution of snow temperature, density, and water content on the surface of glaciers and ice sheets. The model encompasses the surface hydrology of accumulation and ablation areas, allowing us to explore the transition from one to the other as thermal forcing varies. We predict year-round liquid water storage for intermediate values of the surface forcing. We also compare our model to data for the vertical percolation of meltwater in Greenland.
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, https://doi.org/10.5194/tc-11-1647-2017, 2017
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Short summary
This study demonstrates a robust procedure for accumulating precipitation gauge measurements and provides an analysis of bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. It highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.
Francesco Avanzi, Hiroyuki Hirashima, Satoru Yamaguchi, Takafumi Katsushima, and Carlo De Michele
The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, https://doi.org/10.5194/tc-10-2013-2016, 2016
Short summary
Short summary
We investigate capillary barriers and preferential flow in layered snow during nine cold laboratory experiments. The dynamics of each sample were replicated solving Richards equation within the 1-D multi-layer physically based SNOWPACK model. Results show that both processes affect the speed of water infiltration in stratified snow and are marked by a high degree of spatial variability at cm scale and complex 3-D patterns.
Thomas Skaugen and Ingunn H. Weltzien
The Cryosphere, 10, 1947–1963, https://doi.org/10.5194/tc-10-1947-2016, https://doi.org/10.5194/tc-10-1947-2016, 2016
Short summary
Short summary
In hydrological models it is important to properly simulate the spatial distribution of snow water equivalent (SWE) for the timing of spring melt floods and the accounting of energy fluxes. This paper describes a method for the spatial distribution of SWE which is parameterised from observed spatial variability of precipitation and has hence no calibration parameters. Results show improved simulation of SWE and the evolution of snow-free areas when compared with the standard method.
Florian Hanzer, Kay Helfricht, Thomas Marke, and Ulrich Strasser
The Cryosphere, 10, 1859–1881, https://doi.org/10.5194/tc-10-1859-2016, https://doi.org/10.5194/tc-10-1859-2016, 2016
Short summary
Short summary
The hydroclimatological model AMUNDSEN is set up to simulate snow and ice accumulation, ablation, and runoff for a study region in the Ötztal Alps (Austria) in the period 1997–2013. A new validation concept is introduced and demonstrated by evaluating the model performance using several independent data sets, e.g. snow depth measurements, satellite-derived snow maps, lidar data, glacier mass balances, and runoff measurements.
Sarah S. Thompson, Bernd Kulessa, Richard L. H. Essery, and Martin P. Lüthi
The Cryosphere, 10, 433–444, https://doi.org/10.5194/tc-10-433-2016, https://doi.org/10.5194/tc-10-433-2016, 2016
Short summary
Short summary
We show that strong electrical self-potential fields are generated in melting in in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor, owing to its suitability for sensing lateral and vertical liquid water flows directly and minimally invasively, complementing established observational programs and monitoring autonomously at a low cost.
Z. Zheng, P. B. Kirchner, and R. C. Bales
The Cryosphere, 10, 257–269, https://doi.org/10.5194/tc-10-257-2016, https://doi.org/10.5194/tc-10-257-2016, 2016
Short summary
Short summary
By analyzing high-resolution lidar products and using statistical methods, we quantified the snow depth dependency on elevation, slope and aspect of the terrain and also the surrounding vegetation in four catchment size sites in the southern Sierra Nevada during snow peak season. The relative importance of topographic and vegetation attributes varies with elevation and canopy, but all these attributes were found significant in affecting snow distribution in mountain basins.
L. Scaff, D. Yang, Y. Li, and E. Mekis
The Cryosphere, 9, 2417–2428, https://doi.org/10.5194/tc-9-2417-2015, https://doi.org/10.5194/tc-9-2417-2015, 2015
Short summary
Short summary
The bias corrections show significant errors in the gauge precipitation measurements over the northern regions. Monthly precipitation is closely correlated between the stations across the Alaska--Yukon border, particularly for the warm months. Double mass curves indicate changes in the cumulative precipitation due to bias corrections over the study period. Overall the bias corrections lead to a smaller and inverted precipitation gradient across the border, especially for snowfall.
R. Chen, J. Liu, E. Kang, Y. Yang, C. Han, Z. Liu, Y. Song, W. Qing, and P. Zhu
The Cryosphere, 9, 1995–2008, https://doi.org/10.5194/tc-9-1995-2015, https://doi.org/10.5194/tc-9-1995-2015, 2015
Short summary
Short summary
The catch ratio of Chinese standard precipitation gauge vs. wind speed relationship for different precipitation types was well quantified by cubic polynomials and exponential functions using 5-year field data in the high-mountain environment of the Tibetan Plateau. The daily precipitation measured by shielded gauges increases linearly with that of unshielded gauges. The pit gauge catches the most local precipitation in rainy season and could be used as a reference in most regions of China.
A. Hedrick, H.-P. Marshall, A. Winstral, K. Elder, S. Yueh, and D. Cline
The Cryosphere, 9, 13–23, https://doi.org/10.5194/tc-9-13-2015, https://doi.org/10.5194/tc-9-13-2015, 2015
J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano
The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, https://doi.org/10.5194/tc-8-1989-2014, 2014
J. L. McCreight and E. E. Small
The Cryosphere, 8, 521–536, https://doi.org/10.5194/tc-8-521-2014, https://doi.org/10.5194/tc-8-521-2014, 2014
E. Kantzas, S. Quegan, M. Lomas, and E. Zakharova
The Cryosphere, 8, 487–502, https://doi.org/10.5194/tc-8-487-2014, https://doi.org/10.5194/tc-8-487-2014, 2014
G. A. Sexstone and S. R. Fassnacht
The Cryosphere, 8, 329–344, https://doi.org/10.5194/tc-8-329-2014, https://doi.org/10.5194/tc-8-329-2014, 2014
R. Mott, L. Egli, T. Grünewald, N. Dawes, C. Manes, M. Bavay, and M. Lehning
The Cryosphere, 5, 1083–1098, https://doi.org/10.5194/tc-5-1083-2011, https://doi.org/10.5194/tc-5-1083-2011, 2011
R. Mott, M. Schirmer, M. Bavay, T. Grünewald, and M. Lehning
The Cryosphere, 4, 545–559, https://doi.org/10.5194/tc-4-545-2010, https://doi.org/10.5194/tc-4-545-2010, 2010
S. H. Mernild, I. M. Howat, Y. Ahn, G. E. Liston, K. Steffen, B. H. Jakobsen, B. Hasholt, B. Fog, and D. van As
The Cryosphere, 4, 453–465, https://doi.org/10.5194/tc-4-453-2010, https://doi.org/10.5194/tc-4-453-2010, 2010
Cited articles
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, 2005.
Auer, M., Meister, R., Stoffel, A., and Weingartner, R.: Analyse und Darstellung der mittleren monatlichen Schneehöhen in der Schweiz, Wasser-Energie-Luft, 96, 173–178, 2004.
Bardossy, A. and Pegram, G.: Downscaling precipitation using regional climate models and circulation patterns toward hydrology, Water Resour. Res., 47, W04505, https://doi.org/10.1029/2010WR009689, 2011.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: A remote sensing surface energy balance algorithm for land (SEBAL) – 1. Formulation, J. Hydrol., 212, 198–212, 1998.
Bellinger, J., Achleitner, S., Schöber, J., Schöberl, F., Kirnbauer, R., and Schneider, K.: The impact of different elevation steps on simulation of snow covered area and the resulting runoff variance, Adv. Geosci., 32, 69–76, https://doi.org/10.5194/adgeo-32-69-2012, 2012.
Beniston, M.: Impacts of climatic change on water and associated economic activities in the Swiss Alps, J. Hydrol., 412, 291–296, 2012.
Bernhard, L. and Zappa, M.: Schlussbericht CCHydrologie: Natürlicher Wasserhaushalt der Schweiz und ihrer bedeutendsten Grosseinzugsgebiete, Tech. rep., Birmensdorf, 2012.
Bierkens, M. F. P. and van Beek, L. P. H.: Seasonal predictability of European discharge: NAO and hydrological response time, J. Hydrometeorol., 10, 953–968, 2009.
Blöschl, G.: Scaling issues in snow hydrology, Hydrol. Process., 13, 2149–2175, 1999.
Boe, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, 2007.
Bogner, K., Pappenberger, F., and Cloke, H. L.: Technical Note: The normal quantile transformation and its application in a flood forecasting system, Hydrol. Earth Syst. Sci., 16, 1085–1094, https://doi.org/10.5194/hess-16-1085-2012, 2012.
Cayan, D. R., Riddle, L. G., and Aguado, E.: The influence of precipitation and temperature on seasonal streamflow in California, Water Resour. Res., 29, 1127–1140, 1993.
Clark, M. P. and Hay, L. E.: Use of medium-range numerical weather prediction model output to produce forecasts of streamflow, J. Hydrometeorol., 5, 15–32, 2004.
Clark, M. P., Slater, A. G., Barrett, A. P., Hay, L. E., McCabe, G. J., Rajagopalan, B., and Leavesley, G. H.: Assimilation of snow covered area information into hydrologic and land-surface models, Adv. Water Resour., 29, 1209–1221, 2006.
Day, G. N.: Extended streamflow forecasting using NWSRFS, J. Water Res. Pl.-Asce, 111, 157–170, 1985.
Dutra, E., Kotlarski, S., Viterbo, P., Balsamo, G., Miranda, P. M. A., Schär, C., Bissolli, P., and Jonas, T.: Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model, J. Geophys. Res.-Atmos., 116, D21109, https://doi.org/10.1029/2011JD016061, 2011.
Egli, L. and Jonas, T.: Hysteretic dynamics of seasonal snow depth distribution in the Swiss Alps, Geophys. Res. Lett., 36, L02501, https://doi.org/10.1029/2008GL035545, 2009.
Foppa, N. and Seiz, G.: Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data, The Cryosphere, 6, 331–342, https://doi.org/10.5194/tc-6-331-2012, 2012.
Foppa, N., Stoffel, A., and Meister, R.: Snow depth mapping in the Alps: Merging of in situ and remotely-sensed data., EARSeL eProceedings, 4, 119–129, 2005.
Foppa, N., Stoffel, A., and Meister, R.: Synergy of in situ and space borne observation for snow depth mapping in the Swiss Alps, Int. J. Appl. Earth Obs., 9, 294–310, 2007.
Fundel, F., Walser, A., Liniger, M. A., Frei, C., and Appenzeller, C.: Calibrated Precipitation Forecasts for a Limited-Area Ensemble Forecast System Using Reforecasts, Mon. Weather Rev., 138, 176–189, 2010.
Fundel, F., Jörg-Hess, S., and Zappa, M.: Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices, Hydrol. Earth Syst. Sci., 17, 395–407, https://doi.org/10.5194/hess-17-395-2013, 2013.
Garen, D. C. and Marks, D.: Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results, J. Hydrol., 315, 126–153, 2005.
Gurtz, J., Baltensweiler, A., and Lang, H.: Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins, Hydrol. Process., 13, 2751–2768, 1999.
Hamill, T. M. and Whitaker, J. S.: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application, Mon. Weather Rev., 134, 3209–3229, 2006.
Hock, R., Rees, G., Williams, M. W., and Ramirez, E.: Preface – Contribution from glaciers and snow cover to runoff from mountains in different climates – Special issue, Hydrol. Process., 20, 2089–2090, 2006.
Hüsler, F., Jonas, T., Wunderle, S., and Albrecht, S.: Validation of a modified snow cover retrieval algorithm from historical 1-km AVHRR data over the European Alps, Remote Sens. Environ., 121, 497–515, 2012.
Hüsler, F., Jonas, T., Riffler, M., Musial, J. P., and Wunderle, S.: A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data, The Cryosphere, 8, 73–90, https://doi.org/10.5194/tc-8-73-2014, 2014.
Immerzeel, W. W. and Droogers, P.: Calibration of a distributed hydrological model based on satellite evapotranspiration, J. Hydrol., 349, 411–424, 2008.
Ines, A. V. M. and Hansen, J. W.: Bias correction of daily GCM rainfall for crop simulation studies, Agr. Forest Meteorol., 138, 44–53, 2006.
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps, J. Hydrol., 378, 161–167, 2009.
Kite, G. W. and Droogers, P.: Comparing evapotranspiration estimates from satellites, hydrological models and field data, J. Hydrol., 229, 3–18, 2000.
Kobierska, F., Jonas, T., Zappa, M., Bavay, M., Magnusson, J., and Bernasconi, S. M.: Future runoff from a partly glacierized watershed in Central Switzerland: A two-model approach, Adv. Water Resour., 55, 204–214, 2013.
Koster, R. D., Mahanama, S. P. P., Livneh, B., Lettenmaier, D. P., and Reichle, R. H.: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow, Nat. Geosci., 3, 613–616, 2010.
Laternser, M. and Schneebeli, M.: Long-term snow climate trends of the Swiss Alps (1931–99), Int. J. Climatol., 23, 733–750, 2003.
Li, H. B., Sheffield, J., and Wood, E. F.: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching, J. Geophys. Res.-Atmos., 115, D10101, https://doi.org/10.1029/2009jd012882, 2010.
Liston, G. E. and Elder, K.: A distributed snow-evolution modeling system (SnowModel), J. Hydrometeorol., 7, 1259–1276, 2006.
Martinec, J. and Rango, A.: Indirect Eevaluation of Snow Reserves in Mountain Basins, vol. 205 of Snow, Hydrology and Forests in High Alpine Areas, 1991.
Mauser, W., Prasch, M., and Strasser, U.: Physically based modelling of climate change impact on snow cover dynamics in Alpine regions using a stochastic weather generator, Modsim 2007: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability, 10–13 September 2007, Virginia Beach VA, 2007.
Pagano, T. C., Garen, D. C., Perkins, T. R., and Pasteris, P. A.: Daily Updating of Operational Statistical Seasonal Water Supply Forecasts for the western U.S.1, JAWRA J. Am. Water Resour. As., 45, 767–778, 2009.
Panofsky, H. A. and Brier, G. W.: Some applications of statistics to meteorology, Earth and Mineral Sciences Continuing Education College of Earth and Mineral Sciences The Pennsylvania State University, University Park, Pennsylvania, 1968.
Parajka, J. and Blöschl, G.: The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models, J. Hydrol., 358, 240–258, 2008.
Poulin, A., Brissette, F., Leconte, R., Arsenault, R., and Malo, J. S.: Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin, J. Hydrol., 409, 626–636, 2011.
Saloranta, T. M.: Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model, The Cryosphere, 6, 1323–1337, https://doi.org/10.5194/tc-6-1323-2012, 2012.
Schär, C., Vasilina, L., Pertziger, F., and Dirren, S.: Seasonal runoff forecasting using precipitation from meteorological data assimilation systems, J. Hydrometeorol., 5, 959–973, 2004.
Sevruk, B.: Correction of Precipitation Measurements. ETH/IASH/WMO Workshop on the Correction of Precipitation Measurements., vol. 23, ETH Zürich, 1986.
Slater, A. G. and Clark, M. P.: Snow data assimilation via an ensemble Kalman filter, J. Hydrometeorol., 7, 478–493, 2006.
Steger, C., Kotlarski, S., Jonas, T., and Schär, C.: Alpine snow cover in a changing climate: a regional climate model perspective, Clim. Dynam., 41, 735–754, https://doi.org/10.1007/s00382-012-1545-3, 2012.
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.: Estimating snow water equivalent using snow depth data and climate classes, J. Hydrometeorol., 11, 1380–1394, 2010.
Thayyen, R. J. and Gergan, J. T.: Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment", The Cryosphere, 4, 115–128, https://doi.org/10.5194/tc-4-115-2010, 2010.
Themeßl, M. J., Gobiet, A., and Leuprecht, A.: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models, Int. J. Climatol., 31, 1530–1544, 2011.
Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B.: Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping, Hydrol. Earth Syst. Sci., 16, 3309–3314, https://doi.org/10.5194/hess-16-3309-2012, 2012.
van Dijk, A. I. J. M. and Renzullo, L. J.: Water resource monitoring systems and the role of satellite observations, Hydrol. Earth Syst. Sci., 15, 39–55, https://doi.org/10.5194/hess-15-39-2011, 2011.
Veijalainen, N., Korhonen, J., Vehvilainen, B., and Koivusalo, H.: Modelling and statistical analysis of catchment water balance and discharge in Finland in 1951–2099 using transient climate scenarios, Journal of Water and Climate Change, 3, 55–78, 2012.
Viviroli, D., Weingartner, R., and Messerli, B.: Assessing the hydrological significance of the world's mountains, Mt. Res. Dev., 23, 32–40, 2003.
Viviroli, D., Gurtz, J., and Zappa, M.: The hydrological modelling system part II: physical model description, Geographica Bernensia P40, Institute of Geography, University of Berne, Bern, 2007.
Viviroli, D., Mittelbach, H., Gurtz, J., and Weingartner, R.: Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland – Part II: Parameter regionalisation and flood estimation results, J. Hydrol., 377, 208–225, 2009a.
Viviroli, D., Mittelbach, H., Gurtz, J., and Weingartner, R.: Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland – Part II: Parameter regionalisation and flood estimation results, J. Hydrol., 377, 208–225, 2009b.
Warscher, M., Strasser, U., Kraller, G., Marke, T., Franz, H., and Kunstmann, H.: Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps, Water Resour. Res., 49, 2619–2637, 2013.
Weisberg, S.: Applied linear regression, Wiley-Interscience, Hoboken, N. J., 3rd Edn., 2005.
Wilks, D. S.: Statistical methods in the atmospheric sciences, International geophysics series, Academic Press, Amsterdam, Boston, 2nd Edn., 2006.
Witmer, U., Filliger, P., Kunz, S., and Küng, P.: Erfassung, Bearbeitung und Kartierung von Schneedaten in der Schweiz, vol. 25, Bern, Geographisches Institut der Universität Bern, 1986.
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs, Clim. Change, 62, 189–216, 2004.
Zappa, M.: Objective quantitative spatial verification of distributed snow cover simulations – an experiment for the whole of Switzerland, Hydrolog. Sci. J., 53, 179–191, 2008.
Zappa, M., Pos, F., Strasser, U., Warmerdam, P., and Gurtz, J.: Seasonal water balance of an Alpine catchment as evaluated by different methods for spatially distributed snowmelt modelling, Nord. Hydrol., 34, 179–202, 2003.
Zappa, M., Bernhard, L., Fundel, F., and Jörg-Hess, S.: Forecasts and scenarios of snow and water resources in Alpine environments, Forum für Wissen, 19–27, 2012 (in German).