Articles | Volume 8, issue 2
https://doi.org/10.5194/tc-8-329-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-8-329-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
What drives basin scale spatial variability of snowpack properties in northern Colorado?
G. A. Sexstone
ESS-Watershed Science Program, Warner College of Natural Resources, Colorado State University, Fort Collins, Colorado 80523-1476, USA
S. R. Fassnacht
ESS-Watershed Science Program, Warner College of Natural Resources, Colorado State University, Fort Collins, Colorado 80523-1476, USA
Related authors
Graham A. Sexstone, Steven R. Fassnacht, Juan Ignacio López-Moreno, and Christopher A. Hiemstra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-188, https://doi.org/10.5194/tc-2016-188, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Seasonal snowpacks vary spatially within mountainous environments and the representation of this variability by modeling can be a challenge. This study uses high-resolution airborne lidar data to evaluate the variability of snow depth within a grid size common for modeling applications. Results suggest that snow depth coefficient of variation is well correlated with ecosystem type, depth of snow, and topography and forest characteristics, and can be parameterized using airborne lidar data.
Molly E. Tedesche, Erin D. Trochim, Steven R. Fassnacht, and Gabriel J. Wolken
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-143, https://doi.org/10.5194/tc-2022-143, 2022
Publication in TC not foreseen
Short summary
Short summary
Perennial snowfields in the Brooks Range of Alaska are critical for the ecosystem and provide caribou habitat. Caribou are a crucial food source for rural hunters. The purpose of this research is to map perennial snowfield extents using several remote sensing techniques with Sentinel-1 and 2. These include analysis of Synthetic Aperture Radar backscatter change and of optical satellite imagery. Results are compared with field data and appear to effectively detect perennial snowfield locations.
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021, https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Short summary
We simulate the flow of liquid water through snow and compare results to field experiments. This process is important because it controls how much and how quickly water will reach our streams and rivers in snowy regions. We found that water can flow large distances downslope through the snow even after the snow has stopped melting. Improved modeling of snowmelt processes will allow us to more accurately estimate available water resources, especially under changing climate conditions.
Steven R. Fassnacht, Jared T. Heath, Niah B. H. Venable, and Kelly J. Elder
The Cryosphere, 12, 1121–1135, https://doi.org/10.5194/tc-12-1121-2018, https://doi.org/10.5194/tc-12-1121-2018, 2018
Short summary
Short summary
We conducted a series of experiments to determine how snowpack properties change with varying snowmobile traffic. Experiments were initiated at a shallow (30 cm) and deep (120 cm) snow depth at two locations. Except for initiation at 120 cm, snowmobiles significantly changed the density, hardness, ram resistance, and basal layer crystal size. Temperature was not changed. A density change model was developed and tested. The results inform management of lands with snowmobile traffic.
Freddy A. Saavedra, Stephanie K. Kampf, Steven R. Fassnacht, and Jason S. Sibold
The Cryosphere, 12, 1027–1046, https://doi.org/10.5194/tc-12-1027-2018, https://doi.org/10.5194/tc-12-1027-2018, 2018
Short summary
Short summary
This manuscript presents a large latitude and elevation range analysis for snow trends in the Andes using satellite images (MODIS) snow cover product. The research approach is also significant because it presents a novel strategy for defining trends in snow persistence from remote sensing data, and this allows us to improve understanding of climate change effects on snow in areas with sparse and unevenly ground climate data.
Ryan W. Webb, Steven R. Fassnacht, and Michael N. Gooseff
The Cryosphere, 12, 287–300, https://doi.org/10.5194/tc-12-287-2018, https://doi.org/10.5194/tc-12-287-2018, 2018
Short summary
Short summary
We observed how snowmelt is transported on a hillslope through multiple measurements of snow and soil moisture across a small headwater catchment. We found that snowmelt flows through the snow with less infiltration on north-facing slopes and infiltrates the ground on south-facing slopes. This causes an increase in snow water equivalent at the base of the north-facing slope by as much as 170 %. We present a conceptualization of flow path development to improve future investigations.
Graham A. Sexstone, Steven R. Fassnacht, Juan Ignacio López-Moreno, and Christopher A. Hiemstra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-188, https://doi.org/10.5194/tc-2016-188, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Seasonal snowpacks vary spatially within mountainous environments and the representation of this variability by modeling can be a challenge. This study uses high-resolution airborne lidar data to evaluate the variability of snow depth within a grid size common for modeling applications. Results suggest that snow depth coefficient of variation is well correlated with ecosystem type, depth of snow, and topography and forest characteristics, and can be parameterized using airborne lidar data.
S. R. Fassnacht, M. L. Cherry, N. B. H. Venable, and F. Saavedra
The Cryosphere, 10, 329–339, https://doi.org/10.5194/tc-10-329-2016, https://doi.org/10.5194/tc-10-329-2016, 2016
Short summary
Short summary
We used 60 years of daily meteorological data from 20 stations across the US Northern Great Plains to examine climate trends, focusing on the winter climate. Besides standard climate trends, we computed trends in snowfall amounts, days with precipitation, days with snow, and modelled winter albedo (surface reflectivity). Daily minimum temperatures and days with precipitation increased at most locations, while winter albedo decreased at many stations. There was much spatial variability.
S. R. Fassnacht and M. Hultstrand
Proc. IAHS, 371, 131–136, https://doi.org/10.5194/piahs-371-131-2015, https://doi.org/10.5194/piahs-371-131-2015, 2015
Short summary
Short summary
Snowpack properties vary over distance. Water resources managers use operational data to estimate streamflow, while scientists use snow data models to understand climate and hydrology. We suggest that there is the individual measurements in a snowcourse be used to address uncertainty. Further, over the long term trends may not be obvious but increasing and decreasing trends can exist over shorter time periods, as seen in Northern Colorado. Such trends mirror global temperature patterns.
R. M. Records, M. Arabi, S. R. Fassnacht, W. G. Duffy, M. Ahmadi, and K. C. Hegewisch
Hydrol. Earth Syst. Sci., 18, 4509–4527, https://doi.org/10.5194/hess-18-4509-2014, https://doi.org/10.5194/hess-18-4509-2014, 2014
Short summary
Short summary
We demonstrate a framework to assess system sensitivity to combined climate and land cover change scenarios. In the western United States study watershed, findings suggest that mid-21st-century nutrient and sediment loads could increase significantly or show little change under no wetland losses, depending on climate scenario, but that the combined impact of climate change and wetland losses on nutrients could be large.
Related subject area
Snow Hydrology
Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy
Using Sentinel-1 wet snow maps to inform fully-distributed physically-based snowpack models
Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events
Two-dimensional liquid water flow through snow at the plot scale in continental snowpacks: simulations and field data comparisons
Fractional snow-covered area: scale-independent peak of winter parameterization
Seasonal components of freshwater runoff in Glacier Bay, Alaska: diverse spatial patterns and temporal change
Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain
Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California
A continuum model for meltwater flow through compacting snow
Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment
Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada
Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments
A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation
Multilevel spatiotemporal validation of snow/ice mass balance and runoff modeling in glacierized catchments
Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method
Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data
Inconsistency in precipitation measurements across the Alaska–Yukon border
Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau
Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements
Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence
Modeling bulk density and snow water equivalent using daily snow depth observations
Evaluation of the snow regime in dynamic vegetation land surface models using field measurements
Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: methodology and applications
Micrometeorological processes driving snow ablation in an Alpine catchment
Understanding snow-transport processes shaping the mountain snow-cover
Freshwater flux to Sermilik Fjord, SE Greenland
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
EGUsphere, https://doi.org/10.5194/egusphere-2024-209, https://doi.org/10.5194/egusphere-2024-209, 2024
Short summary
Short summary
We use novel wet snow maps from Sentinel-1 to evaluate simulations of a snow-hydrological model over Switzerland. These data are complementary to available in-situ snow depth observations as they capture a broad diversity of topographic conditions. Wet snow maps allow us to detect a delayed melt onset in the model, which we resolve thanks to an improved parametrization. This opens the way to further evaluation, calibration and data assimilation using wet snow maps.
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023, https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and a nonlinear relationship between snow density and impact variables, as well as allows us to understand the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Short summary
The internal properties of the snow cover shape the annual hygrogram of northern and alpine regions. This study develops a multi-method approach to measure the evolution of snowpack internal properties. The snowpack hydrological property evolution was evaluated with drone-based ground-penetrating radar (GPR) measurements. In addition, the combination of GPR observations and time domain reflectometry measurements is shown to be able to be adapted to monitor the snowpack moisture over winter.
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022, https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Short summary
Rain is highly variable in time at a given location so that there can be both wet and dry climate periods. In this study, we quantify the effects of this natural climate variability and other sources of uncertainty on changes in flooding events due to rain on snow (ROS) caused by climate change. For ROS events with a significant contribution of snowmelt to runoff, the change due to climate was too small to draw firm conclusions about whether there are more ROS events of this important type.
Ryan W. Webb, Keith Jennings, Stefan Finsterle, and Steven R. Fassnacht
The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-2021, https://doi.org/10.5194/tc-15-1423-2021, 2021
Short summary
Short summary
We simulate the flow of liquid water through snow and compare results to field experiments. This process is important because it controls how much and how quickly water will reach our streams and rivers in snowy regions. We found that water can flow large distances downslope through the snow even after the snow has stopped melting. Improved modeling of snowmelt processes will allow us to more accurately estimate available water resources, especially under changing climate conditions.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Ryan L. Crumley, David F. Hill, Jordan P. Beamer, and Elizabeth R. Holzenthal
The Cryosphere, 13, 1597–1619, https://doi.org/10.5194/tc-13-1597-2019, https://doi.org/10.5194/tc-13-1597-2019, 2019
Short summary
Short summary
In this study we investigate the historical (1980–2015) and projection scenario (2070–2099) components of freshwater runoff to Glacier Bay, Alaska, using a modeling approach. We find that many of the historically snow-dominated watersheds in Glacier Bay National Park and Preserve may transition towards rainfall-dominated hydrographs in a projection scenario under RCP 8.5 conditions. The changes in timing and volume of freshwater entering Glacier Bay will affect bay ecology and hydrochemistry.
Ryan W. Webb, Steven R. Fassnacht, and Michael N. Gooseff
The Cryosphere, 12, 287–300, https://doi.org/10.5194/tc-12-287-2018, https://doi.org/10.5194/tc-12-287-2018, 2018
Short summary
Short summary
We observed how snowmelt is transported on a hillslope through multiple measurements of snow and soil moisture across a small headwater catchment. We found that snowmelt flows through the snow with less infiltration on north-facing slopes and infiltrates the ground on south-facing slopes. This causes an increase in snow water equivalent at the base of the north-facing slope by as much as 170 %. We present a conceptualization of flow path development to improve future investigations.
Keith N. Musselman, Noah P. Molotch, and Steven A. Margulis
The Cryosphere, 11, 2847–2866, https://doi.org/10.5194/tc-11-2847-2017, https://doi.org/10.5194/tc-11-2847-2017, 2017
Short summary
Short summary
We present a study of how melt rates in the California Sierra Nevada respond to a range of warming projected for this century. Snowfall and melt were simulated for historical and modified (warmer) snow seasons. Winter melt occurs more frequently and more intensely, causing an increase in extreme winter melt. In a warmer climate, less snow persists into the spring, causing spring melt to be substantially lower. The results offer insight into how snow water resources may respond to climate change.
Colin R. Meyer and Ian J. Hewitt
The Cryosphere, 11, 2799–2813, https://doi.org/10.5194/tc-11-2799-2017, https://doi.org/10.5194/tc-11-2799-2017, 2017
Short summary
Short summary
We describe a new model for the evolution of snow temperature, density, and water content on the surface of glaciers and ice sheets. The model encompasses the surface hydrology of accumulation and ablation areas, allowing us to explore the transition from one to the other as thermal forcing varies. We predict year-round liquid water storage for intermediate values of the surface forcing. We also compare our model to data for the vertical percolation of meltwater in Greenland.
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, https://doi.org/10.5194/tc-11-1647-2017, 2017
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Short summary
This study demonstrates a robust procedure for accumulating precipitation gauge measurements and provides an analysis of bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. It highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.
Francesco Avanzi, Hiroyuki Hirashima, Satoru Yamaguchi, Takafumi Katsushima, and Carlo De Michele
The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, https://doi.org/10.5194/tc-10-2013-2016, 2016
Short summary
Short summary
We investigate capillary barriers and preferential flow in layered snow during nine cold laboratory experiments. The dynamics of each sample were replicated solving Richards equation within the 1-D multi-layer physically based SNOWPACK model. Results show that both processes affect the speed of water infiltration in stratified snow and are marked by a high degree of spatial variability at cm scale and complex 3-D patterns.
Thomas Skaugen and Ingunn H. Weltzien
The Cryosphere, 10, 1947–1963, https://doi.org/10.5194/tc-10-1947-2016, https://doi.org/10.5194/tc-10-1947-2016, 2016
Short summary
Short summary
In hydrological models it is important to properly simulate the spatial distribution of snow water equivalent (SWE) for the timing of spring melt floods and the accounting of energy fluxes. This paper describes a method for the spatial distribution of SWE which is parameterised from observed spatial variability of precipitation and has hence no calibration parameters. Results show improved simulation of SWE and the evolution of snow-free areas when compared with the standard method.
Florian Hanzer, Kay Helfricht, Thomas Marke, and Ulrich Strasser
The Cryosphere, 10, 1859–1881, https://doi.org/10.5194/tc-10-1859-2016, https://doi.org/10.5194/tc-10-1859-2016, 2016
Short summary
Short summary
The hydroclimatological model AMUNDSEN is set up to simulate snow and ice accumulation, ablation, and runoff for a study region in the Ötztal Alps (Austria) in the period 1997–2013. A new validation concept is introduced and demonstrated by evaluating the model performance using several independent data sets, e.g. snow depth measurements, satellite-derived snow maps, lidar data, glacier mass balances, and runoff measurements.
Sarah S. Thompson, Bernd Kulessa, Richard L. H. Essery, and Martin P. Lüthi
The Cryosphere, 10, 433–444, https://doi.org/10.5194/tc-10-433-2016, https://doi.org/10.5194/tc-10-433-2016, 2016
Short summary
Short summary
We show that strong electrical self-potential fields are generated in melting in in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor, owing to its suitability for sensing lateral and vertical liquid water flows directly and minimally invasively, complementing established observational programs and monitoring autonomously at a low cost.
Z. Zheng, P. B. Kirchner, and R. C. Bales
The Cryosphere, 10, 257–269, https://doi.org/10.5194/tc-10-257-2016, https://doi.org/10.5194/tc-10-257-2016, 2016
Short summary
Short summary
By analyzing high-resolution lidar products and using statistical methods, we quantified the snow depth dependency on elevation, slope and aspect of the terrain and also the surrounding vegetation in four catchment size sites in the southern Sierra Nevada during snow peak season. The relative importance of topographic and vegetation attributes varies with elevation and canopy, but all these attributes were found significant in affecting snow distribution in mountain basins.
L. Scaff, D. Yang, Y. Li, and E. Mekis
The Cryosphere, 9, 2417–2428, https://doi.org/10.5194/tc-9-2417-2015, https://doi.org/10.5194/tc-9-2417-2015, 2015
Short summary
Short summary
The bias corrections show significant errors in the gauge precipitation measurements over the northern regions. Monthly precipitation is closely correlated between the stations across the Alaska--Yukon border, particularly for the warm months. Double mass curves indicate changes in the cumulative precipitation due to bias corrections over the study period. Overall the bias corrections lead to a smaller and inverted precipitation gradient across the border, especially for snowfall.
R. Chen, J. Liu, E. Kang, Y. Yang, C. Han, Z. Liu, Y. Song, W. Qing, and P. Zhu
The Cryosphere, 9, 1995–2008, https://doi.org/10.5194/tc-9-1995-2015, https://doi.org/10.5194/tc-9-1995-2015, 2015
Short summary
Short summary
The catch ratio of Chinese standard precipitation gauge vs. wind speed relationship for different precipitation types was well quantified by cubic polynomials and exponential functions using 5-year field data in the high-mountain environment of the Tibetan Plateau. The daily precipitation measured by shielded gauges increases linearly with that of unshielded gauges. The pit gauge catches the most local precipitation in rainy season and could be used as a reference in most regions of China.
A. Hedrick, H.-P. Marshall, A. Winstral, K. Elder, S. Yueh, and D. Cline
The Cryosphere, 9, 13–23, https://doi.org/10.5194/tc-9-13-2015, https://doi.org/10.5194/tc-9-13-2015, 2015
J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano
The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, https://doi.org/10.5194/tc-8-1989-2014, 2014
J. L. McCreight and E. E. Small
The Cryosphere, 8, 521–536, https://doi.org/10.5194/tc-8-521-2014, https://doi.org/10.5194/tc-8-521-2014, 2014
E. Kantzas, S. Quegan, M. Lomas, and E. Zakharova
The Cryosphere, 8, 487–502, https://doi.org/10.5194/tc-8-487-2014, https://doi.org/10.5194/tc-8-487-2014, 2014
S. Jörg-Hess, F. Fundel, T. Jonas, and M. Zappa
The Cryosphere, 8, 471–485, https://doi.org/10.5194/tc-8-471-2014, https://doi.org/10.5194/tc-8-471-2014, 2014
R. Mott, L. Egli, T. Grünewald, N. Dawes, C. Manes, M. Bavay, and M. Lehning
The Cryosphere, 5, 1083–1098, https://doi.org/10.5194/tc-5-1083-2011, https://doi.org/10.5194/tc-5-1083-2011, 2011
R. Mott, M. Schirmer, M. Bavay, T. Grünewald, and M. Lehning
The Cryosphere, 4, 545–559, https://doi.org/10.5194/tc-4-545-2010, https://doi.org/10.5194/tc-4-545-2010, 2010
S. H. Mernild, I. M. Howat, Y. Ahn, G. E. Liston, K. Steffen, B. H. Jakobsen, B. Hasholt, B. Fog, and D. van As
The Cryosphere, 4, 453–465, https://doi.org/10.5194/tc-4-453-2010, https://doi.org/10.5194/tc-4-453-2010, 2010
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, 1974.
Anderton, S. P., White, S. M, and Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, 2004.
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice R., and Dozier, J.: Mountain hydrology of the western United States, Water Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006.
Balk, B. and Elder, K.: Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed, Water Resour. Res., 36, 13–26, 2000.
Barry, R. G.: Mountain Weather and Climate, 3rd Edn., Cambridge University Press, Cambridge, 2008.
Berk, K. N.: Comparing Subset Regression Procedures, Technometrics, 20, 1–6, 1978.
Blöschl, G.: Scaling issues in snow hydrology, Hydrol. Process., 13, 2149–2175, 1999.
Blöschl, G., Kirnbauer, R., and Gutknecht D.: Distributed Snowmelt Simulations in an Alpine Catchment 1. Model Evaluation on the Basis of Snow Cover Patterns, Water Resour. Res., 27, 3171–3179, 1991.
Clow, D. W.: Changes in the Timing of Snowmelt and Streamflow in Colorado: A Response to Recent Warming, J. Climate, 23, 2293–2306, 2010.
Daly, S. F., Davis, R., Ochs, E., and Pangburn, T.: An approach to spatially distributed snow modeling of the Sacramento and San Joaquin basins, California, Hydrol. Process., 14, 3257–3271, 2000.
Dingman, S. L.: Elevation: A major influence on the hydrology of New Hampshire and Vermont, USA, Hydrol. Sci. Bull., 26, 399–413, 1981.
Doesken, N. J. and Judson, A.: The Snow Booklet: A Guide to the Science, Climatology, and Measurement of Snow in the United States, Dep. of Atmos. Sci., Colorado State Univ., Fort Collins, CO, 1996.
Dressler, K., Fassnacht, S. R., and Bales, R. C.: A Comparison of Snow Telemetry and Snow Course Measurements in the Colorado River Basin, J. Hydrometeorol., 7, 705–712, 2006.
Elder, K., Dozier, J., and Michaelson, J.: Snow accumulation and distribution in an Alpine watershed, Water Resour. Res., 27, 1541–1552, 1991.
Elder, K., Michaelsen, J., and Dozer, J.: Small basin modelling of snow water equivalence using binary regression tree methods, Proc. Symp. on Biogeochemistry of Seasonally Snow-Covered Catchments, Boulder, CO, IAHS-AIHS and IUGG XX General Assembly, IAHS Publication 228, 129–139, 1995.
Elder, K., Rosenthal, W., and Davis, R. E.: Estimating the spatial distribution of snow water equivalence in a montane watershed, Hydrol. Process., 12, 1793–1808, 1998.
Erickson, T. A., Williams, M. W., and Winstral, A.: Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States, Water Resour. Res., 41, W04014, https://doi.org/10.1029/2003WR002973, 2005.
ESRI: ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute, 2011.
Fassnacht, S. R., Dressler, K. A., and Bales, R. C.: Physiographic parameters as indicators of snowpack state for the Colorado River Basin, Proceedings of 58th Eastern Snow Conference, Ottawa, Ontario, Canada, May 2001.
Fassnacht, S. R., Dressler, K. A., and Bales, R. C.: Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data, Water Resour. Res., 39, 1208–1218, 2003.
Fassnacht, S. R., Skordahl, M. E., and Derry, J. E.: Variability at Colorado Operational Snow Measurement Sites, Snowcourse Stations at Collocated Snow Telemetry Stations, Proceedings of 65th Eastern Snow Conference, Fairlee, Vermont, USA, May 2008.
Fassnacht, S. R., Heun, C. M., López-Moreno, J. I., and Latron, J. B. P.: Variability of Snow Density Measurements in the Rio Esera Valley, Pyrenees Mountains, Spain, Cuandernos de Investigación Geográfica J. Geogr. Res., 36, 59–72, 2010.
Fassnacht, S. R., Dressler, K. A., Hulstrand, D. M., Bales, R. C., and Patterson, G.: Temporal Inconsistencies in Coarse-Scale Snow Water Equivalent Patterns: Colorado River Basin Snow Telemetry-Topography Regressions, Pirineos, 167, 167–186, 2012.
Harshburger, B. J., Humes, K. S., Walden, V. P., Blandford, T. R., Moore, B. C., and Dezzani, R. J.: Spatial interpolation of snow water equivalency using surface observations and remotely sensed images of snow-covered area, Hydrol. Process., 24, 1285–1295, 2010.
Intergovernmental Panel on Climate Change (IPCC): Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the IPCC, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge Univ. Press, Cambridge, UK, 2007.
Jasinski, M., Stoll, J., Carabajal, C., and Harding, D.: Feasibility of Estimating Snow Depth in Complex Terrain Using Satellite Lidar Altimetry, Eastern Snow Conference, Claryville, NY, 5–12 June 2012, 2012.
Jepsen, S. M., Moltch, N. P., Williams, M. W., Rittger, K. E., and Sickman, J. O.: Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: Examples from two alpine watersheds, Water Resour. Res., 48, W02529, https://doi.org/10.1029/2011WR011006, 2012.
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps, J. Hydrol., 378, 161–167, 2009.
Jost, G., Weiler, M., Gluns, D. R., and Alila, Y.: The influence of forest and topography on snow accumulation and melt at the watershed-scale, J. Hydrol., 347, 101–115, 2007.
Kerr, T., Clark, M., Hendrikx, J., and Anderson, B.: Snow distribution in a steep mid-latitude alpine catchment, Adv. Water Resour., 55, 17–24, 2013.
Kimerling, A. J., Buckley, A. R., Muehrcke, P. C., and Muehrcke, J. E.: Map Use: Reading Analysis Interpretation, Seventh Edition, ESRI Press Academic, Redlands, California, 2011.
Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W.: Applied Linear Statistical Models, Fifth Edition. McGraw-Hill/Irwin, New York, NY, 2005.
Lapen, D. R. and Martz, L. W.: An investigation of the spatial association between snow depth and topography in a prairie agricultural landscape using digital terrain analysis, J. Hydrol., 184, 277–298, 1996.
Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain, J. Glaciol., 44, 498–516, 1998.
Logan, L. A.: Basin-wide water equivalent estimation from snowpack depth measurements, IAHS-AISH P., 107, 864–884, 1973.
López-Moreno, J. I. and Nogués-Bravo, D.: Interpolating local snow depth data: an evaluation of methods, Hydrol. Process., 20, 2217–2231, 2006.
López-Moreno, J. I., Fassnacht, S. R., Beguería, S., and Latron, J. B. P.: Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies, The Cryosphere, 5, 617–629, https://doi.org/10.5194/tc-5-617-2011, 2011.
López-Moreno, J. I., Fassnacht, S. R., Heath, J. T., Musselman, K. N., Revuelto, J., Latron, J., Morán-Tejeda, E., and Jonas, T.: Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent, Adv. Water Resour., 55, 40–52, 2013.
Mallows, C. L.: Some Comments on Cp, Technometrics, 15, 661–675, 1973.
McClung, D. and Schaerer, P.: The Avalanche Handbook, Third Edition, The Mountaineers Books, Seattle, WA, 2006.
Milly P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Zbigniew, W. K., Lettenmaier., D. P., and Stouffer, R. J.: Stationarity Is Dead: Whither Water Management?, Science, 319, 573–574, 2008.
Mizukami, N. and Perica, S.: Spatiotemporal characteristics of snowpack density in the mountainous regions of the Western United States, J. Hydrometeorol., 9, 1416–1426, 2008.
Molotch, N. P. and Bales, R. C.: Scaling snow observations from the point to the grid element: Implications for observation network design, Water Resour. Res., 41, W11421, https://doi.org/10.1029/2005WR004229, 2005.
Molotch, N. P., Colee, M. T., Bales, R. C., and Dozier, J.: Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: The impact of digital elevation data and independent variable selection, Hydrol. Process., 19, 1459–1479, 2005.
Montesi, J., Elder, K., Schmidt, R. A., and Davis, R. E.: Sublimation of Intercepted Snow within a Subalpine Forest Canopy at Two Elevations, J. Hydrometeorol., 5, 763–773, 2004.
Musselman, K. N., Margulis, S. A., and Molotch, N. P.: Estimation of solar direct beam transmittance of conifer canopies from airborne LiDAR, Remote Sens. Environ., 136, 402–415, 2013.
Pomeroy, J. W. and Gray, D. M.: Snow Accumulation, Relocation and Management. National Hydrology Research Institute Science Report No. 7, 1995.
R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vievva, Austria, ISBN 3-900051-07-0, http://www.R-project.org/, 2012.
Richer, E. E., Kampf, S. K., Fassnacht, S. R., and Moore, C. C.: Spatiotemporal index for analyzing controls on snow climatology: Application in the Colorado Front Range, Phys. Geogr., 34, 85–107, https://doi.org/10.1080/02723646.2013.787578, 2013.
Stewart, I. T.: Changes in snowpack and snowmelt runoff for key mountain regions, Hydrol. Process., 23, 78–94, 2009.
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.: Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes, J. Hydrometeorol., 11, 1380–1394, 2010.
Viviroli, D., Weingartner, R., and Messerli, B.: Assessing the Hydrological Significance of the World's Mountains, Mt. Res. Dev., 23, 32–40, 2003.
Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B., Hamlet, A. F., Huang, Y., Koboltschnig, G., Litaor, M. I., López-Moreno, J. I., Lorentz, S., Schädler, B., Schreier, H., Schwaiger, K., Vuille, M., and Woods, R.: Climate change and mountain water resources: overview and recommendations for research, management and policy, Hydrol. Earth Syst. Sci., 15, 471–504, https://doi.org/10.5194/hess-15-471-2011, 2011.
Veatch, W., Brooks, P. D., Gustafson, J. R., and Molotch, N. P.: Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid-latitude site, Ecohydrology, 2, 115–128, 2009.
Washichak J. N. and McAndrew, D. W.: Snow Measurement Accuracy in High Density Snow Course Network in Colorado, Proceedings of the 35th Western Snow Conference, Boise, Idaho, USA, April, 1967.
Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain-Based Parameters, J. Hydrometeorol., 3, 524–538, 2002.